
On the Veri�cation of Open Distributed Systems �Mads Dam, Lars-�ake FredlundSwedish Institute of Computer ScienceyKeywords: Open Distributed Systems; Program Veri�cation; Erlang; Parametric Veri-�cation; Agents AbstractA logic and proof system is introduced for specifying and proving properties ofopen distributed systems. Key problems that are addressed include the veri�ca-tion of process networks with a changing interconnection structure, and where newprocesses can be continuously spawned. To demonstrate the results in a realisticsetting we consider a core fragment of the Erlang programming language. Roughlythis amounts to a �rst-order actor language with data types, bu�ered asynchronouscommunication, and dynamic process spawning. Our aim is to verify quite generalproperties of programs in this fragment. The speci�cation logic extends the �rst-order �-calculus with Erlang-speci�c primitives. For veri�cation we use an approachwhich combines local model checking with facilities for compositional veri�cation.We give a speci�cation and veri�cation example based on a billing agent whichcontrols and charges for user access to a given resource.1 IntroductionA central feature of open distributed systems as opposed to concurrent systems in generalis their reliance on modularity. Open distributed systems must accommodate addition ofnew components, modi�cation of interconnection structure, and replacement of existingcomponents without a�ecting overall system behaviour adversely. To this e�ect it isimportant that component interfaces are clearly de�ned, and that systems can be puttogether relying only on component behaviour along these interfaces. That is, behaviourspeci�cation, and hence veri�cation, needs to be parametric on subcomponents. Butalmost all prevailing approaches to veri�cation of concurrent and distributed systems relyon an assumption that process networks are static, or can safely be approximated as such,as this assumption opens up for the possibility of bounding the space of global systemstates. Clearly such assumptions square poorly with the dynamic and parametric natureof open distributed systems.�Work partially supported by the Computer Science Laboratory of Ericsson Telecom AB, Stockholm,EU Esprit BRA project 8130 LOMAPS, and a Swedish Foundation for Strategic Research Junior Indi-vidual Grant.yAddress: SICS, Box 1263, S-164 28 Kista, Sweden. Email: mfd@sics.se and fred@sics.se.1

Our aim in this paper is to demonstrate an approach to system speci�cation andveri�cation that has the potentiality of addressing open distributed systems in general.We study the issue in terms of a core fragment of Ericsson's Erlang programming language[AVWW96] which we call Core Erlang. Core Erlang is essentially a �rst-order actorlanguage (cf. [AMST97]). The language has primitives for local computation: data types,�rst-order abstraction and pattern matching, and sequential composition. In addition tothis Core Erlang has a collection of primitives for component (process) coordination:sending and receiving values between named components, and for dynamically creatingnew components. Similar to [AMST97] an operational semantics is given in terms of atwo-level transition semantics: A transition relation on aggregate processes (or: composedsystem states) on top of one for local computation.We use a temporal logic based on a �rst-order extension of the modal �-calculusfor the speci�cation of component behaviour. In this logic it is possible to describe awide range of important system properties, ranging from type-like assertions to complexinterdependent safety and liveness properties. The development of this logic is actuallyfairly uncontroversial: To adequately describe component behaviour it is certainly neededto express potentialities of actions across interfaces and the (necessary and contingent)e�ects of these actions, to express properties of data types, and (to accommodate modularreasoning) to determine whether components are fully evaluated to a ground value, toaccess component names, and to express properties of messages in transit.The real challenge is to develop techniques that allow such temporal properties to beveri�ed in a parametric fashion in face of the following basic di�culties:1. Components can dynamically create other components.2. Component names can be bound dynamically, thus dynamically changing compo-nent interconnection structure (similar to the case of the �-calculus [MPW92]).3. Components are connected through unbounded message queues.4. Through use of non-tail recursion components can give rise to local state spaces ofunbounded size.5. Basic data types such as natural numbers and lists are also unbounded.We would expect some sort of uniformity in the answers to these di�culties. For instancetechniques for handling dynamic process creation is likely to be adaptable to non-tailrecursive constructions quite generally, and similarly message queues is just another un-bounded data type.In [Dam95] an answer to the question of dynamic process creation was suggested, castin terms of CCS. Instead of closed correctness assertions of the shape S : � (S is a system,� its speci�cation) which are the typical objects of state exploration based techniquesthe paper considered more general open correctness assertions of the shape � ` S : �where � expresses assumptions s : on components s of S. Thus the behaviour of S isspeci�ed parametrically upon the behaviour of its component s. To address veri�cation asound and weakly complete proof system was presented, consisting of proof rules to reducecomplex proof goals to (hopefully) simpler ones, and, most importantly, to accommodateproof goal discharge by loop detection. 2

