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Abstract— This paper presents a mathematical framework
for performance analysis of Behavior Trees (BTs). BTs are
a recent alternative to Finite State Machines (FSMs), for
doing modular task switching in robot control architectures.
By encoding the switching logic in a tree structure, instead of
distributing it in the states of a FSM, modularity and reusability
are improved.

In this paper, we compute performance measures, such
as success/failure probabilities and execution times, for plans
encoded and executed by BTs. To do this, we first introduce
Stochastic Behavior Trees (SBT), where we assume that the
probabilistic performance measures of the basic action con-
trollers are given. We then show how Discrete Time Markov
Chains (DTMC) can be used to aggregate these measures from
one level of the tree to the next. The recursive structure of the
tree then enables us to step by step propagate such estimates
from the leaves (basic action controllers) to the root (complete
task execution). Finally, we verify our analytical results using
massive Monte Carlo simulations, and provide an illustrative
example of the results for a complex robotic task.

I. INTRODUCTION

Behavior Trees (BTs) were developed within the computer
gaming industry [1], [2] as a more modular and flexible
alternative to Finite State Machines (FSMs). Their recursive
structure and usability have made them very popular in
industry, which in turn has created a growing amount of
attention in academia [3]–[9]. The main advantage of BTs
as compared to FSMs can be seen by the following pro-
gramming language analogy. In FSMs, the state transitions
are encoded in the states themselves, and switching from one
state to the other leaves no memory of where the transition
was made from. This is very general and flexible, but actually
very similar to the now obsolete GOTO statement, that was
an important part of many early programming languages,
e.g., BASIC. In BTs the equivalents of state transitions are
governed by function calls and return values being passed
up and down the tree structure. This is also flexible, but
more similar to the calls of FUNCTIONS that has replaced
GOTO in almost all modern programming languages. Thus,
BTs exhibit many of the advantages in terms of readability,
modularity and reusability that was gained when going from
GOTO to FUNCTION calls in the 1980s.

BTs were first described in [1], [2], [10], as powerful tools
to provide intelligent behaviors for non-player characters
in high profile computer games, such as the HALO series.

The authors are with the Computer Vision and Active Perception
Lab., Centre for Autonomous Systems, School of Computer Science
and Communication, Royal Institute of Technology (KTH), SE-100
44 Stockholm, Sweden. e-mail: {miccol|almc|petter}@kth.se
This work has been supported by the Swedish Research Council and
the European Union FP7 project Reconfig (FP7-ICT-600825). The authors
gratefully acknowledge the support.

Land Fuel Up Do Maintenance Take Off

Reliability Based

Land Fuel Up Take Off

Efficiency Based

1

Fig. 1. Difference between a plan that optimizes expected success rate
(top) and one that optimizes expected time to completion (bottom).

Later work proposed ways of combining BTs with machine
learning techniques [3], [4], and making them more flexible
in terms of parameter passing [5]. The advantage of BTs
as compared to FSMs was also the reason for extending
the JADE agent Behavior Model with BTs in [6], and the
benefits of using BTs to control complex multi mission
Unmanned Aircraft Vehicle (UAVs) was described in [7].
The modularity and structure of BTs enabled a step towards
the formal verification of mission plans in [9]. Finally, in
[8], BTs were used to perform autonomous robotic grasping.
In particular, it was shown how BTs enabled the easy
composition of primitive actions into complex and robust
manipulation programs.

In this paper, we estimate performance measures such as
success/failure probabilities and execution times, for plans
that are encoded and executed using BTs. Imagine we have
an airborne micro UAV that needs to land, refuel and then
take off again to do some important surveillance. While
landed, some sensor maintenance can be done to improve
the sensor performance, but it can also be skipped, to reduce
the time on ground. Thus, the two options are the trivial
sequential plans depicted in Fig. 1, one maximizing success
rate, and the other minimizing time to completion. Assuming
we are given the performance of the individual actions, e.g.,
Do Maintenance, we show how to compute overall estimates
for arbitrary BT compositions, including both sequences such
as the one in Fig. 1 and so-called Selectors providing fall
back functionality such as the one in Fig. 2 below.

