From Small Space to Small Width in Resolution

Mladen Mikša
KTH Royal Institute of Technology
Stockholm, Sweden

FLoC Workshop on Proof Complexity
Vienna, Austria
13 July 2014

Joint work with Yuval Filmus, Massimo Lauria, Jakob Nordström, and Marc Vinyals
Resolution

- **Input:** CNF formula F

 \[(x \lor \overline{y} \lor z) \land (\overline{y} \lor \overline{z}) \land (x \lor y) \land (\overline{x} \lor \overline{z}) \land (\overline{x} \lor z)\]

- **Resolution rule:**

 \[
 \begin{array}{c}
 C \lor x \\
 D \lor \overline{x} \\
 \hline
 C \lor D
 \end{array}
 \]

- **Goal:** Proof of unsatisfiability (refutation) $= \text{Derive empty clause } \bot$

Refer to clauses of formula as **axioms**
Resolution Size, Space, and Width

Can represent refutation as

- annotated list or
- DAG

\[
\begin{align*}
1. & \quad x \lor \overline{y} \lor z & \text{Axiom} \\
2. & \quad \overline{y} \lor \overline{z} & \text{Axiom} \\
3. & \quad x \lor \overline{y} & \text{Res}(1, 2) \\
4. & \quad x \lor y & \text{Axiom} \\
5. & \quad x & \text{Res}(3, 4) \\
6. & \quad \overline{x} \lor \overline{z} & \text{Axiom} \\
7. & \quad \overline{x} \lor z & \text{Axiom} \\
8. & \quad \overline{x} & \text{Res}(6, 7) \\
9. & \quad \bot & \text{Res}(5, 8)
\end{align*}
\]
Resolution Size, Space, and Width

Can represent refutation as

- annotated list or
- DAG

Example:

\[
\begin{align*}
&x \lor \bar{y} \lor z \\
&\bar{y} \lor \bar{z} \\
&x \lor \bar{y} \\
&x \lor y \\
&x \\
&\bar{x} \lor \bar{z} \\
&\bar{x} \lor z \\
&\bar{x} \\
&\bot
\end{align*}
\]
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in refutation

Space: memory usage (at step t: # clauses before t used after t)

Width: size of the largest clause

Example:
- Size
- Space
- Width
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in refutation

Space: memory usage (at step t:
clauses before t used after t)

Width: size of the largest clause

Example:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$x \lor \overline{y} \lor z$</td>
<td>Axiom</td>
</tr>
<tr>
<td>2.</td>
<td>$\overline{y} \lor \overline{z}$</td>
<td>Axiom</td>
</tr>
<tr>
<td>3.</td>
<td>$x \lor \overline{y}$</td>
<td>Res(1, 2)</td>
</tr>
<tr>
<td>4.</td>
<td>$x \lor y$</td>
<td>Axiom</td>
</tr>
<tr>
<td>5.</td>
<td>x</td>
<td>Res(3, 4)</td>
</tr>
<tr>
<td>6.</td>
<td>$\overline{x} \lor \overline{z}$</td>
<td>Axiom</td>
</tr>
<tr>
<td>7.</td>
<td>$\overline{x} \lor z$</td>
<td>Axiom</td>
</tr>
<tr>
<td>8.</td>
<td>\overline{x}</td>
<td>Res(6, 7)</td>
</tr>
<tr>
<td>9.</td>
<td>\perp</td>
<td>Res(5, 8)</td>
</tr>
</tbody>
</table>

Size 9

Space

Width
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in refutation
Space: memory usage (at step t:
clauses before t used after t)
Width: size of the largest clause

Example:
- Size 9
- Space
- Width
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in refutation
Space: memory usage (at step t: # clauses before t used after t)
Width: size of the largest clause

Example:
- Size 9
- Space 0
- Width

Space at current step 0
Can represent refutation as
- annotated list or
- DAG

Size: number of steps in refutation

Space: memory usage (at step t:
clauses before t used after t)

