

Towards an Understanding of Polynomial Calculus: New Separations and Lower Bounds

Yuval Filmus Massimo Lauria **Mladen Mikša** Jakob Nordström Marc Vinyals

40th International Colloquium on Automata, Languages and Programming Riga, Latvia

9 July 2013

Proof Complexity

- Original motivation: Program for showing $\mathsf{P} \neq \mathsf{NP}$
- More recently: Connections to SAT solving
- Key concerns in SAT solving: running time and memory

 Modelled by size and space in proof system
 - 1. DPLL (+ clause learning)
 - Corresponds to resolution proof system
 - State of the art
 - 2. Algebraic methods (Gröbner bases)
 - Corresponds to **polynomial calculus**
 - Potentially better than DPLL
- This talk: Space complexity in polynomial calculus

The General Set-Up

• Input: CNF formula F $(\overline{x} \lor y) \land (\overline{x} \lor \overline{y} \lor z) \land \overline{z} \land (x \lor z)$

• Goal: Proof of unsatisfiability (refutation of F)

- Refer to clauses of formula as axioms
- Focus on k-CNF formulas (All clauses of size $\leq k = O(1)$)

Think of proof as presented on whiteboard

Think of proof as presented on whiteboard

Derivation rules

Mladen Mikša	(KTH)
--------------	-------

Think of proof as presented on whiteboard

Derivation rules

Think of proof as presented on whiteboard

Derivation rules

- $\begin{array}{c} x \lor y \\ \overline{x} \lor z \lor w \end{array}$
- Write down axioms

Think of proof as presented on whiteboard

Derivation rules

- Write down axioms
- Use resolution rule $\frac{C \lor x \qquad D \lor \overline{x}}{C \lor D}$

 $\begin{array}{l} x \lor y \\ \overline{x} \lor z \lor w \end{array}$

Think of proof as presented on whiteboard

Derivation rules

- Write down axioms

Think of proof as presented on whiteboard

Derivation rules

- Write down axioms
 - Use resolution rule $\begin{array}{c|c} \underline{C \lor x} & D \lor \overline{x} \\ \hline C \lor D \end{array}$

 $\begin{array}{l} x \lor y \\ \overline{x} \lor z \lor w \\ y \lor z \lor w \end{array}$

Think of proof as presented on whiteboard

Derivation rules

- $\begin{array}{c} \overleftarrow{x} \\ \overline{x} \lor z \lor w \\ y \lor z \lor w \end{array}$
- Write down axioms
- Use resolution rule $\begin{array}{c|c} \underline{C \lor x} & D \lor \overline{x} \\ \hline C \lor D \end{array} \end{array}$

Think of proof as presented on whiteboard

Derivation rules

- Write down axioms
- Use resolution rule $\begin{array}{c|c} \underline{C \lor x} & D \lor \overline{x} \\ \hline C \lor D \end{array} \end{array}$

 $\overline{x} \lor z \lor w$ $y \lor z \lor w$

 $\begin{array}{l} x \lor y \\ \overline{x} \lor \overline{y} \lor z \lor w \\ y \lor z \lor w \end{array}$

Size: # of clauses in proof
Space: # of clauses on board

 $\begin{array}{l} x \lor y \\ \overline{x} \lor \overline{y} \lor z \lor w \\ y \lor z \lor w \end{array}$

Size: # of clauses in proof
Space: # of clauses on board
Width: # variables in largest clause

 $\begin{array}{l} x \lor y \\ \overline{x} \lor \overline{y} \lor z \lor w \\ y \lor z \lor w \end{array}$

Size: # of clauses in proof

Space: # of clauses on board

Width: # variables in largest clause

This board: space = 3 & width = 4

 $\begin{array}{l} x \lor y \\ \overline{x} \lor \overline{y} \lor z \lor w \\ y \lor z \lor w \end{array}$

