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Abstract

A logic and proof system is introduced for specifying and proving properties of
open distributed systems. Key problems that are addressed include the verifica-
tion of process networks with a changing interconnection structure, and where new
processes can be continuously spawned. To demonstrate the results in a realistic
setting we consider a core fragment of the Erlang programming language. Roughly
this amounts to a first-order actor language with data types, buffered asynchronous
communication, and dynamic process spawning. Our aim is to verify quite general
properties of programs in this fragment. The specification logic extends the first-
order u-calculus with Erlang-specific primitives. For verification we use an approach
which combines local model checking with facilities for compositional verification.
We give a specification and verification example based on a billing agent which
controls and charges for user access to a given resource.

1 Introduction

A central feature of open distributed systems as opposed to concurrent systems in general
is their reliance on modularity. Open distributed systems must accommodate addition of
new components, modification of interconnection structure, and replacement of existing
components without affecting overall system behaviour adversely. To this effect it is
important that component interfaces are clearly defined, and that systems can be put
together relying only on component behaviour along these interfaces. That is, behaviour
specification, and hence verification, needs to be parametric on subcomponents. But
almost all prevailing approaches to verification of concurrent and distributed systems rely
on an assumption that process networks are static, or can safely be approximated as such,
as this assumption opens up for the possibility of bounding the space of global system
states. Clearly such assumptions square poorly with the dynamic and parametric nature
of open distributed systems.
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Our aim in this paper is to demonstrate an approach to system specification and
verification that has the potentiality of addressing open distributed systems in general.
We study the issue in terms of a core fragment of Ericsson’s Erlang programming language
[AVWWO6]| which we call Core Erlang. Core Erlang is essentially a first-order actor
language (cf. [AMST97]). The language has primitives for local computation: data types,
first-order abstraction and pattern matching, and sequential composition. In addition to
this Core Erlang has a collection of primitives for component (process) coordination:
sending and receiving values between named components, and for dynamically creating
new components. Similar to [AMST97] an operational semantics is given in terms of a
two-level transition semantics: A transition relation on aggregate processes (or: composed
system states) on top of one for local computation.

We use a temporal logic based on a first-order extension of the modal p-calculus
for the specification of component behaviour. In this logic it is possible to describe a
wide range of important system properties, ranging from type-like assertions to complex
interdependent safety and liveness properties. The development of this logic is actually
fairly uncontroversial: To adequately describe component behaviour it is certainly needed
to express potentialities of actions across interfaces and the (necessary and contingent)
effects of these actions, to express properties of data types, and (to accommodate modular
reasoning) to determine whether components are fully evaluated to a ground value, to
access component names, and to express properties of messages in transit.

The real challenge is to develop techniques that allow such temporal properties to be
verified in a parametric fashion in face of the following basic difficulties:

1. Components can dynamically create other components.

2. Component names can be bound dynamically, thus dynamically changing compo-
nent interconnection structure (similar to the case of the m-calculus [MPW92]).

3. Components are connected through unbounded message queues.

4. Through use of non-tail recursion components can give rise to local state spaces of
unbounded size.

5. Basic data types such as natural numbers and lists are also unbounded.

We would expect some sort of uniformity in the answers to these difficulties. For instance
techniques for handling dynamic process creation is likely to be adaptable to non-tail
recursive constructions quite generally, and similarly message queues is just another un-
bounded data type.

In [Dam95] an answer to the question of dynamic process creation was suggested, cast
in terms of CCS. Instead of closed correctness assertions of the shape S : ¢ (S is a system,
¢ its specification) which are the typical objects of state exploration based techniques
the paper considered more general open correctness assertions of the shape I' = S : ¢
where T" expresses assumptions s : 1) on components s of S. Thus the behaviour of S is
specified parametrically upon the behaviour of its component s. To address verification a
sound and weakly complete proof system was presented, consisting of proof rules to reduce
complex proof goals to (hopefully) simpler ones, and, most importantly, to accommodate
proof goal discharge by loop detection.



Our contribution in the present paper is to show how the approach of [Dam95] can be
used to address the difficulties enumerated above for a fragment of a real programming
language, and to show the utility of our approach on a concrete example exhibiting some
of those difficulties. Thus many details of the proof system are kept very informal in the
present paper, and we concentrate instead on an intuitive explanation of our approach,
in particular the rule of discharge. The proof system captures both model checking-like
reasoning (by state exploration) and parametric reasoning, and we motivate the discharge
rule by first seeing how it reduces to well-known termination conditions in local model
checking, and then generalising to open correctness assertions.