Our contribution in the present paper is to show how the approach of [Dam95] can beused to address the di�culties enumerated above for a fragment of a real programminglanguage, and to show the utility of our approach on a concrete example exhibiting someof those di�culties. Thus many details of the proof system are kept very informal in thepresent paper, and we concentrate instead on an intuitive explanation of our approach,in particular the rule of discharge. The proof system captures both model checking-likereasoning (by state exploration) and parametric reasoning, and we motivate the dischargerule by �rst seeing how it reduces to well-known termination conditions in local modelchecking, and then generalising to open correctness assertions.The example is based on the following scenario: A user wants to access a resourcepaying for this using a given account. She therefore issues a request to a resource managerwhich responds by dynamically creating a billing agent to act as an intermediary betweenthe user, the resource, and the users account. We view this scenario as quite typicalof many security-critical mobile agent applications. The user is clearly taking a riskby exposing her account to the resource manager and the billing agent. One of theseparties might violate the trust put in him eg. by charging for services not provided, or bypassing information to third parties that should be kept con�dential. Equally the resourcemanager need to trust the billing agent (and to some minor extent the user). We showhow the system can be represented in Core Erlang, how a few critical properties can beexpressed, and outline a proof that the number of transfers from the user account doesnot exceed the number of requests to use the resource.2 Core ErlangWe introduce a core fragment of the Erlang programming language with dynamic networksof processes operating on data types such as natural numbers, lists, tuples, or process iden-ti�ers (pid's), using asynchronous, �rst-order call-by-value communication via unbounded�fo queues. Real Erlang has several additional features such as communication guards,exception handling, modules, distribution extensions, and a host of built-in functions.Processes A Core Erlang system consists of a number of processes computing in par-allel, and communicating by means of �fo ordered, unbounded message queues. Eachprocess is named by a unique pid of which we assume an in�nite supply. Associated witha process is an Erlang expression currently being evaluated and a queue of incoming mes-sages, the process mailbox. Messages are sent by addressing a data value to a receivingprocess mailbox, identi�ed using its pid. We use the notation fE; p;Qg for a process withpid p, Erlang expression E, and queue Q. System states, or aggregate processes, S, aresets of processes, written using the grammar (where \k" expresses parallel execution):S ::= fE; p;Qg S k SAbstract Syntax We operate with the syntactical categories of expressions E, matchesM , patterns P , and values V . The abstract syntax of Core Erlang is summarised as follows:3

E ::=
(E1; :::; En) X self case E of M E Espawn(E;E) E!E receive M end E;EM ::= P1->E1; � � � ;Pn->EnP ::=
(P1; :::; Pn) XV ::=
(V1; :::; Vn)X is an Erlang variable, and
 ranges over a set of primitive constants and operationsincluding zero 0, successor E+1, tupling fE1; E2g, the empty list [], list pre�x [E1jE2], pidconstants ranged over by p, and atom constants ranged over by a, f , and g. In additionwe need constants and operations for message queues: � is the empty queue and Q1 �Q2is queue concatenation.Atoms are used to name functions. Expressions are interpreted relative to an envi-ronment of function de�nitions f(X1; ::; Xn) -> E. Such de�nitions should be consideredsugared versions of de�nitions f = fX1; f: : : ; Xngg -> E assigning matches to functionatoms. Each function atom f is assumed to be de�ned at most once in this environment.Intuitive Semantics The intuitive behaviour of most operators should not be toosurprising:�
 is a data type constructor: To evaluate
(E1; :::; En), E1 to En are evaluated inleft-to-right order.� self extracts the pid of the current process.� case E ofM is evaluated by �rst evaluating E to a value V , then matching V usingM . If several patterns in M match the �rst one is chosen. Matching a pattern Pi ofM against V can cause unbound variables to become bound in Ei1. In a functionde�nition f =M all free variables are considered as unbound.� E1 E2 is application: First E1 is evaluated to a function atom f (we have no �'s),then E2 is evaluated to a value V , then the function de�nition of f is looked up andmatched to V .� spawn(E1; E2) is evaluated by �rst evaluating E1 to a function atom f , then E2 to avalue V , a new pid p is generated, and a process with that pid is spawned evaluatingf V . The value of the spawn expression is then p.� E1!E2 evaluates E1 to a pid p, then E2 to a value V , then V is sent to p, resultingin V as the value of the send expression.� receive M end inspects the process mailbox Q and retrieves the �rst element in Qthat matches any pattern ofM . Once such an element V has been found, evaluationproceeds analogously to case V of M .� E1; E2 is sequential composition: First E1 is evaluated to a value, and then evalua-tion proceeds with E2.1This is not quite the binding the convention of Erlang proper: There the �rst occurrence of X in(case E1 of X -> E2); X can bind the second. 4