Width: size of the largest clause

Example:
- Size 9
- Space 1
- Width

Space at current step 1
Can represent refutation as
- annotated list or
- DAG

Size: number of steps in refutation

Space: memory usage (at step t:
clauses before t used after t)

Width: size of the largest clause

Example:
- Size 9
- Space 2
- Width

Space at current step 2
Can represent refutation as
- annotated list or
- DAG

Size: number of steps in refutation

Space: memory usage (at step t: # clauses before t used after t)

Width: size of the largest clause

Example:
- Size 9
- Space 3
- Width

Space at current step 3
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in refutation

Space: memory usage (at step t:
clauses before t used after t)

Width: size of the largest clause

Example:
- Size 9
- Space 3
- Width

Space at current step 2
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in refutation
Space: memory usage (at step t: # clauses before t used after t)
Width: size of the largest clause

Example:
- Size 9
- Space 3
- Width

Space at current step 3
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in refutation

Space: memory usage (at step t: # clauses before t used after t)

Width: size of the largest clause

Example:
- Size 9
- Space 3
- Width

Space at current step: 2
Resolution Size, Space, and Width

Can represent refutation as
- annotated list or
- DAG

Size: number of steps in refutation

Space: memory usage (at step t: # clauses before t used after t)

Width: size of the largest clause

Example:
- Size 9
- Space 3
- Width

Space at current step 3
Resolution Size, Space, and Width

Can represent refutation as
 - annotated list or
 - DAG

Size: number of steps in refutation

Space: memory usage (at step t:
 # clauses before t used after t)

Width: size of the largest clause

Example:

Size 9
Space 4
Width

Space at current step 4

$x \lor \neg y \lor z$

$\neg y \lor \neg z$

$x \lor \neg y$

$x \lor y$

$x \lor \neg z$

\bot
Resolution Size, Space, and Width

Can represent refutation as

- annotated list or
- DAG

Size: number of steps in refutation

Space: memory usage (at step \(t \): # clauses before \(t \) used after \(t \))

Width: size of the largest clause

Example:

- Size 9
- Space 4
- Width

Space at current step 3
Can represent refutation as
- annotated list or
- DAG

Size: number of steps in refutation

Space: memory usage (at step t:
clauses before t used after t)

Width: size of the largest clause

Example:
- Size 9
- Space 4
- Width

Space at current step 0
Resolution Size, Space, and Width

Can represent refutation as

- annotated list or
- DAG

Size: number of steps in refutation

Space: memory usage (at step \(t \):
\# clauses before \(t \) used after \(t \))

Width: size of the largest clause

Example:

- Size \(9 \)
- Space \(4 \)
- Width \(3 \)

Space at current step \(0 \)

\[
x \lor \overline{y} \lor z
\]

\[
\overline{y} \lor \overline{z}
\]

\[
x \lor \overline{y}
\]

\[
x \lor y
\]

\[
x
\]

\[
x \lor \overline{z}
\]

\[
\overline{x} \lor \overline{z}
\]

\[
\overline{x} \lor z
\]

\[
\overline{x}
\]

\[
\bot
\]
Can represent refutation as
- annotated list or
- DAG

Size: number of steps in refutation

Space: memory usage (at step t: # clauses before t used after t)

Width: size of the largest clause

Example:
- Size 9
- Space 4
- Width 3

Space at current step 0
Relation Between Width and Size/Space

Width helps us understand size and space
 Makes most sense for small width formulas — focus on k-CNFs

Size: Ben-Sasson and Wigderson ’99

$$\log(\text{Size}) \gtrsim \text{Width}$$

Proof by syntactically manipulating short refutation into narrow refutation

Space: Atserias and Dalmau ’03

$$\text{Space} \geq \text{Width}$$

More involved proof in terms of strategies for Ehrenfeucht-Fraïssé games
Relation Between Width and Size/Space

Width helps us understand size and space
Makes most sense for small width formulas — focus on k-CNFs