The analysis is done by defining Stochastic Behavior Trees
(SBTs) and describing the interaction of a BT node with
its children in terms of a Discrete Time Markov Chain
(DTMC). This enables us to propagate performance estimates
from one level in the tree to the next. Applying the scheme
in a recursive fashion then makes it possible to compute
the properties of an arbitrarily complex BT composition of
actions.

The contribution of this paper is that we provide estimates
of how reliable (in terms of success probability) and efficient



(in terms of time to success) a BT-composition of primitive
actions is. To the best of our knowledge, such a probabilistic
analysis of BTs has not been done before.

The outline of this paper is as follows. In Section II we
review details on BTs and DTMCs. Then, in Section III we
state the main problem of this paper. A theoretic analysis
of the problem is given in Section IV and a numerical
verification of the results is presented in Section V, together
with an illustrative example. Finally, the paper is concluded
in Section VI.

II. BACKGROUND: BTS AND DTMCS

In this section we give a brief review of BTs and DTMCs.
The later is used to analyze the performance of the former.

A. Behavior Trees

Here, we give the reader a brief overview of BTs, while
a more detailed description can be found in [7].

A BT is a directed rooted tree in which the nodes are
classified as root, control flow nodes, or execution nodes.
For each pair of connected nodes we call the outgoing node
parent and the incoming node child. The root has no parents
and exactly one child, the control flow nodes have one parent
and at least one child, and the execution nodes have one
parent and no children. Graphically, the children of a control
flow node are placed below it, ordered from its left to its
right, as shown in Figures 2-4.

The execution of a BT starts from the root which sends
ticks 1 with a certain frequency to its child. When a given
node in the BT receives a tick from its parent, its execution
is allowed and it returns to the parent a status running if its
execution has not finished yet, success if it has achieved its
goal, or failure otherwise.
There are four types of control flow nodes (selector, se-
quence, parallel, and decorator) and two execution nodes
(action and condition). Their execution is explained below.

Selector: When the selector node receives a tick from
its parent, it ticks its children in succession, returning success
(running) as soon as it finds a child that returns success (run-
ning). It returns failure only if all the children return failure.
The purpose of the selector node is to robustly carry out a
task that can be performed using several different approaches
(e.g. an object manipulation that can be performed using
either a single-hand or a multiple-hand approach) by trying
each of them until one that succeeds is found. The selector
node is graphically represented by a box with a “?”, as in
Fig. 2.

?

Child 1 Child 2 · · · Child N

1

Fig. 2. Graphical representation of a selector node with N children.

1A tick is a signal that enables the execution of a child

Sequence: When the sequence node receives a tick from
its parent it ticks its children in succession, returning failure
(running) as soon as if finds a child that returns failure
(running). It returns success only if all the children return
success. The purpose of the sequence node is to carry out
the tasks that are defined by a strict sequence of sub-tasks,
in which all have to succeed to achieve a desired goal (e.g. a
mobile robot that has to collect an object, move to a desired
position and then unload the collected object). The sequence
node is graphically represented by a box with a “→”, as in
Fig. 3.

→
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Fig. 3. Graphical representation of a sequence node with N children.

Parallel: When the parallel node receives a tick from its
parent, it ticks its children in parallel and returns success if
a given number of children return success, it returns failure
if the remaining running children are not enough to reach
the given number, even if they are all going to succeed,
and it returns running otherwise. The purpose of the parallel
node is to model those tasks separable in dependent sub-tasks
performing similar actions (e.g. a fault diagnosis system that
has to monitor in parallel several hardware). The parallel
node is graphically represented by a box with two “→”, as
in Fig. 4.

⇒

Child 1 Child 2 · · · Child N
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Fig. 4. Graphical representation of a parallel node with N children.

Decorator: The decorator is a special node that has only
one child and it changes its child outcome according to an
arbitrarily policy defined by the user (e.g. it returns failure if
the child returns running after a given time). The decorator
is graphically represented in Fig. 5(a).

Action: When the action node receives a tick from
its parent it returns success if the action is completed and
failure if the action cannot be completed. Otherwise it returns
running. The action node is represented in Fig. 5(b)

Condition: The condition node verifies if a condition is
satisfied or not, returning success or failure accordingly. The

δ Policy

Child

1

(a) Decorator node.
The label describes the
user defined policy.