Operational Semantics Expression evaluation takes place in the context of a processcon�guration hE; p;Qi 2. The intuitive meaning of the operators is easily formalised as aPlotkin-style SOS semantics. Transitions are labelled by triples \pre,�,post" where pre isa necessary precondition for performing the transition (formulated in the logic introducedin Section 3), � is the action causing the transition and post is the result (in terms ofvariable bindings etc.) of taking the transition.For instance we have rules likeinput X freshhE; p;Qi true; p?X; true�����������! hE; p;Q �Xireecting that input transitions are always enabled,spawn1 hE1; p; Qi pre; �; post��������! hE 01; p; Q0ihspawn(E1; E2); p; Qi pre; �; post��������! hspawn(E 01; E2); p; Q0ito allow for expression evaluation in contexts, andspawn3 p0 freshhspawn(f; V); p; Qi true; spawn(f; V; p0); true�������������������! hp0; p; QiHere � is a metavariable over transition types, either � (corresponding to an internal,spontaneous computation step), output p!V , input p?X, or spawn, spawn(f; V; p0). Rulesfor the remaining operators are left out for concerns of space. They are, however, quitetrivial given the intuition stated above.It remains to state the rules governing computation steps for (aggregate) processes.These we state in full:proc1 hE; p;Qi pre; �; post��������! hE 0; p; Q0ifE; p;Qg pre; �; post��������! fE 0; p; Q0gproc2 hE; p;Qi pre; p0!?V; post�����������! hE 0; p; Q0ifE; p;Qg pre; p0!?V; post�����������! fE 0; p; Q0gproc3 hE; p;Qi pre; spawn(f; V; p0); post������������������! hE 0; p; Q0ifE; p;Qg pre; �; post��������! fE 0; p; Q0g k ff V; p0; �gcom S1 pre1; p!V; post1�����������! S 01 S2 pre2; p0?X; post2������������! S 02S1 k S2 p = p0 ^ pre1 ^ pre2; �; post1 ^ post2 ^X = V����������������������������������! S 01 k S 02interleave1 S1 pre; �; post��������! S 01S1 k S2 pre; �; post��������! S 01 k S22Process con�gurations are introduced mainly to handle process spawning in subexpressions.5

interleave2 S1 pre; p!?V; post����������! S 01S1 k S2 foreign(p)(S2) ^ pre; p!?V; post������������������������! S 01 k S2Here we use p!?V as a wildcard among fp!V; p?V g, and foreign(p) for the predicate onsystem states S stating that p is not a pid of a process in S. local(p) is the dual offoreign(p).Example: Billing Agents As an example Core Erlang program, a function for man-aging accesses to private resources (a resource manager) is shown below.rm(ResList ;Bank ;RAcc) ->receivefcontract; fPu;UAccg;Fromgg ->case lookup(Pu;ResList)) offok; Prg -> From !fagent ;spawn(billagent ; (Pr;Bank ;RAcc;UAcc))g;nok -> From !fagent ; nokgendend; rm(ResList ;Bank ;RAcc):The resource manager rm accepts a resource list, the pid of a trusted bank agent, anda private account as arguments. The resource list contains pairs of public and private\names". The function lookup(Pu;ResList) (not shown) searches for the public name Puin ResList , and if found, returns the matching private name. After receiving a contracto�er (identifying the paying account UAcc) a billing agent is spawned.billagent(Res;Bank ;RAcc;UAcc) ->receivefuse;Fromg ->Res!fuse; selfg;receivefres ; ok ;Valueg ->Bank !fftrans;UAcc;RAccg; selfg;receivefftrans;UAcc;RAccg; okg -> From !fuse; ok;Valueg;fftrans;UAcc;RAccg; nokg -> From !fuse; nokgend;fres; nokg -> From !fuse; nokgendend; billagent(Res;Bank ;RAcc;UAcc):The billing agent coordinates access to the resource with withdrawals from theaccount. Upon receiving a request for the resource fuse;Fromg it acquires the re-source, attempts to transfer money from the user account to resource manager accountBank !fftrans;UAcc;RAccg; selfg, and then sends the resource to the process with pidFrom. 6

3 The Property Speci�cation LogicIn this section we introduce a speci�cation logic for Core Erlang. The logic is based ona �rst-order �-calculus, extended with Erlang-speci�c features. Thus the logic is basedon the �rst-order language of equality, extended with recursive (minimal and maximal)de�nitions, modalities reecting the transition capabilities of processes and process con-�gurations, along with a few additional primitives.Syntax The abstract syntax of formulas is given as follows:� ::= P = P P 6= P term(P) = P queue(P) = Plocal(P) foreign(P) atom(P) unevaluated(P)f(P1; :::; Pn) � ^ � � _ � 8X:� 9X:�<>� <P !?P>� <�>� []� [P !?P]� [�]�Formula atoms are de�ned by parametrised recursive de�nitions. As is by now well knownmonotone recursive de�nitions in a complete boolean lattice have minimal and maximalsolutions. For readability we use the notation f(X1; : : : ; Xn)) � for maximal de�nitions,and f(X1; : : : ; Xn) (� for minimal ones. Maximal solutions are used, typically, forsafety, or invariant properties, while minimal solutions are used for liveness, or eventualityproperties. We also use standard abbreviations like true, false, 8X1; : : : ; Xn:�, etc.Intuitive Semantics To limit space requirements we refrain from giving a formal se-mantics of formulas and make do instead with an informal one:� Equality, inequality, boolean operators and the quanti�ers take their usual meaning.� The purposes of term(P1) = P2 and queue(P1) = P2 are to pick up the values ofterms and queues associated with given pid's. term(P1) = P2 requires P1 to bethe pid of a process which is part of the system state being predicated (alt. is thepid of the predicated process con�guration), and the Erlang expression associatedwith that pid to be identical to P2. Similarly queue(P1) = P2 holds if the queueassociated with P1 is P2.� atom(P) holds if P is an atom.� local(P) holds if P is the pid of a process in the system state being predicated, andanalogously foreign(P) holds if P is a pid and there is no process with pid P in thepredicated system state.� unevaluated(P) holds if local(P) does and the Erlang expression associated withP is not a ground value.� <>� holds if an internal transition is enabled to a system state (process con�gura-tion) satisfying �. []� is the complement of <>� (ie. all states following an internaltransition satisfy �). <P1!P2>� holds if an output transition with appropriate pa-rameters is enabled to a state (con�guration) satisfying �. <P1?P2>� is used for7