Size: # of clauses in proof

Space: # of clauses on board

Width: # variables in largest clause

This board: space = 3 & width = 4

Size	Width	Space	
$\exp(\Theta(n))$	$\Theta(n)$	$\Theta(n)$	

 $\begin{array}{l} x \lor y \\ \overline{x} \lor \overline{y} \lor z \lor w \\ y \lor z \lor w \end{array}$

Size: # of clauses in proof

Space: # of clauses on board

Width: # variables in largest clause

This board: space = 3 & width = 4

$\log(Size)$ \gtrsim	Width	Space	
$\exp(\Theta(n))$	$\Theta(n)$	$\Theta(n)$	

- Small size ⇒ small width [Ben-Sasson, Wigderson '99]
- Small width \implies small size

 $\begin{array}{l} x \lor y \\ \overline{x} \lor \overline{y} \lor z \lor w \\ y \lor z \lor w \end{array}$

Size: # of clauses in proof

Space: # of clauses on board

Width: # variables in largest clause

This board: space = 3 & width = 4

$\log(Size) \gtrsim V$	Width	\leq	Space
$\exp\bigl(\Theta(n)\bigr)$	$\Theta(n)$		$\Theta(n)$
 Small size ⇒ small width [Ben-Sasson, Wigderson '99] Small width ⇒ small size 		nall spac tserias, nall wid [.]	ce \implies small width Dalmau '03] th \implies small space

Small width ⇒ small space
 [Ben-Sasson, Nordström '08]

- Simulates resolution; can be exponentially stronger
- Proof lines are polynomials over field \mathbb{F} - Encode axioms: $x \lor \overline{y} \lor z \to \overline{x}y\overline{z} = 0$
- Use additional axioms: $x^2 x = 0$ and $x + \overline{x} 1 = 0$

- Simulates resolution; can be exponentially stronger
- Proof lines are polynomials over field \mathbb{F} - Encode axioms: $x \lor \overline{y} \lor z \to \overline{x}y\overline{z} = 0$
- Use additional axioms: $x^2 x = 0$ and $x + \overline{x} 1 = 0$

Derivation rules

$$\overline{x}v - \overline{x} = 0$$

- Simulates resolution; can be exponentially stronger
- Proof lines are polynomials over field \mathbb{F} - Encode axioms: $x \lor \overline{y} \lor z \to \overline{x}y\overline{z} = 0$
- Use additional axioms: $x^2 x = 0$ and $x + \overline{x} 1 = 0$

Derivation rules

$$\overline{x}v - \overline{x} = 0$$
$$\overline{x}vz = 0$$

- Simulates resolution; can be exponentially stronger
- Proof lines are polynomials over field \mathbb{F} - Encode axioms: $x \lor \overline{y} \lor z \to \overline{x}y\overline{z} = 0$
- Use additional axioms: $x^2 x = 0$ and $x + \overline{x} 1 = 0$

$$\boxed{\overline{x}v - \overline{x} = 0}$$
$$\overline{x}vz = 0$$

Derivation rules

• Multiplication
$$\frac{p=0}{xp=0}$$

- Simulates resolution; can be exponentially stronger
- Proof lines are polynomials over field \mathbb{F} - Encode axioms: $x \lor \overline{y} \lor z \to \overline{x}y\overline{z} = 0$
- Use additional axioms: $x^2 x = 0$ and $x + \overline{x} 1 = 0$

$$\begin{array}{l} \overline{x}v - \overline{x} = 0\\ \overline{x}vz = 0\\ \overline{x}vz - \overline{x}z = 0\end{array}$$

Derivation rules

• Multiplication
$$\frac{p=0}{xp=0}$$

- Simulates resolution; can be exponentially stronger
- Proof lines are polynomials over field \mathbb{F} - Encode axioms: $x \lor \overline{y} \lor z \to \overline{x}y\overline{z} = 0$
- Use additional axioms: $x^2 x = 0$ and $x + \overline{x} 1 = 0$

$$\overline{x}v - \overline{x} = 0$$
$$\overline{x}vz = 0$$
$$\overline{x}vz - \overline{x}z = 0$$