The example is based on the following scenario: A user wants to access a resource
paying for this using a given account. She therefore issues a request to a resource manager
which responds by dynamically creating a billing agent to act as an intermediary between
the user, the resource, and the users account. We view this scenario as quite typical
of many security-critical mobile agent applications. The user is clearly taking a risk
by exposing her account to the resource manager and the billing agent. One of these
parties might violate the trust put in him eg. by charging for services not provided, or by
passing information to third parties that should be kept confidential. Equally the resource
manager need to trust the billing agent (and to some minor extent the user). We show
how the system can be represented in Core Erlang, how a few critical properties can be
expressed, and outline a proof that the number of transfers from the user account does
not exceed the number of requests to use the resource.

2 Core Erlang

We introduce a core fragment of the Erlang programming language with dynamic networks
of processes operating on data types such as natural numbers, lists, tuples, or process iden-
tifiers (pid’s), using asynchronous, first-order call-by-value communication via unbounded
fifo queues. Real Erlang has several additional features such as communication guards,
exception handling, modules, distribution extensions, and a host of built-in functions.

Processes A Core Erlang system consists of a number of processes computing in par-
allel, and communicating by means of fifo ordered, unbounded message queues. Each
process is named by a unique pid of which we assume an infinite supply. Associated with
a process is an Erlang expression currently being evaluated and a queue of incoming mes-
sages, the process mailbox. Messages are sent by addressing a data value to a receiving
process mailbox, identified using its pid. We use the notation {E, p, Q} for a process with
pid p, Erlang expression F, and queue (). System states, or aggregate processes, S, are
sets of processes, written using the grammar (where “||” expresses parallel execution):

S = {E,p.Q}|S | S

Abstract Syntax We operate with the syntactical categories of expressions E, matches
M, patterns P, and values V. The abstract syntax of Core Erlang is summarised as follows:



E ::= Q(E,...E,) | X|self | case E of M |EF |
spaun(E,E) | E'E | receive M end | E,E

M ::= P->FE; --- ;P,->FE,
P ::= Q(P,..,P,) | X
Vo= QL V)

X is an Erlang variable, and €2 ranges over a set of primitive constants and operations
including zero 0, successor E+1, tupling { Fy, Ey}, the empty list [], list prefix [F;|Es], pid
constants ranged over by p, and atom constants ranged over by a, f, and g. In addition
we need constants and operations for message queues: € is the empty queue and @ - Q)
is queue concatenation.

Atoms are used to name functions. Expressions are interpreted relative to an envi-
ronment of function definitions f(X1,.., X,,) => E. Such definitions should be considered
sugared versions of definitions f = {Xy,{..., X, }} -> E assigning matches to function
atoms. Each function atom f is assumed to be defined at most once in this environment.

Intuitive Semantics The intuitive behaviour of most operators should not be too
surprising:

e () is a data type constructor: To evaluate Q(Fy, ..., E,), E; to E, are evaluated in
left-to-right order.

e self extracts the pid of the current process.

e case FE of M is evaluated by first evaluating F to a value V', then matching V' using
M. If several patterns in M match the first one is chosen. Matching a pattern P; of
M against V can cause unbound variables to become bound in E;'. In a function
definition f = M all free variables are considered as unbound.

e F, E, is application: First Fj is evaluated to a function atom f (we have no \’s),
then Ej is evaluated to a value V, then the function definition of f is looked up and
matched to V.

e spawn(FE;, Fy) is evaluated by first evaluating E; to a function atom f, then Es to a
value V', a new pid p is generated, and a process with that pid is spawned evaluating
f V. The value of the spawn expression is then p.

e E!FE, evaluates F; to a pid p, then E5 to a value V', then V is sent to p, resulting
in V' as the value of the send expression.

e receive M end inspects the process mailbox () and retrieves the first element in )
that matches any pattern of M. Once such an element V has been found, evaluation
proceeds analogously to case V' of M.

e F. FE, is sequential composition: First F; is evaluated to a value, and then evalua-
tion proceeds with Fj.

!This is not quite the binding the convention of Erlang proper: There the first occurrence of X in
(case Ey of X -> E5), X can bind the second.



Operational Semantics Expression evaluation takes place in the context of a process
configuration (E,p, Q) 2. The intuitive meaning of the operators is easily formalised as a
Plotkin-style SOS semantics. Transitions are labelled by triples “pre,a,post” where pre is
a necessary precondition for performing the transition (formulated in the logic introduced
in Section 3), « is the action causing the transition and post is the result (in terms of
variable bindings etc.) of taking the transition.