input transitions. Finally <�1>�2 predicates process con�gurations only and holdsif a process satisfying �1 can be spawned such that the ensuing con�guration satis�es�2. The boxed modalities, as before, are dual.Some Simple Examples The combination of recursive de�nitions with data typesmakes the logic very expressive. For instance the type of natural numbers is de�ned as aminimal recursion: nat(P)(P = 0 _ 9X:P = X + 1 ^ nat(X)Using this idea all involved data types can be de�ned quite easily. This in turn can beused to de�ne a De-Morganised negation not. We can de�ne \weak" modalities that areinsensitive to the speci�c number of internal transitions in the following style:[[]]�) � ^ [][[]]� [[X!Y]]� = [[]][X!Y][[]]�<<>>�(� _<><<>>� <<X!Y >>� = <<>><X!Y ><<>>�Observe the use of formula parameters, and the use of \=" for non-recursive de�nitions.A temporal property like always is also easily de�ned:always(�)) � ^ []always(�) ^ 8X; Y:[X?Y]always(�) ^ 8X; Y:[X!Y]always(�) (1)Eventuality operators are more delicate as progress is in general only made when internalor output transitions are taken. This can easily be handled, though, by nesting minimaland maximal de�nitions.Billing Agents: Speci�cation We enumerate some desired properties of the billingagent system introduced on Page 6.Disallowing spontaneous account withdrawals. The �rst correctness property forbids spon-taneous withdrawals from the user account by the billing agent. That is, the number oftransfers from the user account should be less than or equal to the number of requests touse the resource.safe(Ag ;Bank ;UAcc; N))[]safe(Ag ;Bank ;UAcc; N)^ 8P; V:[P ?V] P = Ag ^ 9Pid :V = fuse;Pidg ^ safe(Ag ;Bank ;UAcc; N + 1)_ safe(Ag ;Bank ;UAcc; N) _ contains(V;UAcc) !^ 8P; V:[P !V]0BBBBB@ P = Bank ^ 9Pid ;Acc: V = fftrans ;UAcc;Accg;Pidg^ N > 0 ^ safe(Ag ;Bank ;UAcc; N � 1)) !_ (P 6= Bank _ not(9Pid ;Acc: V = fftrans ;UAcc;Accg;Pidg))^ safe(Ag ;Bank ;UAcc; N) ! 1CCCCCAThe predicate contains(Y;A) is de�ned via structural induction over an Erlang valueexpression Y and holds if no subexpression of Y is equal to A (de�nition omitted for lackof space). 8

Expected Service is Received. Other intersting properties concern facts like: Denial ofservice responses correspond to failed money transfers, and returning the resource to theproper user. These sorts of properties are not hard to formalise in a style similar to the�rst example.Preventing Abuse by a Third Party. The payment scheme presented here depends cruciallyon the non-communication of private names. For instance, even if we can prove that aresource manager or billing agent does not make illegal withdrawals nothing stops theresource manager from communicating the user account key to a third party, that canthen access the account in non-approved ways.Thus we need to prove at least that the system communicates neither the user accountkey nor the agent process identi�er. Perhaps the service user also requests that her identitynot be known outside of the system, in such a case the return process identi�ers may not becommunicated either. As an example, the property that the system does not communicatethe user account key is captured by notrans(UAcc) given the de�nition below.notrans(A)) []notrans(A)^ 8X;Y:[X?Y] (contains(Y;A) _ notrans(A))^ 8X;Y:[X!Y] (not(contains(Y;A)) ^ notrans(A))4 Toward Parametric Veri�cationConsider a correctness assertion of the shape� ` S : �: (2)where S is an arbitrary system state, � an arbitrary speci�cation, and � consists of �rst-order assumptions (like: V1 = V2) on value variables V in S and � (a restriction that willbe lifted in later sections). We wish to devise an adequate and general set of proof rulesthat allow us to prove such sequents. A natural starting point for this is the classicalsequent calculus with equality. A general sequent will have the shape � ` S : � where �is a �nite set, interpreted disjunctively, of formulas. Classical sequent calculus providesus with a standard collection of rules, easily adaptable to the sequent format of (2), formanipulating sequents, and for introducing connectives to the left and the right of theturnstile. For instance the rule for introducing conjunction to the right becomesAndR � ` S : �;� � ` S : ;�� ` S : � ^ ;�We thus need only consider additions needed for the Erlang-speci�c primitives, for formulade�nitions, and for the modal operators. For the former we give a single example for theterm construction:Term � ` fV; P1; Qg k S : P1 = P2;� � ` fV; P1; Qg k S : V = P3;�� ` fV; P1; Qg k S :term(P2) = P3;�For recursively de�ned formulas we need rules for de�nition unfolding, for instance:9