Action

1

(b) Action node. The
label describes the ac-
tion performed

Condition

1

(c) Condition node.
The label describes the
condition verified

Fig. 5. Graphical representation of a decorator, action, and condition node.



condition node never returns running. The condition node is
represented in Fig. 5(c)

Root: The root node is the node that generates ticks. It
is graphically represented as a white box labeled with “∅”

B. Discrete Time Markov Chains

s1

s2 s3 s4

p
13p 1

2

p 2
1

p14

p34

p 2
1

1

1

Fig. 6. Example of a Markov chain with 4 states and 6 transitions.

Markov theory [11] deals with memory-less processes.
If a plan is given by a sequence of actions that changes
the system’s state disregarding its history, a Discrete Time
Markov Chain (DTMC) is suitable to model a plan execution.
A DTMC is given by a collection of states S =
{s1, s2, . . . , sd}. The process modeled by the DTMC moves
from a state si to a state sj at time step k with the probability
pij(k).

Definition 1: The one-step transition matrix P (k) is a
|S| × |S| matrix in which the entries are the transition
probabilities pij(k).
Let π(k) = (π1(k), . . . , π|S|(k)), where πi(k) is the proba-
bility of being in state i at time k, then the Markov process
can be described as a discrete time system with the following
time evolution:

π(k + 1) = P>(k)π(k) (1)

Definition 2: The mean sojourn time Ti is the mean time
spent by the DTMC in a given state si.
If a state si in a MC has no outgoing arcs to any other state
(i.e. with pii = 1) it is called absorbing, otherwise it is called
transient. The sojourn time is computed for transient states
only, the time spent in a absorbing state is trivially infinity.
In Fig. 6 the state s4 is an absorbing state.

Definition 3: The mean time to absorbtion (MTTA) is the
mean time needed to reach any absorbing state starting from
the initial state.
To compute a closed form expression of the MTTA, we
reorder the states such that the initial state comes first, and
all the absorbing states come last. Let SA ∈ S be the set of
absorbing states

P>(k) =

[
T (k) 0
R(k) I

]
(2)

where T is a (|S|−|SA|)×(|S|−|SA|) matrix describing the
one-step transition from a transient state to another, R is a
|SA|× (|S|− |SA|) matrix describing the one-step transition
from a transient state to an absorbing state, the matrices 0
and I express the characteristic of the absorbing states, in
particular they have no transitions to any other state. The
MTTA is the computed as

MTTA =
∑
i

g1,iTi (3)

where Ti is the mean sojourn time and g1,i is the i-th entry
of the first column of the matrix G defined as follows:

G =

∞∏
k=1

T (k), (4)

where T (k) is given by Equation (2). We consider only
the first column since our calculation concerns the initial
state. The series (4) converges according to the main theorem
of [12] since pij(k) ∈ [0, 1]∀i, j, k.

Infinitesimal generators matrix: The infinitesimal gen-
erator matrix Q describes the continuous time behavior of a
Markov process, its entries are defined as follows:

qi,j =


1
Tj pj,i if i 6= j

−
∑
k 6=i

qi,k otherwise (5)

The continuous time behavior of the Markov process is
described by the following ordinary differential equation,
known as the Cauchy problem:{

π̇(t) = Q(t)π(t)

π(0) = π0
(6)

where the initial probability vector π0 is assumed to be
known a priori.

III. PROBLEM FORMULATION

In this section, we first make some definitions and as-
sumptions, then state the main problem of this paper, and
finally illustrate it with an example. We begin with a formal
definition of the BTs, first introduced in Section II.

Definition 4: A BT is a rooted tree defined as a two-tuple,
BT = (V, E) where:
• V = A∪ C ∪N ∪ τ a finite set of nodes, composed by

execution nodes (actions A and conditions C) control
flow nodes N (e.g. selectors or sequences) and a root
τ . The nodes are numbered, V ⊂ N.

• E ⊂ V × V is a finite set of edges.
As noted above, we are interested in describing the execution
properties of a BT in terms of succees and fail probabilities,
and time to success and failure respectively. In order to facil-
itate such an analysis, we make the following assumptions.