For instance we have rules like

X fresh

imput true, pI'X, true
(B,p,Q) L » (E.p,Q- X)

reflecting that input transitions are always enabled,

pre, o, post
spawnl <E1ap7Q> - <Eiapan>
re, o, post
(spawn(El,Eg),p,Q> % (spawn(Ei,EQ),p,Q’>

to allow for expression evaluation in contexts, and

p' fresh
spawns3 true, spawn(f, V,p'), true
(spawn(f,V).p, Q) SRR V). e, o)

Here « is a metavariable over transition types, either 7 (corresponding to an internal,
spontaneous computation step), output p!V', input pI'’X, or spawn, spawn(f,V,p’). Rules
for the remaining operators are left out for concerns of space. They are, however, quite
trivial given the intuition stated above.

[t remains to state the rules governing computation steps for (aggregate) processes.
These we state in full:

re, T, post
pT'OCI <E7pa Q> u) <E’7pa QI>
re, T, post
{E:paQ} % {ElapaQ,}
re, p''TV, post
procs P Q) Dol 0% (B p, Q)
(B.p,@) PELEREO (g
re, spawn(f, V,p'), post
proc3 (B,p.Q) TF (. V.p). post, (E',p, Q")
re, T, post
{B,p,Q} TP B p, QY | {f VD ¢}

s, prel,p!V,post1> s S, p?“eQ,p’FX,post2> s,

com ;
= A A t, A ts N X =V
Sl || 52 p p prel pT€2,T,p08 1 bos 2 N Si || Sé
pre, T, post ,
. _—
interleavel 51 ——— 51
S || s, TR s s,

2Process configurations are introduced mainly to handle process spawning in subexpressions.



s, pre,p!FV,post> s

foreign(p)(Ss) A pre, plTV, post

interleave?

St || Sy

Here we use p!TV as a wildcard among {p!V, pI'V'}, and foreign(p) for the predicate on
system states S stating that p is not a pid of a process in S. local(p) is the dual of
foreign(p).

Example: Billing Agents As an example Core Erlang program, a function for man-
aging accesses to private resources (a resource manager) is shown below.

rm(ResList, Bank, RAcc) ->
receive
{contract,{ Pu, UAcc}, From}} ->
case lookup(Pu, ResList)) of
{ok, Pr} -> From!{agent,spawn(billagent, (Pr, Bank, RAcc, UAcc))};
nok -> From!{agent,nok}
end
end, rm(ResList, Bank, RAcc).

The resource manager rm accepts a resource list, the pid of a trusted bank agent, and
a private account as arguments. The resource list contains pairs of public and private
“names”. The function lookup(Pu, ResList) (not shown) searches for the public name Pu
in ResList, and if found, returns the matching private name. After receiving a contract
offer (identifying the paying account UAcc) a billing agent is spawned.

billagent(Res, Bank, RAcc, UAcc) ->
receive
{use, From} ->
Res{use,self},
receive
{res, ok, Value} ->
Bank!{{trans, UAcc, RAcc}, self},
receive
{{trans, UAcc, RAcc},ok} -> From!{use,ok, Value};
{{trans, UAcc, RAcc},nok} -> From{use,nok}
end;
{res,nok} -> From!{use,nok}
end
end, billagent(Res, Bank, RAcc, UAcc).

The billing agent coordinates access to the resource with withdrawals from the
account. Upon receiving a request for the resource {use, From} it acquires the re-
source, attempts to transfer money from the user account to resource manager account

Bank!{{trans, UAcc, RAcc},self}, and then sends the resource to the process with pid
From.



3 The Property Specification Logic

In this section we introduce a specification logic for Core Erlang. The logic is based on
a first-order p-calculus, extended with Erlang-specific features. Thus the logic is based
on the first-order language of equality, extended with recursive (minimal and maximal)
definitions, modalities reflecting the transition capabilities of processes and process con-
figurations, along with a few additional primitives.

Syntax The abstract syntax of formulas is given as follows:

¢ = P=P|P#P|term(P)= P|queue(P)=P|
local(P) | foreign(P)|atom(P) | unevaluated(P) |
f(P P 6N 6V 6| VX.6]|IX.0|
<>¢| <PTP>¢ | <¢>¢|[]o | [P'TP] | [¢]d

Formula atoms are defined by parametrised recursive definitions. As is by now well known
monotone recursive definitions in a complete boolean lattice have minimal and maximal
solutions. For readability we use the notation f(Xy,..., X,) = ¢ for maximal definitions,
and f(Xy,...,X,) < ¢ for minimal ones. Maximal solutions are used, typically, for
safety, or invariant properties, while minimal solutions are used for liveness, or eventuality
properties. We also use standard abbreviations like true, false, VX1,..., X,.0, etc.