UnfoldR � ` S : �[A1=X1; :::; An=Xn];� f(X1; : : : ; Xn))�� ` S : f(A1; : : : ; An);�This leaves the modal operators. For these one option is to explore the transition relation,by rules of the following shape3:Diamond �; pre; post ` S 0 : � � ` pre S pre; �; post��������! S 0� ` S : <�>�Box f�; pre; post ` S 0 : �1; : : : ; �n j S pre; �; post��������! S 0g� ` S : [�]�1; : : : ; [�]�nProofs built up using the proof rules introduced so far will rarely terminate, as bothprocesses and their speci�cations are given recursively. We thus need a way of safelydischarging an assumption once it is seen to be an instance of a proof goal which hasalready been encountered during proof construction. We discuss the ideas on the basis ofan example.Example 4.1 Consider the following Core Erlang function:stream(N;Out) -> Out !N; stream(N + 1;Out):which outputs the increasing stream N , N +1, N +2, . . . along Out . The speci�cation ofthe program could bestream spec(Out) = always(9X:<<Out !X>>true)The goal sequent takes the shapeOut 6= P ` fstream(N;Out); P; �g : stream spec(Out): (3)That is, assuming Out 6= P (since otherwise output will go to the stream itself), andstarted with pid P and the empty input queue, the property stream spec(Out) will hold.One problem with (3) is to avoid the queue component growing in an unbounded manner,due to the input modality of always (see Page 8). In fact the goal sequent holds for anyinitial queue, and we can thus use a rule of substitution to replace (3) by the goalOut 6= P ` fstream(N;Out); P; Qg : stream spec(Out) (4)The �rst step is to unfold the formula de�nition. Then, using the proof rules (4) is easilyreduced to subgoals of the shapesOut 6= P ` fstream(N;Out); P; Qg : <<Out!N>>true (5)Out 6= P ` fstream((N + 1); Out); P; Qg : stream spec(Out) (6)Out 6= P ` fstream(N;Out); P; Q :: Y g : stream spec(Out): (7)3Another option is exempli�ed by the DiaSeq1 proof rule on Page 14.10

Discharge We see that (5) can be proved without recourse to discharge. However, insubgoals (6) and (7) we have arrived at sequents which are both instances of a sequentalready \reduced", namely (4). Discharge at these points is indeed sound, for reasonsexplained below.Consider a proof constructed using the proof rules introduced so far. Suppose aninternal node of the proof is labelled � ` S : �, and suppose the proof has a leaf whichis labelled �0 ` S 0 : �0 such that S 0 : �0 is a substitution instance of S : � under asubstitution, say, �. That is, we have a scenario like the one in ex. 4.1. Suppose also that�0 ` �(�) whenever � 2 �. That is, with the leaf node �0 ` S 0 : �0 we have arrived ata situation which is a special case of a situation we have already considered. We wishto devise safe conditions for discharging the leaf node �0 ` S 0 : �0. Informally it su�ces,during proof construction, to tag each formula identi�er with a unique label whenever itis looked up by applications of UnfoldR while not yet having been assigned a tag, and toassign another unique tag, say, a colour, to each member of the right-hand formula set �in a manner which is preserved by all applications of proof rules. Then, if substitutionsare required to respect colours, we can introduce a notion of formula regeneration pathby tracking, from any given � 2 �, using the colouring information, a member of anysubsequent right-hand formula set with the same colour, until the leaf has been reached.In that situation we know for the set �0 that we have tracked a formula which, upto tagging of formula identi�ers, is identical to �(�). We can now inspect the formularegeneration path to pick the latest tagged formula identi�er which is unfolded along theregeneration path and which occurs, with that same tag, in . If, for some such � we can�nd such a formula identi�er which is de�ned using a maximal de�nition then dischargeis permitted, otherwise it is not.What we have described is a proof system for local model checking in the style ofthe tableau systems of eg. [SW91] or [Win91], extended to cater for symbolic reasoningon value parameters. A more formal treatment of a similar proof system can be foundin [Dam95].Parametricity Unfortunately the proof rules introduced so far are incapable of dealingsatisfactorily with the complications discussed in the introduction. Features like dynamicprocess spawning or non-tail recursion cause state spaces to grow in an essentially un-bounded manner which can not in general be captured by the discharge conditions givenin the previous section. This applies, for instance, to the resource manager on Page 6.Moreover, many proof goals require data type induction, mechanisms for which have notbeen considered yet. In this section we introduce a generalisation of the model checking-like approach of the previous section that permits us to address these issues in a verygeneral way.Consider again a proof goal � ` S : �. Assume that S contains a recursively de�nedexpression which when executed can spawn o� some process E. Then, attempting tobuild a proof using the rules already introduced, we will eventually encounter a sequentof the shape � ` S k fE; p; �g : : (8)Clearly we have no hope of terminating proof construction with only the proof rulesintroduced so far. The solution we propose is to replace components of the agent being11