Assumption 1: For each action A in the BT, the following
holds:
• It first returns running, for an amount of time that might

be zero or non-zero, then consistently returns either
success or failure for the rest of the execution of its
parent node2.

• The probability to succeed at any given time ps(t) and
the probability to fail at any given time pf (t) are known
a priori.

• The time to succeed and the time to fail are random
variables with exponential distribution with rate µ and
ν known a priori.

2The execution of the parent node starts when it receives a tick and
finishes when it returns either success/failure to its parent.
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Fig. 7. BT modeling of two plan options. In (a), the robot searches on the
table first, and in the drawer only if the table search fails. In (b), the table
is searched only if nothing is found in the drawer.

Assumption 2: For each condition C in the BT, the fol-
lowing holds
• It consistently returns the same value (success or failure)

throughout the execution of its parent node.
• The probability to succeed at any given time ps(t) and

the probability to fail at any given time pf (t) are known
a priori.

We are now ready to define a SBT.
Definition 5: A Stochastic Behavior Tree (SBT) is a BT

satisfying Assumptions 1 and 2.
Given a SBT, we want to use the probabilistic descriptions
of its actions and conditions, ps(t), pf (t), µ and ν, to
recursively compute analogous descriptions for every sub-
trees and finally the whole tree. Formally the problem is as
follows:

Problem 1: Given a SBT as defined above. Compute the
probabilistic measures ps(t), pf (t), µ and ν for each sub-
tree, and ultimately the root of the SBT.
To illustrate the problem and SBTs we take a look at the
following example.

Example 1: Imagine a robot that is to search for a set
of keys on a table and in a drawer. The robot knows that
the keys are often located in the drawer, so that location
is more likely than the table. However, searching the table
takes less time, since the drawer must be opened first. Two
possible plans are conceivable: searching the table first, and
then the drawer, as in Fig. 7(a), or the other way around as
in Fig. 7(b). These two plans can be formulated as SBTs and
analyzed through the scope of Problem 1, using the results
of Section IV below. Depending on the user requirements in
terms of available time or desired reliability at a given time,
etc. the proper plan/SBT can be chosen.

Remark 1: Note that Assumption 1 corresponds to the
return status of the search actions behaving in a reasonable
way, e.g., not switching between success and failure.

To address Problem 1 for SBTs that are more complex
than the one in Example 1, we need to preform the following
analysis.

IV. PROPOSED APPROACH

In this section we first transform Problem 1 into a DTMC
problem (see Section II above) and then compute the desired
probabilistic measures of it using the proposed approach.

A. Transforming a SBT into a DTMC

The first step of our approach is to define, for each control
flow node in V , a vector representation of the children’s

outcomes and a description of its execution policy, then we
map the execution into a DTMC with a direct representation
of the one-step transition matrix, and finally we compute the
probability of success or failure over time for each node and
its success/failure rates.

The modularity of BTs comes from the recursive tree
structure, any BT can be inserted as sub-tree (child of a
flow control node) in another BT. This modularity allows us
to do the analysis in a recursive fashion, beginning first with
those sub-trees that have only execution nodes as children
(i.e. only actions and conditions as children, which have
known probabilistic parameters given Assumptions 1 and 2)
and then using the newly derived parameters to recursively
calculate the parameters of their parents node, all the way to
the root.

The children outcomes of a given flow control node
are collected in a vector state called the marking of the
node, and the transitions between markings are defined
according to the execution policy of the node. Let m(k) =
[m1(k),m2(k), . . . ,mN (k)] be a marking of a given BT
node with N children at time step k with

mi =


−1 if child i has failed
1 if child i has succeded
0 otherwise

(7)

We define an event related to a BT node when one of its
children returns either success or failure. Defining ei(k) the
vector associated to the event of the i-th running child, all
zeros except the i-th entry which is equal to ei ∈ {−1, 1}:

ei =

{
−1 if child i returs failure
1 if child i returns success.