Intuitive Semantics To limit space requirements we refrain from giving a formal se-
mantics of formulas and make do instead with an informal one:

e Equality, inequality, boolean operators and the quantifiers take their usual meaning.

e The purposes of term(P;) = P, and queue(P;) = P, are to pick up the values of
terms and queues associated with given pid’s. term(P;) = P, requires P; to be
the pid of a process which is part of the system state being predicated (alt. is the
pid of the predicated process configuration), and the Erlang expression associated
with that pid to be identical to P,. Similarly queue(P;) = P, holds if the queue
associated with P, is P,.

e atom(P) holds if P is an atom.

e local(P) holds if P is the pid of a process in the system state being predicated, and
analogously foreign(P) holds if P is a pid and there is no process with pid P in the
predicated system state.

e unevaluated(P) holds if local(P) does and the Erlang expression associated with
P is not a ground value.

e <>¢ holds if an internal transition is enabled to a system state (process configura-
tion) satisfying ¢. [ ¢ is the complement of <>¢ (ie. all states following an internal
transition satisfy ¢). <P;!Py>¢ holds if an output transition with appropriate pa-
rameters is enabled to a state (configuration) satisfying ¢. <P;TP,>¢ is used for



input transitions. Finally <¢;>¢, predicates process configurations only and holds
if a process satisfying ¢ can be spawned such that the ensuing configuration satisfies
¢2. The boxed modalities, as before, are dual.

Some Simple Examples The combination of recursive definitions with data types
makes the logic very expressive. For instance the type of natural numbers is defined as a
minimal recursion:

nat(P) < P =0V 3X.P =X + 1A nat(X)

Using this idea all involved data types can be defined quite easily. This in turn can be
used to define a De-Morganised negation not. We can define “weak” modalities that are
insensitive to the specific number of internal transitions in the following style:

[Me = onllllle [XY]e = [MIXY][[e

KKSPpE= PV <> KXW >op=<<><XIYV><>0

Observe the use of formula parameters, and the use of “=" for non-recursive definitions.
A temporal property like always is also easily defined:

always(¢) = ¢ A | Jalways(p) ANVX, Y. [XTY |always(¢p) AVX,Y.[ XY ]always(¢) (1)

Eventuality operators are more delicate as progress is in general only made when internal
or output transitions are taken. This can easily be handled, though, by nesting minimal
and maximal definitions.

Billing Agents: Specification We enumerate some desired properties of the billing
agent system introduced on Page 6.

Disallowing spontaneous account withdrawals. The first correctness property forbids spon-
taneous withdrawals from the user account by the billing agent. That is, the number of
transfers from the user account should be less than or equal to the number of requests to
use the resource.
safe(Ag, Bank, UAcc, N) =
[ |safe(Ag, Bank, UAcc, N)
A YP,V.[P?V]
P = Ag A 3Pid.V = {use, Pid} A safe(Ag, Bank, UAcc, N + 1)
( vV safe(Ag, Bank, UAce, N) V contains(V, UAcc) )
A VP, V.[PIV]
P = Bank A 3Pid, Acc. V = {{trans, UAcc, Acc}, Pid}
( A N > 0 A safe(Ag, Bank, UAcc, N — 1)) )
(P # Bank V not(3Pid, Acc. V.= {{trans, UAcc, Acc}, Pid}))
< A safe(Ag, Bank, UAcc, N) )

The predicate contains(Y, A) is defined via structural induction over an Erlang value
expression Y and holds if no subexpression of Y is equal to A (definition omitted for lack
of space).



Ezxpected Service is Received. Other intersting properties concern facts like: Denial of
service responses correspond to failed money transfers, and returning the resource to the
proper user. These sorts of properties are not hard to formalise in a style similar to the
first example.

Preventing Abuse by a Third Party. The payment scheme presented here depends crucially
on the non-communication of private names. For instance, even if we can prove that a
resource manager or billing agent does not make illegal withdrawals nothing stops the
resource manager from communicating the user account key to a third party, that can
then access the account in non-approved ways.