Size: Ben-Sasson and Wigderson '99

$$\log(\text{Size}) \gtrsim \text{Width}$$

Proof by syntactically manipulating short refutation into narrow refutation

Space: Atserias and Dalmau '03

$$\text{Space} \geq \text{Width}$$

More involved proof in terms of strategies for Ehrenfeucht-Fraïssé games

Our result: Simple purely syntactic proof

Razborov independently obtained a similar proof
Refutation presented on whiteboard
Refutation presented on whiteboard

- Write down axioms
- Use resolution rule
Whiteboard Interpretation of Space

Refutation presented on whiteboard
- Write down axioms
- Use resolution rule
Refutation presented on whiteboard

- Write down axioms
- Use resolution rule
Refutation presented on whiteboard

- Write down axioms
- Use resolution rule
- Erase clause
Refutation presented on whiteboard
- Write down axioms
- Use resolution rule
- Erase clause
Refutation presented on whiteboard

- Write down axioms
- Use resolution rule
- Erase clause
Refutation presented on whiteboard

- Write down axioms
- Use resolution rule
- Erase clause

Logical expressions:
- $x \lor \neg y \lor z$
- $\neg y \lor \neg z$
- $x \lor \neg y$
- $x \lor \neg z$
- $\neg x \lor \neg z$
- $\neg x \lor z$
- $\neg x$
- \bot

\bot
Refutation presented on whiteboard

- Write down axioms
- Use resolution rule
- Erase clause
Refutation presented on whiteboard
- Write down axioms
- Use resolution rule
- Erase clause
Refutation presented on whiteboard

- Write down axioms
- Use resolution rule
- Erase clause
Whiteboard Interpretation of Space

Refutation presented on whiteboard
- Write down axioms
- Use resolution rule
- Erase clause

Space: max # clauses on board
No finite model theory and no Ehrenfeucht-Fraïssé games
Want to turn small-height whiteboard into small-width one

\[x \lor y \lor z \lor v \lor w \]
\[y \lor z \lor w \lor x \]
\[x \lor y \lor \overline{y} \]
\[x \lor y \lor \overline{z} \lor \overline{v} \lor \overline{w} \]

Mladen Mikša (KTH)

From Small Space to Small Width in Resolution
Proof Complexity '14 6/14
Proof Idea in One Slide

No finite model theory and no Ehrenfeucht-Fraïssé games

Want to turn small-height whiteboard into small-width one

Rotate whiteboard and get narrow whiteboard

\[x \lor \neg y \lor \neg z \lor v \lor w \]
\[\neg y \lor \neg z \lor \neg w \lor x \]
\[x \lor \neg y \]

\[x \land \neg m \land \neg z \land \neg h \land x \]
\[y \land \neg m \land \neg z \land \neg h \land y \]
In Somewhat More Detail...

\[x \lor \overline{y} \lor z \\
\overline{y} \lor \overline{z} \]
In Somewhat More Detail...

\[\neg((x \lor \overline{y} \lor z) \land (\overline{y} \lor z)) \]

- View clauses on whiteboard as CNF and negate

Mladen Mikša (KTH)
From Small Space to Small Width in Resolution
Proof Complexity '14
In Somewhat More Detail...

- View clauses on whiteboard as CNF and negate
- Apply DeMorgan’s rules
In Somewhat More Detail...

- View clauses on whiteboard as CNF and negate
- Apply DeMorgan’s rules
- Expand the formula into CNF by distributing OR over ANDs
In Somewhat More Detail...

- View clauses on whiteboard as CNF and negate
- Apply DeMorgan’s rules
- Expand the formula into CNF by distributing OR over ANDs
- Remove trivial and redundant clauses
In Somewhat More Detail...