(8)

An event is feasible only if the related children has been
ticked (e.g. in a sequence node, a child i can not be ticked if
the previous one has failed, in which case there is a feasible
event associated to the child i), hence a transition between
two markings exists if there is an associated feasible event.
Let F(m(k)) be the set of feasible events at marking m(k),
the marking sequence is given by m(k+1) = m(k)+ei(k)
with ei ∈ F(m(k)).
The reachability graph (RG) of a BT node can now be
computed starting from the initial marking m(0) = 0, taking
into account all the possible event combinations that satisfy
the feasibility condition.

Feasibility condition in the Selector node: An event ei(k)
in a selector node is feasible if the corresponding child has
not returned success or failure and the node has not returned
success/failure yet:

F(m(k)) = {e1(k) : m1(k) = 0 ,

ei(k) : mi(k) = 0 ∧mi−1(k) = −1}
(9)

Feasibility condition in the Sequence node: An event
ei(k) in a sequence node is feasible if the corresponding
child has not returned success or failure and the node has



not returned success/failure yet:

F(m(k)) = {e1(k) : m1(k) = 0 ,

ei(k) : mi(k) = 0 ∧mi−1(k) = 1}
(10)

Feasibility condition in the parallel node: An event ei(k)
in a parallel node with N children, in which M of them
have to succeed, is feasible if the corresponding child has
not returned success or failure, if less than M children have
succeeded and if less than N −M + 1 have failed:

F(m(k)) = {ei(k) : mi(k) = 0 ∧
∑

j:mj(k)>0

j < M

∧
∑

j:mj(k)<0

j < N −M + 1}
(11)

Definition 6: A marking mi is reachable from a marking
mj if there exists a sequence of feasible events σ =
[σ1, σ2, . . . , σg] such that mi(k + g) = mj(k) +

∑g
h=1 σh.
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Fig. 8. Reachability graph of the sequence node (blue rectangles) with N
children and its DTMC representation (cyan circles). When the node returns
success/failure the related DTMC is in an absorbing state.
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Fig. 9. Reachability graph of the selector node (blue rectangles) with N
children and its DTMC representation (cyan circles). When the node returns
success/failure the related DTMC is in an absorbing state.

B. Computing Properties of The DTMC

The RG of a BT node comprises all the reachable mark-
ings, the transitions between them describe events which

have a certain success/failure probability. We can then map
the node execution to a DTMC where the states are the
markings in the RG and the one-step transition matrix P>(k)
is given by the probability of jump between markings, with
off diagonal entries defined as follows:

pi,j(k) =


psj(k) if mj(k)−mi(k) = 1 ∧ ei∈ F(mi(k))

pfj(k) if mi(k)−mj(k) = 1 ∧ ei∈ F(mi(k))

0 otherwise.
(12)

and diagonal entries defined as:

pi,i(k) = 1−
∑
j

pi,j(k) (13)

In Figs. 8 and 9 the mapping from RG to a DTCM related to
a sequence node and a selector node are shown, we choose
not to depict the mapping of a parallel node, due to its large
amount of states and possible transition between them.

Lemma 1: The mean sojourn time is:

Ti =
∑

j:ej∈F(mi)

G
(j)
2,1

µj
+
G

(j)
3,1

νj
(14)

where G(i) is the matrix define as follows:

G(i) =

 1 0 0
avg(psi(t)) 1 0
avg(pfi(t)) 0 1

 (15)

where avg(·) is the average function over time.
Proof: The DTMC moves from a state to another with a given
probability disregarding the time spent in such states. To take
into account both probabilities and time rates, that influence
the mean sojourn time, we describe the child execution with
a DTMC where we model as absorbing those states in
which a child returns either success or failure. This model
is graphically represented in Fig. 10. Then the MTTA of

t = 0

Running

1
νi

Running

1
µi

Running

−

Failed

−

Succeeded

pfi psi

1 1

11

1

Fig. 10. DTMC of a child’s execution. The label inside the state is the
mean time spent in that state. The absorbing states are labeled as “−”.

the DTMC is the mean time elapsed before a child returns
either success or failure and is equal to the mean sojourn
time described above. The MTTA is computed as the sum
of steady state probabilities of reaching an absorbing state
multiplied by the average time spent on each path to it, since
the probabilities could be time varying, we consider their
average. The one step transition matrix between transient
states is given by