Thus we need to prove at least that the system communicates neither the user account
key nor the agent process identifier. Perhaps the service user also requests that her identity
not be known outside of the system, in such a case the return process identifiers may not be
communicated either. As an example, the property that the system does not communicate
the user account key is captured by notrans(UAcc) given the definition below.

notrans(A) = [ Jnotrans(A)
AN VX,Y.[X?Y](contains(Y, A) V notrans(A))
AN VX,Y.[X!Y](not(contains(Y, A)) A notrans(A))

4 Toward Parametric Verification
Consider a correctness assertion of the shape
'S o. (2)

where S is an arbitrary system state, ¢ an arbitrary specification, and I" consists of first-
order assumptions (like: V; = V5) on value variables V' in S and ¢ (a restriction that will
be lifted in later sections). We wish to devise an adequate and general set of proof rules
that allow us to prove such sequents. A natural starting point for this is the classical
sequent calculus with equality. A general sequent will have the shape I' .S : A where A
is a finite set, interpreted disjunctively, of formulas. Classical sequent calculus provides
us with a standard collection of rules, easily adaptable to the sequent format of (2), for
manipulating sequents, and for introducing connectives to the left and the right of the
turnstile. For instance the rule for introducing conjunction to the right becomes

TFS:¢,A TFS:¢A

AndR TFS:0AY,A

We thus need only consider additions needed for the Erlang-specific primitives, for formula
definitions, and for the modal operators. For the former we give a single example for the
term construction:

Fl_{V,Pl,Q}HSZpl:PQ,A Fl_{‘/,pl,Q}HSV:p?”A
PEAV, PLQY S term(Py) = P, A

Term

For recursively defined formulas we need rules for definition unfolding, for instance:



F"Sd)[Al/Xl,,An/Xn],A f(Xl,,Xn):>¢

UnfoldR F'—Sf(Al,,An)aA

This leaves the modal operators. For these one option is to explore the transition relation,
by rules of the following shape?:

g pre, o, post

[,pre,posttS":¢ T pre S’

F'ES:<a>¢

Diamond

Box AT.pre.postt §': gr,...on | § LCOPOY oy

TES:[a]g,...[o]é,

Proofs built up using the proof rules introduced so far will rarely terminate, as both
processes and their specifications are given recursively. We thus need a way of safely
discharging an assumption once it is seen to be an instance of a proof goal which has
already been encountered during proof construction. We discuss the ideas on the basis of
an example.

Example 4.1 Consider the following Core Erlang function:
stream(N, Out) => Out!N, stream(N + 1, Out).

which outputs the increasing stream N, N+ 1, N +2, ... along Out. The specification of
the program could be

stream_spec(Out) = always(IX.<< Out! X >>true)

The goal sequent takes the shape
Out # P + {stream (N, Out), P, €} : stream_spec(Out). (3)

That is, assuming Out # P (since otherwise output will go to the stream itself), and
started with pid P and the empty input queue, the property stream_spec(Out) will hold.
One problem with (3) is to avoid the queue component growing in an unbounded manner,
due to the input modality of always (see Page 8). In fact the goal sequent holds for any
initial queue, and we can thus use a rule of substitution to replace (3) by the goal

Out # P & {stream(N, Out), P,Q} : stream_spec(Out) (4)

The first step is to unfold the formula definition. Then, using the proof rules (4) is easily
reduced to subgoals of the shapes

Out # P+ {stream(N, Out), P,Q} : <<Out!N>>true (5)
Out # P = {stream((N + 1),0Out), P,Q} : stream_spec(Out) (6)
Out # P = {stream(N,Out), P,Q :: Y} : stream_spec(Out). (7)

3 Another option is exemplified by the DiaSeql proof rule on Page 14.
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Discharge We see that (5) can be proved without recourse to discharge. However, in
subgoals (6) and (7) we have arrived at sequents which are both instances of a sequent
already “reduced”, namely (4). Discharge at these points is indeed sound, for reasons
explained below.

Consider a proof constructed using the proof rules introduced so far. Suppose an
internal node of the proof is labelled I' = S : ¢, and suppose the proof has a leaf which
is labelled T = S’ : ¢' such that S’ : ¢’ is a substitution instance of S : ¢ under a
substitution, say, p. That is, we have a scenario like the one in ex. 4.1. Suppose also that
I p(¢) whenever ¢ € T'. That is, with the leaf node T" - S’ : ¢' we have arrived at
a situation which is a special case of a situation we have already considered. We wish
to devise safe conditions for discharging the leaf node T = S’ : ¢'. Informally it suffices,
during proof construction, to tag each formula identifier with a unique label whenever it
is looked up by applications of UnfoldR while not yet having been assigned a tag, and to
assign another unique tag, say, a colour, to each member of the right-hand formula set A
in a manner which is preserved by all applications of proof rules. Then, if substitutions
are required to respect colours, we can introduce a notion of formula regeneration path
by tracking, from any given ¢ € A, using the colouring information, a member of any
subsequent right-hand formula set with the same colour, until the leaf has been reached.
In that situation we know for the set A’ that we have tracked a formula v which, up
to tagging of formula identifiers, is identical to p(¢). We can now inspect the formula
regeneration path to pick the latest tagged formula identifier which is unfolded along the
regeneration path and which occurs, with that same tag, in v. If, for some such ¢ we can
find such a formula identifier which is defined using a maximal definition then discharge
is permitted, otherwise it is not.