predicated by variables of which su�ciently powerful properties can be assumed, for theentire system to be veri�able. This amounts to a cut, using a rule of the following shape:Cut � ` S1 : 0 �; s : 0 ` s k S2 : � ` S1 k S2 : This rule allows us, intuitively, to abstract from computational details of a componentprocess that are irrelevant for desired property of the system as a whole. Now, to handle(8) we can then try to guess properties 1 and 2 for each of the component processes, andthen cut out these components. First cutting out S results in the following two subgoals:� ` S : 1 (9)�; s1 : 1 ` s1 k fE; p; �g : : (10)Observe that if the outermost speci�cation � is well chosen it will often be possible tochoose 1 identical to � itself. Moving on we would then use another cut to reduce (10)to two further subgoals � ` fE; p; �g : 2 (11)�; s1 : 1; s2 : 2 ` s1 k s2 : : (12)We have thus arrived in a situation where a proof goal involving a composite system(8) has been reduced to proof goals for the components, along with an open correctnessassertion (10) which does not depend on the system components, only on their properties.Proving properties of open correctness assertions, however, is a very di�erent taskfrom the problem of proving closed ones in that eg. the modal rules Diamond and Boxdo not apply. Moreover, the rule of discharge has to revised in light of the more generalsequent shape, and new sets of proof rules are needed.Discharge Revisited Observe that in case S can recursively spawn new processes, aswe assumed, the reduction of (8) to (9) may not have actually achieved anything, as Scan just continue to spawn o� new processes. The task is to terminate the loop. Assumefor simplicity that we could choose 1 = �. In this case (9) and (2) are identical, andwe would then hope to be able to discharge (9) for the same reasons as discharge for(6) was seen to be admissible (even though the path from (2) up to (9) arises for verydi�erent reasons (structural ones, the cut) than the corresponding path for (6) which usesthe modal rules introduced above). In fact this hope turns out to be justi�ed.Since formulas are are de�ned recursively also the subgoal (12) may give rise to arecursive proof structure. That is, in building a proof of (12) we may arrive at a situationwhere the goal sequent has the shape �0; s1 : 01; s2 : 02 ` s1 k s2 : 0 which is an instanceof (12). In this case we will have the possibility of discharging when was regeneratedbecause of a maximal formula identi�er, but in addition we will have the possibility ofdischarging when one of the 0i are regenerated because of a minimal formula identi�er.Intuitively the assumption of a minimally de�ned property of some s permits us to de�nean approximation ordinal for which the assumption continues to hold, and when loops areunrolled this ordinal will decrease strictly. 12