C(i)(t) =

 0 0 0
psi(t) 0 0
pfi(t) 0 0

 . (16)



To retrieve the steady state probabilities we define the matrix
G(i) as:

G(i) , (I− avg(C(i)))−1, (17)

then (17) represents the mean probability of moving in a
state, of a MC in Fig. 10, before being absorbed [12]. Hence

its MTTA is computed as
G

(j)
2,1

µj
+

G
(j)
3,1

νj
. The (i, j) entry of

the matrix (17) gives the probability of moving from state j
to state i in the DTMC, before an event occurs. Therefore,
taking into account all the feasible events, the mean sojourn
time of the state i is (14).

C. Probability Distribution Over Time

Given the infinitesimal generator matrix Q(t), we compute
the probability distribution over time of the node according
to (6) with the initial condition π0 = [1 0]> that represents
the state in which none of the children have returned suc-
cess/failure yet.

1) Time To Fail and Time To Succeed: Since we are
interested in differentiating between time to succeed/fail we
make a computation similar to the MTTA made in Section II.
To derive a closed form of the mean time to fail (MTTF)
and mean time to succeed (MTTS) we rearrange the state
space of the DTMC so that the initial state is first, the other
transient states are second, the failure states are second last
and the success states are last:

P̃>(k) =

 T (k) 0 0
RF (k) I 0
RS(k) 0 I

 (18)

where T is a (|S|−|SA|)×(|S|−|SA|) matrix describing the
one-step transition from a transit state to another one, RF is
a |SF | × |SF | matrix describing the one-step transition from
a transit state to a failure state, RS is a |SS | × |SS | matrix
describing the one-step transition from a transit state to a
success state. We call this rearrangement canonization of the
state space. MTTF and MTTS are meant to be calculated at
steady state, hence we focus our attention on the probability
of leaving a transition state:

∞∏
k=1

T (k) , U. (19)

Considering i as the initial transient state, the entries uij
is the mean number of visits of j starting from i above
being absorbed, we have to distinguish the case in which
the absorbing state is a failure state from the case in which
it is a success state:

UF (k) , RF (k)U (20)
US(k) , RS(k)U. (21)

Equations (20) and (21) represent the mean number of
visits before being absorbed in a failure or success state
respectively. Now let A be a matrix with the ij-th entry
defined as exp(tij) where tij is the time needed to transit
from a state j to a state i if they are neighbors in the
DTMC, 0 otherwise. Since the state space is arranged by the

canonization described above, the matrix A has the following
form:

A =

 AT (k) 0 0
AF (k) 0 0
AS(k) 0 0

 . (22)

To derive MTTF (MTTS) we take into account the mean time
needed to reach every single failure (success) state with its
probability, normalized over the probability of reaching any
failure (success) state, starting from the initial state. Hence
we sum the probabilities of reaching a state starting from the
initial one, taking into account only the first column of the
matrices.
Due to the considerations above, the MTTF is computed as
follows

MTTF = avg

(∑|SF |
i=1 u

F
i1(k)log(hFi1(k))∑|SF |
i=1 u

F
i1(k)

)
(23)

where:

HF (k) , AF (k)

∞∏
k=1

AT (k). (24)

In a similar way, the MTTS is computed as follows:

MTTS = avg

(∑|SS |
i=1 u

S
i1(k)log(hSi1(k))∑|SS |
i=1 u

S
i1(k)

)
(25)

where:

HS(k) , AS(k)

∞∏
k=1

AT (k). (26)

D. Main result

We are now ready to state the solution to Problem 1.
Proposition 1: Given a SBT, with known probabilistic

parameters for actions and conditions, we can compute
probabilistic measures for the rest of the tree as follows: For
each node whose children have known probabilistic measures
we compute the related DTMC. Now the probability of a
node to return success ps(t) (failure pf (t)) is given by the
sum of the probabilities of the DTMC of being in a success
(failure) state. Let SS ⊂ SA, and SF ⊂ SA be the set of the
success and failure states respectively of a DTMC related
to a node, i.e. those states representing a marking in which
the node returns success or failure, with SF ∪SS = SA and
SF ∩ SS = ∅.

ps(t) =
∑

i:si∈SS

πi(t) (27)

pf (t) =
∑

i:si∈SF

πi(t) (28)

where π(t) is the probability vector of the DTMC related to
the node (i.e. the solution of (6)). Similarly to the MTTA,
the MTTS (MTTF) for a node as we said before is given
by a random variable with exponential distribution and rate
given by the inverse of the MTTS (MTTF) since for such
random variable the mean time is given by the inverse of the
rate.