What we have described is a proof system for local model checking in the style of
the tableau systems of eg. [SW91] or [Win91], extended to cater for symbolic reasoning
on value parameters. A more formal treatment of a similar proof system can be found
in [Dam95].

Parametricity Unfortunately the proof rules introduced so far are incapable of dealing
satisfactorily with the complications discussed in the introduction. Features like dynamic
process spawning or non-tail recursion cause state spaces to grow in an essentially un-
bounded manner which can not in general be captured by the discharge conditions given
in the previous section. This applies, for instance, to the resource manager on Page 6.
Moreover, many proof goals require data type induction, mechanisms for which have not
been considered yet. In this section we introduce a generalisation of the model checking-
like approach of the previous section that permits us to address these issues in a very
general way.

Consider again a proof goal I' = S : ¢. Assume that S contains a recursively defined
expression which when executed can spawn off some process FE. Then, attempting to
build a proof using the rules already introduced, we will eventually encounter a sequent
of the shape

TES|{E,pe€}:. (8)

Clearly we have no hope of terminating proof construction with only the proof rules
introduced so far. The solution we propose is to replace components of the agent being
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predicated by variables of which sufficiently powerful properties can be assumed, for the
entire system to be verifiable. This amounts to a cut, using a rule of the following shape:

FES :y Tos:vy'bs| Sy:y

Cut TF S 57

This rule allows us, intuitively, to abstract from computational details of a component
process that are irrelevant for desired property of the system as a whole. Now, to handle
(8) we can then try to guess properties y; and v, for each of the component processes, and
then cut out these components. First cutting out S results in the following two subgoals:

'ES:m (9)
Fasl N - S1 || {Eapa 6} : 77/} (10)

Observe that if the outermost specification ¢ is well chosen it will often be possible to
choose 7, identical to ¢ itself. Moving on we would then use another cut to reduce (10)
to two further subgoals

C'FA{E,p,e}: 7 (11)
L,s1: 91,8 v st | sa: 9. (12)

We have thus arrived in a situation where a proof goal involving a composite system
(8) has been reduced to proof goals for the components, along with an open correctness
assertion (10) which does not depend on the system components, only on their properties.

Proving properties of open correctness assertions, however, is a very different task
from the problem of proving closed ones in that eg. the modal rules Diamond and Box
do not apply. Moreover, the rule of discharge has to revised in light of the more general
sequent shape, and new sets of proof rules are needed.

Discharge Revisited Observe that in case S can recursively spawn new processes, as
we assumed, the reduction of (8) to (9) may not have actually achieved anything, as S
can just continue to spawn off new processes. The task is to terminate the loop. Assume
for simplicity that we could choose 7y; = ¢. In this case (9) and (2) are identical, and
we would then hope to be able to discharge (9) for the same reasons as discharge for
(6) was seen to be admissible (even though the path from (2) up to (9) arises for very
different reasons (structural ones, the cut) than the corresponding path for (6) which uses
the modal rules introduced above). In fact this hope turns out to be justified.

Since formulas are are defined recursively also the subgoal (12) may give rise to a
recursive proof structure. That is, in building a proof of (12) we may arrive at a situation
where the goal sequent has the shape T”, sy : 71, 89 : ¥4 b s1 || s2 : 9" which is an instance
of (12). In this case we will have the possibility of discharging when ¢ was regenerated
because of a maximal formula identifier, but in addition we will have the possibility of
discharging when one of the 7! are regenerated because of a minimal formula identifier.
Intuitively the assumption of a minimally defined property of some s permits us to define
an approximation ordinal for which the assumption continues to hold, and when loops are
unrolled this ordinal will decrease strictly.
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The difficulty is to devise side conditions that ensure that this intuition remains sound
even when loops are nested. This issue was addressed in the paper [Dam95] to which we
refer for details. For the examples given here, however, the basic intuition is sufficient
and sound, whence we leave aside the wider issue for now.