- View clauses on whiteboard as CNF and negate
- Apply DeMorgan’s rules
- Expand the formula into CNF by distributing OR over ANDs
- Remove trivial and redundant clauses
- Write CNF on whiteboard

Space (\# clauses) of Original \(\geq\) Width of Negated
Consequences of Negation

Negate every whiteboard and run refutation in reverse

Note: Empty whiteboard turns into contradiction and vice versa

Small space refutation is transformed into narrow one
Missing Details

Need two things

1. **Prove** we have backbone of resolution refutation
2. **Fill in** missing details (without blowing up width)

Proof by *case analysis* over derivation steps:

- Axiom download
- Resolution rule application
- Clause erasure
Clause Erasure

Original: Erasure weakens whiteboard

Right board weaker than left board

Original refutation

\[
\begin{align*}
\overline{y} \lor \overline{z} \\
x \lor \overline{y}
\end{align*}
\]
Clause Erasure

Original: Erasure weakens whiteboard

Right board weaker than left board

Negated: Negation inverts relation

Left board weaker than right board

Negated refutation run in reverse!
Can skip weaker whiteboards
Resolution Rule Application

Original: No change in semantic content

Original refutation

Original:

\(x \lor \overline{y} \lor z \)
\(\overline{y} \lor z \)

Negated:

\(x \lor \overline{y} \lor z \)
\(\overline{y} \lor z \)
\(x \lor \overline{y} \)

Note: No work done thus far!
Resolution Rule Application

Original refutation:

\[x \lor \neg y \lor z \]
\[\neg y \lor z \]

Negated refutation:

\[x \lor \neg y \lor z \]
\[\neg y \lor z \]
\[x \lor \neg y \]

Original: No change in semantic content

Negated: No change in syntactic content (after prunning redundant clauses)

Whiteboard stays the same!
Resolution Rule Application

Original refutation

Original: No change in semantic content

Negated: No change in syntactic content (after pruning redundant clauses)

Whiteboard stays the same!

Negated refutation

Note: No work done thus far!
Original: Add axiom A to whiteboard

\[
x \lor \overline{y} \lor z\\
\overline{y} \lor \overline{z}
\]

Original refutation
Original: Add axiom A to whiteboard

Negated: For every literal $a \in A$ add \overline{a} to all clauses of whiteboard

Use clauses $C \lor \overline{a}$ and A to derive C
Original: Add axiom A to whiteboard

Negated: For every literal $a \in A$ add \overline{a} to all clauses of whiteboard

Use clauses $C \lor \overline{a}$ and A to derive C

\[
\begin{align*}
\overline{y} \lor \overline{z} & \quad \overline{x} \lor y \\
\overline{x} \lor \overline{z} & \quad \overline{x} \lor z \\
& \quad \overline{x}
\end{align*}
\]

Adds constant width to derivation
Original: Add axiom A to whiteboard

Negated: For every literal $a \in A$ add \overline{a} to all clauses of whiteboard

Use clauses $C \lor \overline{a}$ and A to derive C

$$
\begin{align*}
&\overline{y} \lor \overline{z} \\
&\overline{x} \lor y \\
&\overline{x} \lor z \\
&y
\end{align*}
$$

Adds constant width to derivation

Theorem

$$
\text{Space} \geq \text{Width}
$$

Mladen Mikša (KTH) From Small Space to Small Width in Resolution Proof Complexity ’14 12/14
Open Problem: Similar Problem for Polynomial Calculus

Polynomial calculus
Stronger proof system based on algebraic reasoning
Lines are polynomial equations instead of clauses
Degree of refutation analogous to width in resolution

Size: Impagliazzo, Pudlák, and Sgall ’99

\[\log(\text{Size}) \gtrsim \text{Degree} \]
Polynomial calculus
Stronger proof system based on algebraic reasoning
Lines are polynomial equations instead of clauses
Degree of refutation analogous to width in resolution
Size: Impagliazzo, Pudlák, and Sgall ’99

\[\log(\text{Size}) \preceq \text{Degree} \]

Open Problem
Is Space \(\geq \) Degree in polynomial calculus?

Original motivation for our work
We show our approach is unlikely to work (see paper for details)
Concluding Remarks

- Space upper bounds width in resolution [Atserias and Dalmau ’03]
- **This work:** New simple proof of this theorem
- **Open problem:** Space-degree relation in polynomial calculus?
Concluding Remarks

- Space upper bounds width in resolution [Atserias and Dalmau ’03]
- **This work:** New simple proof of this theorem
- **Open problem:** Space-degree relation in polynomial calculus?

Thank you for your attention!