µ =MTTS−1 (29)
ν =MTTF−1 (30)
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(b) Markov Chain.

Fig. 11. BT and related MC modeling the plan of Example 2.

Two examples, one small that is solved in detail, and a more
complex one, see Section V, are now presented.

Example 2: We will now show the computation of proba-
bilistic parameters for an example SBT. Considering the tree
showed in Fig. 11(a), its probabilistic parameters are given
by evaluating the selector node, since it is the child of the
root node. The given probabilistic parameters related to the
i-th action are:
• pfi probability of failure
• psi probability of success
• νi failure rate
• µi success rate

The DTMC related as shown in Fig. 11(b) has S =
{s1, s2, s3, s4, s5, s6, s7}, SF = {s4} and SS = {s5, s6, s7}.
According to Equation (14) the mean sojourn times are
collected in the following vector

T =
[

ps1
µ1

+
pf1
ν1
,

ps2
µ2

+
pf2
ν2
,

ps3
µ3

+
pf3
ν3

]
(31)

The infinitesimal generator matrix is defined, according
to (5), as follows:

Q =



−µ1ν1
ps1ν1+pf1µ1

0 0 0 0 0 0

µ1ν1pf1
ps1ν1+pf1µ1

−µ2ν2
ps2ν2+pf2µ2

0 0 0 0 0

0
µ2ν2pf2

ps2ν2+pf2µ2

−µ3ν3
ps3ν3+pf3µ3

0 0 0 0

0 0
µ3ν3pf3

ps3ν3+pf3µ3
0 0 0 0

µ1ν1ps1
ps1ν1+pf1µ1

0 0 0 0 0 0

0
µ2ν2ps2

ps2ν2+pf2µ2
0 0 0 0 0

0 0
µ3ν3ps3

ps3ν3+pf3µ3
0 0 0 0


.

(32)
The probability vector, according to (6), is given by:

π(t) =
[
π1(t) π2(t) π3(t) π4(t) π5(t) π6(t) π7(t)

]>
(33)

We can now derive closed form expression for MTTS
and MTTF. Using the decomposition in (18), the matrices
computed according Equations 21 and 20 are:

US =

 ps1 0 0
pf1ps2 ps2 0

pf1pf2ps3 pf2ps3 ps3

 (34)

UF =
[
pf1pf2pf3 pf2pf3 pf3

]
(35)

Note that US is a 3 × 3 matrix and US is a 1 × 3 matrix
since there are 3 transition states, 3 success state and 1 failure

state. For action i we define tfi = ν−1i the time to fail and
tsi = µ−1i the time to succeed. The non-zero entries of the
matrix given by (22) are:

a2,1 = etf1 a3,2 = etf2 a4,3 = etf3

a5,1 = ets1 a6,2 = ets2 a7,3 = ets3
(36)

from which we derive (24) and (26) as:

HS =

 ets1 0 0
etf1 ets2 ets2 0

etf1 etf2 ets3 etf2 ets3 ets3

 (37)

HF =
[
etf1 etf2 etf3 etf2 etf3 etf3

]
(38)

Using Equations (23) and (25) we obtain the MTTS and
MTTF. Finally, the probabilistic parameters of the tree are
expressed in a closed form according Equations (27)-(30):

ps(t) = π5(t) + π6(t) + π7(t) (39)
pf (t) = π4(t) (40)

µ =
ps1+pf1ps2+pf1pf2ps3

ps1 ts1+pf1ps2 (tf1+ts2 )+pf1pf2ps3 (tf1+tf2+ts3 )
(41)

ν = 1
tf1+tf2+tf3

(42)

V. NUMERICAL VERIFICATION AND COMPLEX EXAMPLE

In this section we present a more complex example,
extending Example 2 above. We use this example for two
purposes, first, to verify the correctness of the proposed
approach using Monte Carlo simulations, and second, to
illustrate how changes in the SBT lead to different perfor-
mance metrics.