Derivation rules

- Write down axioms
- Multiplication $\frac{p=0}{xp=0}$
- Linear combination $\frac{p=0}{\alpha p+\beta q=0}$

- Simulates resolution; can be exponentially stronger
- Proof lines are polynomials over field \mathbb{F} - Encode axioms: $x \lor \overline{y} \lor z \to \overline{x}y\overline{z} = 0$
- Use additional axioms: $x^2 x = 0$ and $x + \overline{x} 1 = 0$

$$\overline{x}v - \overline{x} = 0$$
$$\overline{x}vz = 0$$
$$\overline{x}vz - \overline{x}z = 0$$
$$\overline{x}z = 0$$

Derivation rules

- Write down axioms
- Multiplication $\frac{p=0}{xp=0}$
- Linear combination $\frac{p=0}{\alpha p+\beta q=0}$

- Simulates resolution; can be exponentially stronger
- Proof lines are polynomials over field \mathbb{F} - Encode axioms: $x \lor \overline{y} \lor z \to \overline{x}y\overline{z} = 0$
- Use additional axioms: $x^2 x = 0$ and $x + \overline{x} 1 = 0$

$$\overline{x}v - \overline{x} = 0$$
$$\overline{x}vz = 0$$
$$\overline{x}vz - \overline{x}z = 0$$
$$\overline{x}z = 0$$

Derivation rules

- Write down axioms
- Multiplication $\frac{p=0}{xp=0}$
- Linear combination ^{*I*}

$$\frac{p=0}{\alpha p+\beta q=0} q=0$$

• Erase polynomial

- Simulates resolution; can be exponentially stronger
- Proof lines are polynomials over field \mathbb{F} - Encode axioms: $x \lor \overline{y} \lor z \to \overline{x}y\overline{z} = 0$
- Use additional axioms: $x^2 x = 0$ and $x + \overline{x} 1 = 0$

$$\dot{\overline{x}}vz = 0$$
$$\overline{x}vz - \overline{x}z = 0$$
$$\overline{x}z = 0$$

Derivation rules

- Write down axioms
- Multiplication $\frac{p=0}{xp=0}$
- Linear combination ^{*I*}

$$\frac{p=0 \quad q=0}{\alpha p + \beta q = 0}$$

• Erase polynomial

- Simulates resolution; can be exponentially stronger
- Proof lines are polynomials over field \mathbb{F} - Encode axioms: $x \lor \overline{y} \lor z \to \overline{x}y\overline{z} = 0$
- Use additional axioms: $x^2 x = 0$ and $x + \overline{x} 1 = 0$

$$\overline{x}vz = 0$$
$$\overline{x}vz - \overline{x}z = 0$$
$$\overline{x}z = 0$$

Derivation rules

- Write down axioms
- Multiplication $\frac{p=0}{xp=0}$
- Linear combination ^{<u>n</u>}

$$\frac{p=0 \quad q=0}{\alpha p + \beta q = 0}$$

• Erase polynomial

$$\overline{x}v - \overline{x} = 0$$
$$\overline{x}vz = 0$$
$$\overline{x}vz - \overline{x}z = 0$$

Size: # of monomials in proof
Space: # of monomials on board

$$\overline{x}v - \overline{x} = 0$$
$$\overline{x}vz = 0$$
$$\overline{x}vz - \overline{x}z = 0$$