The di�culty is to devise side conditions that ensure that this intuition remains soundeven when loops are nested. This issue was addressed in the paper [Dam95] to which werefer for details. For the examples given here, however, the basic intuition is su�cientand sound, whence we leave aside the wider issue for now.To illustrate the power of the discharge principles notice how, using the representationof data types of section 3, it is possible to capture data type induction by unfoldingminimally de�ned formula identi�ers such asnat(P)(P = 0 _ 9X:P = X + 1 ^ nat(X)to the left of the turnstile.Proof Rules for Open Correctness Assertions So far we have not discussed proofrules that handle the existence of left hand hypotheses of the shape s : �. What remains,besides the classical sequent calculus rules, are rules to to handle modal operators to theleft of the turnstile, and to unfold formula de�nitions (similar to UnfoldR). We need twomonotonicity rules:Mon1 �; s : �; s : �1; : : : ; s : �n ` s : 1; : : : ; m�; s : <�>�; s : [�]�1; : : : ; s : [�]�n ` s : <�> 1; : : : ; <�> mMon2 �; s : �1; : : : ; s : �n ` s : �; s : [�]�1; : : : ; s : [�]�n ` s : [�] and then the following rules for combinations of k with the modalities:DiaPar1 �; s1 : �; s2 : ` P1 = P3 �; s1 : �; s2 : ` P2 = P4�; s1 : �; s2 : ` s1 k s2 : �; s1 : <P1!P2>�; s2 : <P3?P4> ` s1 k s2 : <>DiaPar2 �; s : � ` s k S : �; s : <>� ` s k S : <> DiaPar3 �; s : � ` s k S : � ` S : foreign(P1)�; s : <P1!?P2>� ` s k S : <P1!?P2>
BoxPar1 �; s1 : �1; s2 : [] 1; s2 : 8X; Y:[X!Y] 2; s2 : 8X; Y:[X?Y] 3 ` s1 k s2 : �; s1 : []�1; s1 : 8X; Y:[X!Y]�2; s1 : 8X; Y:[X?Y]�3; s2 : 1 ` s1 k s2 : �; s1 : �2; s2 : 3 ` s1 k s2 : �; s1 : �3; s2 : 2 ` s1 k s2 : �; s1 : []�1; s1 : 8X; Y:[X!Y]�2; s1 : 8X; Y:[X?Y]�3;s2 : [] 1; s2 : 8X; Y:[X!Y] 2; s2 : 8X; Y:[X?Y] 3 ` s1 k s2 : []BoxPar2 �; s1 : �; s2 : foreign(P1); s2 : [P1!?P2] ` s1 k s2 : �; s1 : [P1!?P2]�; s1 : foreign(P1); s2 : ` s1 k s2 : �; s1 : [P1!?P2]�; s2 : [P1!?P2] ` s1 k s2 : [P1!?P2]13

For these �ve rules we assume that � mentions neither s1, s2, nor s. A similar as-sumption applies to the monotonicity rules. In actual proofs we tend to use slight gen-eralisations of the last two proof rules where the left hand assumptions like s1 : []�1 areallowed to be vectors.So far we have presented only rules to reason compositionally about system states.To prove general properties also of non-tail recursive processes another layer is neededin the proof system, for sequents of the form � ` hE; p;Qi : �. This extension is quitevoluminous though it o�ers no signi�cant new problems. As an example one of the rulesfor handling sequences is shown below.DiaSeq1 �; hx; p; qi : � ` h(x; E); p; qi : �; hx; p; qi : <�>� ` h(x; E); p; qi : <�> 5 Verifying the Resource ManagerIn this section the proof system is demonstrated by outlining a proof that the resourcemanager on Page 6 satis�es the safe speci�cation de�ned on Page 8. For simplicity it isassumed that the manager knows of only one resource, with public name Pu and privatePr. The list [fPu; Prg] is denoted with RL. Furthermore RP denotes the process identi�erof the resource manager process, RQ its input queue.Since the de�nition of safe is parametrised on a billing agent and a user account theformula must be preceded by an initialisation phase:8PubRes;UAcc;From ;Agent:[RP ?fcontract ; fPubRes ;UAccg;Fromg][[From !fagent ;Agentg]]safe(Agent ;Bank ;UAcc; 0)So we set out to prove the following sequent:� ` frm(RL;Bank ;RAcc); RP ; �g: 8PubRes;UAcc;From ;Agent:[RP ?fcontract; fPubRes ;UAccg;Fromg] : : : (1)The necessary assumptions on the non-equivalence of process identi�ers (e.g., RP 6= Pr)are collected in �. By application of simple proof steps { four applications of ForallR andthen repeated applications of the rules for unfolding, elimination of conjunctions, and therules for the box modality { the following proof state is reached:�0 ` frm(RL;Bank ;RAcc); RP ; �gjjfbillagent(Pu;Bank ;RAcc;UAcc); BP ; �g: safe(BP ;Bank ;UAcc; 0) (2)where �0 is � extended with the fact that BP is a fresh process identi�er. This is acritical proof state, where we must come up with a property of the resource manager,and a property of the billing agent, that are su�ciently strong to prove that their parallelcomposition satis�es the safe property. In general such a proof step may be very di�cult,but here we can simply choose to prove the safe property of the billagent process, andfor the resource manager process that it never communicates with the user account. Theresult of applying the Cut rule twice is the following proof obligations:14