Example 3: The task given to a two armed robot is to
find and collect objects which can be found either on the
floor, in the drawers or in the closet. The time needed to
search for a desired object on the floor is less than the time
needed to search for it in the drawers, since the latter has to
be reached and opened first. On the other hand, the object
is more likely to be in the drawers than on the floor, or in
the closet. Moreover, the available policies for picking up
objects are the one-hand and the two-hands grasps. The one-
hand grasp most likely fails, but it takes less time to check
if it has failed or not. Given these options, the task can be
achieved in different ways, each of them corresponding to
a different performance measure. The plan chosen for this
example is modeled by the SBT shown in Fig. 12.

∅ 0

→ 1

? 2

? 3

? 4

? 5Obj.Pos.
Retrieved

Search on
the Floor

Search in
the Drawers

Search in
the Closet

Object
Grasped

One Hand
Grasp

Two Hands
Grasp

1

Fig. 12. BT modeling the search and grasp plan. The leaf nodes are labeled
with a text, and the control flow nodes are labeled with a number, for easy
reference.



The correctness of the analytical estimates can be seen
from Table II. We compare the analytical solution derived
using our approach with numerical results given by a massive
Monte Carlo simulation carried out using a BT implemen-
tation in the Robot Operative System (ROS) [13] where
actions and conditions are performed using ROS nodes with
outcomes computed using the C++ random number generator
with exponential distribution. The BT implementation in
ROS was run approximately 80000 times to have enough
samples to get numerical averages close to the true values.
For each run we stored if the tree (and some sub-trees)
succeeded or failed and how long it took, allowing us to
estimate µ, ν, ps(t), pf (t) experimentally. The match is
reported in Figs. 13-15 and in Table I. As can be seen, all
estimates are within 0.0018 % of the analytical results.

Measure Analytical Numerical Relative Error
µRoot 5.9039E−3 5.8958E−3 0.0012%
νRoot 4.4832E−3 4.4908E−3 0.0017%
µ3 6.2905E−3 6.2998E−3 0.0014%
ν3 2.6415E−3 2.6460E−3 0.0017%
µ5 9.6060E−2 9.5891E−2 0.0018%
ν5 4.8780E−2 4.8701E−2 0.0016%

TABLE I. Table comparing numerical end experimental results of MTTF
and MTTS.

Label µ ν ps(t) pf (t)

Obj. Pos. Retrieved − − ps5(t) pf5(t)
Object Grasped − − ps4(t) pf4(t)
Search on the Floor 0.01 0.0167 0.3 0.7
Search in the Drawer 0.01 0.01 0.8 0.2
Search in the Closet 0.005 0.0056 0.2 0.8
One Hand Grasp 0.1 20 0.1 0.9
Two Hands Grasp 0.1 0.05 0.5 0.5

TABLE II. Table collecting given parameters, the label of the control flow
nodes are reported in Fig. 12.
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Fig. 13. Probability distribution over time for the Root node of the BT
in Fig. 12. Solid lines are the analytical results, markers are the numerical
results
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Fig. 14. Success/Failure probabilities in the case of searching on the floor
first (dashed) and searching on the drawer first (solid).

We now show how the order of the execution nodes affects
the plan performance. The results of swapping the order of
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Fig. 15. Matches of probability distribution over time related to Node 5
(a) and Node 3 (b)

“Search on the Floor” and “Search in the Drawers” are shown
in Fig. 14. As can be seen, the success probability after 100s
is about 30% when starting with the drawers, and about 20%
when starting with the floor. The asymptotic probabilities are
the same since the change was only a swap of order. We
finish this section by noting that estimates like these can be
used to optimize the execution plan for a given task.

VI. CONCLUSIONS

In this paper, we presented an analytical formalism that
allowed us to do performance analysis of BTs. We showed
why such estimates are important, and verified the approach
by providing numerical results from a Monte Carlo simula-
tion that agreed with the closed form expressions.
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