Size: # of monomials in proof

Space: # of monomials on board

Degree: # variables in largest monomial

$$\overline{x}v - \overline{x} = 0$$

Size: # of monomials in proof

$$\overline{x}vz = 0$$

 $\overline{x}vz - \overline{x}z = 0$

Space: # of monomials on board

Degree: # variables in largest monomial

$$\overline{x}v - \overline{x} = 0$$

Size: # of monomials in proof

$$\overline{x}vz = 0$$

 $\overline{x}vz - \overline{x}z = 0$

Space: # of monomials on board

Degree: # variables in largest monomial

Size	Degree	Space	
$\exp\bigl(\Theta(n)\bigr)$	$\Theta(n)$	$\Theta(n)$	

$$\overline{x}v - \overline{x} = 0$$

Size: # of monomials in proof

$$\overline{x}vz = 0$$

 $\overline{x}vz - \overline{x}z = 0$

Space: # of monomials on board

Degree: # variables in largest monomial

$\log(Size)$ \gtrsim	Degree	Space	
$\expig(\Theta(n)ig)$	$\Theta(n)$	$\Theta(n)$	

- Small size ⇒ small degree
 [Impagliazzo, Pudlák, Sgall '99]
- Small degree ⇒ small size
 [Clegg, Edmonds, Impagliazzo '96]

$$\overline{x}v - \overline{x} = 0$$

Size: # of monomials in proof

$$\overline{x}vz = 0$$

 $\overline{x}vz - \overline{x}z = 0$

Space: # of monomials on board

Degree: # variables in largest monomial

$\log(Size)$ \gtrsim	Degree	???	Space	
$\exp\bigl(\Theta(n)\bigr)$	$\Theta(n)$		$\Theta(n)$	

- Small size ⇒ small degree
 [Impagliazzo, Pudlák, Sgall '99]
- Small degree \implies small size [Clegg, Edmonds, Impagliazzo '96]
- Small space ⇒ small degree?
- Small degree ⇒ small space?

• Small space (sort of) implies small degree

Theorem 1

If F requires degree w, then **XORified** version of F requires polynomial calculus space $\Omega(w)$

• Small space (sort of) implies small degree

Theorem 1

If F requires resolution width w, then XORified version of F requires polynomial calculus space $\Omega(w)$

• Small space (sort of) implies small degree

Theorem 1

If F requires resolution width w, then **XORified** version of F requires polynomial calculus space $\Omega(w)$

- Stronger: Holds for resolution width
- Weaker: Requires XORification

• Small space (sort of) implies small degree

Theorem 1

If F requires **resolution width** w, then **XORified** version of F requires polynomial calculus space $\Omega(w)$

- Stronger: Holds for resolution width
- Weaker: Requires XORification
- Small degree does not imply small space

Theorem 2

• Small space (sort of) implies small degree

Theorem 1

If F requires resolution width w, then **XORified** version of F requires polynomial calculus space $\Omega(w)$

- Stronger: Holds for resolution width
- Weaker: Requires XORification
- Small degree does not imply small space

Theorem 2

- Also some other results (won't have time to cover):
 - Space lower bounds for so-called Tseitin contradictions
 - Provable limitations of current lower-bound techniques

Theorem 2 — Brief Overview

Theorem 2

Theorem 2 — Brief Overview

Theorem 2

- \bullet Focus on \mathbb{F}_2 case
- Find formulas with:
 - Large resolution width
 - Small polynomial calculus degree
- Use **full strength** of Theorem 1 to get:
 - Large polynomial calculus space
 - While keeping degree small

Theorem 1 and XORification

Theorem 1

If F requires resolution width w, then XORified version of F requires polynomial calculus space $\Omega(w)$

- **XORification:** Substitute variables with XOR (\oplus)
- Expand to CNF formula

$$\overline{x} \lor y \longrightarrow (\overline{x_1 \oplus x_2}) \lor (y_1 \oplus y_2) \longrightarrow (\overline{x_1} \lor x_2 \lor y_1 \lor y_2) \land (\overline{x_1} \lor \overline{x_2} \lor y_1 \lor y_2) \land (x_1 \lor \overline{x_2} \lor y_1 \lor y_2) \land (x_1 \lor \overline{x_2} \lor \overline{y_1} \lor \overline{y_2}) \land (x_1 \lor \overline{y_2} \lor \overline{y_1} \lor \overline{y_2}) \land (x_1 \lor \overline{y_1} \lor \overline{y_2} \lor \overline{y_1} \lor \overline{y_2}) \land (x_1 \lor \overline{y_1} \lor \overline{y_1} \lor \overline{y_1} \lor \overline{y_1} \lor \overline{y_1} \lor \overline{y_1} \lor \overline{y_2} \lor (x_1 \lor \overline{y_1} \lor \overline{y_2} \lor \overline{y_1} \lor \overline{y_$$