�0 ` fbillagent(Pu;Bank ;RAcc;UAcc); BP ; �g : safe(BP ;Bank ;UAcc; 0) (3)�0 ` frm(RL;Bank ;RAcc); RP ; �g : nocomm(UAcc) (4)�0; s1 : safe(BP ;Bank ;UAcc; 0); s2 : nocomm(UAcc) `s1jjs2 : safe(BP ;Bank ;UAcc; 0) (5)where nocomm(P)) []nocomm(P)^ 8X;Y:[X?Y] (contains(Y; P) _ nocomm(P))^ 8X;Y:[X!Y] (P 6= X ^ nocomm(P))The proof of (3) involves essentially well-known techniques for proving correctness ofsequential programs. Instead we concentrate on (4), or rather, the stronger statementthat rm satis�es nocomm even when its input queue is non-empty, as long as no elementin the queue contains UAcc:�0;not(contains(RQ;UAcc)) ` frm(RL;Bank ;RAcc); RP ; RQg : nocomm(UAcc) (6)To prove (6) we �rst unfold the de�nition of nocomm and eliminate the conjunctions.In case of an input step ([X?Y]) either we are done immediately (if contains(Y; P)).Otherwise the resulting proof state is�0;not(contains(RQ;UAcc));not (contains(Y;UAcc)) `frm(RL;Bank ;RAcc); RP ; RQ � Y g : nocomm(UAcc) (7)which can be rewritten into a proof state that can be discharged (see discussion on Page 11)against (6). The rm process can clearly not perform any output step so that part of theconjunction is trivially true. Thus only the internal step remains, and such a step mustcorrespond to retrieving a value fcontract; fPu0;UAcc 0g;Fromg from the queue. Theresulting proof state is:�0;not(contains(RQ;UAcc)) `fcase lookup(Pu0; RL) : : : ; RP ; RQ0g : nocomm(UAcc) (8)where RQ0 is the queue resulting from the reception of the value. By repeating the abovesteps, i.e., handling input, output and internal steps eventually one reaches the goal:�00 ` frm(RL;Bank ;RAcc); RP ; RQ00g jj fbillagent(Pu;Bank ;RAcc;UAcc0); BP 0; �g: nocomm(UAcc) (9)where �00 is �0; not(contains(RQ;UAcc)) together with inequalities involving the new pro-cess identi�er BP 0. This goal is handled by applying Cut to the parallel composition usingnocomm as the cut formula both to the left and to the right. The resulting goals are:�00 ` frm(RL;Bank ;RAcc); RP ; RQ00g : nocomm(UAcc) (10)�00 ` fbillagent(Pu;Bank ;RAcc;UAcc0); BP 0; �g : nocomm(UAcc) (11)�00; Z : nocomm(UAcc); V : nocomm(UAcc) `Z k V : nocomm(UAcc) (12)Goal (10) can be discharged against (6). Goal (11) is easy to prove, since no new processesare created (proof sketch omitted). Finally goals (5) and (12) are handled by applicationsof BoxPar1, BoxPar2, Unfold and discharging against previously seen goals.15

6 Concluding RemarksWe have introduced a speci�cation logic and proof system for the veri�cation of programsin a core fragment of Erlang, and illustrated its application on a small, but quite delicate,agent-based example. Our approach is quite general both regarding the kinds of languagesand models that can be addressed, and the kinds of assertions that can be formulated4.In addition our approach permits the treatment of programming language constructs suchas dynamic process creation, non-tail recursion and inductive data type de�nitions in auniform way, via a powerful rule of discharge.As the goal of this work is quite ambitious, i.e., to enable veri�cation of open dis-tributed systems as implemented using real programming languages, there remains anumber of shortcomings in the current work. First of all, we need to investigate theproof system in real applications. For this purpose a prototype proof checking tool hasbeen produced based on the approach presented here, that can handle programs of amoderate size5. Some support for automation of proof steps already exists (e.g., for themodel checking fragment), but we also need to identify other classes of sequents that canbe proved algorithmically. Other ongoing work focuses on integrating the operationalsemantics of Erlang more tightly with the proof systems (along the lines of [Sim95]), toimprove the handling of process identi�er scoping (but see [AD96] for an approach to thisin the context of the �-calculus), and to handle fairness in a more elegant manner.References[AD96] R. Amadio and M. Dam. A modal theory of types for the �-calculus. InProc. FTRTFT'96, Lecture Notes in Computer Science, 1135:347{365, 1996.[AMST97] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actorcomputation. J. Functional Programming, 7:1{72, 1997.[AVWW96] J. Armstrong, R. Virding, C. Wikstr�om, and M. Williams. Concurrent Pro-gramming in Erlang (Second Edition). Prentice-Hall International (UK) Ltd.,1996.[Dam95] M. Dam. Compositional proof systems for model checking in�nite state pro-cesses. In Proc. CONCUR'95, Lecture Notes in Computer Science, 962:12{26,1995.[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I andII. Information and Computation, 100(1):1{40 and 41{77, 1992.[Sim95] A. Simpson. Compositionality via cut-elimination: Hennessy-Milner logic foran arbitrary GSOS. In Proceedings, Tenth Annual IEEE Symposium on Logicin Computer Science, pages 420{430, San Diego, California, 26{29 June 1995.IEEE Computer Society Press.4For instance we are not restricted, as in many other approaches to compositional veri�cation, to linear-time logic, neither does the proof system rely on auxiliary features like history or prophecy variables.5The major novelty of the proof checker lies in the handling of the rule of discharge.16

[SW91] C. Stirling and D. Walker. Local model checking in the modal mu-calculus.Theoretical Computer Science, 89:161{177, 1991.[Win91] G. Winskel. A note on model checking the modal �-calculus. TheoreticalComputer Science, 83:157{187, 1991.

17