To illustrate the power of the discharge principles notice how, using the representation
of data types of section 3, it is possible to capture data type induction by unfolding
minimally defined formula identifiers such as

nat(P) < P =0V 3X.P =X + 1 A nat(X)

to the left of the turnstile.

Proof Rules for Open Correctness Assertions So far we have not discussed proof
rules that handle the existence of left hand hypotheses of the shape s: ¢. What remains,
besides the classical sequent calculus rules, are rules to to handle modal operators to the
left of the turnstile, and to unfold formula definitions (similar to UnfoldR). We need two
monotonicity rules:

Mon [s:g,s:p1,...,8: b s:01,..., 0
[,s:<a>¢,s:[alor,...,s: [algy b s <a>iq, ..., <a>y,
Mon? [,s:pr,...,8: ¢, s

F,S : [a]d)la'-'as : [a]qﬁn Fs: [a]lb
and then the following rules for combinations of || with the modalities:

Isiiog,s0:pEPr=Py  TI',si:¢,8:0FP,=P,
DiaParl [,s1:0,8: s sy
F,Sl : <P1!P2>¢, SS9t <P3FP4>’I7/}|_81 || S 1 <>

Iis:opbs| S

DiaPar2 [,s:<>pbs|S:<>¢

Iis:pFs|S:9¢ I'FS:foreign(P)

DiaPar3 [s: <PIIPB>¢F s || S <PIIP>1)

F,Sl . ¢1,52 : le,SQ ZVX,Y[X!Y]wQ,SQ . VX,Y[XFY]wg l_ S1 || So 1Y
F,Sl . H¢1;51 IVX, Y.[X!Y]¢2,Sl ZVX,Y[XI—Y]¢3,SQ : wl l_ S1 || So 1Y
[,s1: 69,8 3t s | s2:7
BoxParl
oxrar [ s1:¢3,80 51| 821y
F,Sl i []d)l,sl ZVX,Y[X!Y]QSQ,Sl IVX, Y[XIY]¢3,
So i [Jth1, 89 VX, Y XY |thg, 59 : VX, Y[ XTY )b b 51 || s2: []y

[',s1:¢,80: foreign(Py),se: [PIITR]t) =51 || s9:
BoxPar2 T, sy :[P!TP]¢, s : foreign(Py),so: ¢ s || s2:
F, S1 - [pl'FP2]¢, So . [Pl'FPQ]w l_ S1 || So . [Pl'FPQ]’)/
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For these five rules we assume that ' mentions neither s;, so, nor s. A similar as-
sumption applies to the monotonicity rules. In actual proofs we tend to use slight gen-
eralisations of the last two proof rules where the left hand assumptions like s; : []¢; are
allowed to be vectors.

So far we have presented only rules to reason compositionally about system states.
To prove general properties also of non-tail recursive processes another layer is needed
in the proof system, for sequents of the form ' - (E.p, @) : A. This extension is quite
voluminous though it offers no significant new problems. As an example one of the rules
for handling sequences is shown below.

: L(z,p,q):0-((x,E),p,q) : ¢
DiaSeal 0 0 ) : <asdF (@, B). p,q) - <a>0

5 Verifying the Resource Manager

In this section the proof system is demonstrated by outlining a proof that the resource
manager on Page 6 satisfies the safe specification defined on Page 8. For simplicity it is
assumed that the manager knows of only one resource, with public name P, and private
P,. The list [{P,, P,}] is denoted with Ry. Furthermore Rp denotes the process identifier
of the resource manager process, Rq its input queue.

Since the definition of safe is parametrised on a billing agent and a user account the
formula must be preceded by an initialisation phase:

Y PubRes, UAcc, From, Agent.
[Rp?{contract,{ PubRes, UAcc}, From}]
[From!{agent, Agent}]|safe(Agent, Bank, UAcc,0)

So we set out to prove the following sequent:

? + {rm(Rr,Bank,RAcc), Rp,€}
VPubRes, UAcc, From, Agent.[Rp?{contract, { PubRes, UAcc}, From}]... (1)

The necessary assumptions on the non-equivalence of process identifiers (e.g., Rp # P,)
are collected in I'. By application of simple proof steps — four applications of ForallR and
then repeated applications of the rules for unfolding, elimination of conjunctions, and the
rules for the box modality — the following proof state is reached:

?" + {rm(Rp, Bank, RAcc), Rp,e€}||{billagent(P,, Bank, RAcc, UAcc), Bp, €}
safe(Bp, Bank, UAcc, 0) (2)

where [ is ' extended with the fact that Bp is a fresh process identifier. This is a
critical proof state, where we must come up with a property of the resource manager,
and a property of the billing agent, that are sufficiently strong to prove that their parallel
composition satisfies the safe property. In general such a proof step may be very difficult,
but here we can simply choose to prove the safe property of the billagent process, and
for the resource manager process that it never communicates with the user account. The
result of applying the Cut rule twice is the following proof obligations:
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?" + {billagent(P,, Bank, RAcc, UAcc), Bp,€} : safe(Bp, Bank, UAcc,0) (3)

?" + {rm(Ry, Bank, RAcc),Rp,e} : nocomm(UAcc) (4)
?'. s1: safe(Bp, Bank, UAcc,0), sy : nocomm(UAcc) -
s1||sa : safe(Bp, Bank, UAcc,0) (5)
where
nocomm(P) = [ |[nocomm (P)

A VX, Y.[X?Y] (contains(Y, P) V nocomm/(P))

AN VX, Y.IXIY](P # X A nocomm(P))
The proof of (3) involves essentially well-known techniques for proving correctness of
sequential programs. Instead we concentrate on (4), or rather, the stronger statement

that rm satisfies nocomm even when its input queue is non-empty, as long as no element
in the queue contains UAcc:

7', not(contains(Rq, UAcc)) & {rm(Rr., Bank, RAcc), Rp, Rg} : nocomm (UAcc) (6)

To prove (6) we first unfold the definition of nocomm and eliminate the conjunctions.
In case of an input step ([XTY]) either we are done immediately (if contains(Y, P)).
Otherwise the resulting proof state is

7' not(contains(Rg, UAcc)), not(contains(Y, UAcc)) F
{rm(Ry, Bank, RAcc), Rp, Rg - Y} : nocomm (UAcc) (7)
which can be rewritten into a proof state that can be discharged (see discussion on Page 11)
against (6). The rm process can clearly not perform any output step so that part of the
conjunction is trivially true. Thus only the internal step remains, and such a step must
correspond to retrieving a value {contract,{P,', UAcc'}, From} from the queue. The
resulting proof state is:
7', not(contains(Rg, UAcc)) +
{case lookup(P,',Ryr)...,Rp,Rq'} : nocomm(UAcc) (8)
where Ry’ is the queue resulting from the reception of the value. By repeating the above
steps, i.e., handling input, output and internal steps eventually one reaches the goal:

?" = {rm(Rr, Bank,RAcc), Rp,RQ"} || {billagent(P,, Bank, RAcc, UAcc'), Bp', €}
nocomm,(UAcc) (9)
where I'" is I, not(contains(Rq, UAcc)) together with inequalities involving the new pro-

cess identifier Bp'. This goal is handled by applying Cut to the parallel composition using
nocomm as the cut formula both to the left and to the right. The resulting goals are:

?" + {rm(Ry, Bank,RAcc), Rp, RQ"} : nocomm(UAcc) (10)
?" & {billagent(P,, Bank, RAcc, UAcc'), Bp', €} : nocomm(UAcc) (11)

?" 7 : nocomm(UAcc),V : nocomm(UAcc) =
Z ||V : nocomm(UAcc) (12)

Goal (10) can be discharged against (6). Goal (11) is easy to prove, since no new processes
are created (proof sketch omitted). Finally goals (5) and (12) are handled by applications
of BoxParl, BoxPar2, Unfold and discharging against previously seen goals.
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6 Concluding Remarks

We have introduced a specification logic and proof system for the verification of programs
in a core fragment of Erlang, and illustrated its application on a small, but quite delicate,
agent-based example. Our approach is quite general both regarding the kinds of languages
and models that can be addressed, and the kinds of assertions that can be formulated®.
In addition our approach permits the treatment of programming language constructs such
as dynamic process creation, non-tail recursion and inductive data type definitions in a
uniform way, via a powerful rule of discharge.

As the goal of this work is quite ambitious, i.e., to enable verification of open dis-
tributed systems as implemented using real programming languages, there remains a
number of shortcomings in the current work. First of all, we need to investigate the
proof system in real applications. For this purpose a prototype proof checking tool has
been produced based on the approach presented here, that can handle programs of a
moderate size’. Some support for automation of proof steps already exists (e.g., for the
model checking fragment), but we also need to identify other classes of sequents that can
be proved algorithmically. Other ongoing work focuses on integrating the operational
semantics of Erlang more tightly with the proof systems (along the lines of [Sim95]), to
improve the handling of process identifier scoping (but see [AD96] for an approach to this
in the context of the m-calculus), and to handle fairness in a more elegant manner.
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