Tseitin Contradictions

- Linear equations on graph encoded as CNF formula
- Easy for polynomial calculus
 - Add equations together using constant degree
- Tseitin on expander graphs => large resolution width [Ben-Sasson, Wigderson '99]

Tseitin Contradictions — XORification

x + y = 1x + z = 0y + z = 0

Mladen Mikša (KTH)

Towards an Understanding of Polynomial Calculus

Tseitin Contradictions — XORification

 $egin{aligned} x_1+x_2+y_1+y_2&=1\ x_1+x_2+z_1+z_2&=0\ y_1+y_2+z_1+z_2&=0 \end{aligned}$

- XOR substitution = edge doubling
- Still linear equations \implies still easy in polynomial calculus
- Expander graph \implies space lower bound - Width lower bound + XORification + Theorem 1

Tseitin Contradictions — XORification

 $\begin{aligned} x_1 + x_2 + y_1 + y_2 &= 1 \\ x_1 + x_2 + z_1 + z_2 &= 0 \\ y_1 + y_2 + z_1 + z_2 &= 0 \end{aligned}$

Theorem 2

- X(Exist formulas refutable in constant degree but requiring linear space
- Still linear equations \implies still easy in polynomial calculus
- Expander graph \implies space lower bound
 - Width lower bound + XORification + Theorem 1

Theorem 1 - Brief Overview

Theorem 1

If F requires resolution width w, then XORified version of F requires polynomial calculus space $\Omega(w)$

Theorem 1 — Brief Overview

Theorem 1

If F requires resolution width w, then **XORified** version of F requires polynomial calculus space $\Omega(w)$

- Characterization of resolution width by combinatorial game [Atserias, Dalmau '03]
- PC space lower bounds via (other) combinatorial game [Bonacina, Galesi '13]
- XORification of formulas

Run [AD '03] game on original formula as subroutine of [BG '13] game on XORified formula

Some Open Problems

Open Problem 1

Prove space lower bounds for 3-CNF formulas

• Nothing is known — only $k\text{-}\mathsf{CNF}$ lower bounds for $k\geq 4$

Some Open Problems

Open Problem 1

Prove space lower bounds for 3-CNF formulas

• Nothing is known — only $k\text{-}\mathsf{CNF}$ lower bounds for $k\geq 4$

Open Problem 2

Extend techniques for lower bounding space

- Exist formulas that:
 - Likely hard (e.g., functional pigeonhole principle)
 - But [BG '13] provably doesn't work

Some Open Problems

Open Problem 1

Prove space lower bounds for 3-CNF formulas

• Nothing is known — only $k\text{-}\mathsf{CNF}$ lower bounds for $k\geq 4$

Open Problem 2

Extend techniques for lower bounding space

- Exist formulas that:
 - Likely hard (e.g., functional pigeonhole principle)
 But [BG '13] provably doesn't work

Open Problem 3

Does degree lower bound space?

• Might be helpful to characterize degree à la [AD '03]

Concluding Remarks

- Key concerns in SAT solving: running time and memory
- Modelled by size and space in proof complexity
- Resolution well understood key measure: width
- **Polynomial calculus** less clear role of degree?
- **This work:** Sheds some light on space-degree relation (Short version: picture seems very similar to resolution)
- Still many open problems in polynomial calculus

Concluding Remarks

- Key concerns in SAT solving: running time and memory
- Modelled by size and space in proof co
- attention attention • Resolution well understood
- your role of degree? Polynomial calculus '
- This work: S' you light on space-degree relation (Short '' and Joure seems very similar to resolution)
- Still open problems in polynomial calculus