
On the Algorithmic Effectiveness of Digraph

Decompositions and Complexity Measures

Michael Lampis∗,a, Georgia Kaourib, Valia Mitsoua

aDoctoral Program in Computer Science, Graduate Center, City University of New York,

365 5th Avenue, New York, NY, USA 10016
bComputation and Reasoning lab, School of Electrical and Computer Engineering,

National Technical University of Athens, Greece

Abstract

We place our focus on the gap between treewidth’s success in producing
fixed-parameter polynomial algorithms for hard graph problems, and specif-
ically Hamiltonian Circuit and Max Cut, and the failure of its directed
variants (directed tree-width [16], DAG-width [20] and Kelly-width [15]) to
replicate it in the realm of digraphs. We answer the question of why this gap
exists by giving two hardness results: we show that Directed Hamilto-

nian Circuit is W [2]-hard when the parameter is the width of the input
graph, for any of these widths, and that Max Di Cut remains NP-hard even
when restricted to DAGs, which have the minimum possible width under all
these definitions. Along the way, we extend our reduction for Directed

Hamiltonian Circuit to show that the related Minimum Leaf Out-

branching problem is also W [2]-hard when naturally parameterized by the
number of leaves of the solution, even if the input graph has constant width.
All our results also apply to directed pathwidth and cycle rank.

Key words: Treewidth, Digraph decompositions, Parameterized
Complexity.

∗Corresponding author
Email addresses: mlampis@gc.cuny.edu (Michael Lampis),

gkaouri@corelab.ntua.gr (Georgia Kaouri), vmitsou@cs.gc.cuny.edu (Valia Mitsou)
A preliminary version of this paper was presented in ISAAC 2008

Preprint submitted to Discrete Optimization April 13, 2010

1. Introduction

Treewidth, first introduced by Robertson and Seymour in [22], has been
one of the most successful tools in the research for efficient algorithms for hard
graph problems in the last 15 years. Intuitively, treewidth allows us to distin-
guish graphs that have a relatively simple (tree-like) structure, and exploit
that structure to solve a plethora of otherwise intractable problems, usually
by employing a dynamic programming technique. In addition, treewidth has
proven very interesting from a graph-theoretic perspective, one of its most
important attributes being that it can be equivalently defined in many seem-
ingly unrelated ways. For example treewidth is connected to chordal graphs,
elimination schemes, partial k-trees, cops-and-robber games ([23, 8]), reduc-
tion rules ([1]) and brambles ([23]). Thus, treewidth has proven so algorith-
mically successful and graph-theoretically robust that it is widely considered
the “right” complexity measure for undirected graphs. For an introduction
to the notion of treewidth see Bodlaender’s excellent survey papers [5, 4, 3].
For more recent results on the important role treewidth plays in a variety of
fundamental combinatorial problems see [18].

One of the most celebrated theorems in the area of treewidth is Cour-
celle’s theorem which states that every graph property that can be expressed
in monadic second order logic can be decided in linear time on graphs of
bounded treewidth [6]. Beginning from this starting point, algorithms for
many hard graph problems have been devised using treewidth. They al-
most invariably have running times of the form O(f(k) · n), where k is the
treewidth of the input graph and f some exponential or super-exponential
function which represents the complexity of solving the problem exhaustively
on k vertices. Thus, not only is the running time polynomial for fixed k, but
also the combinatorial explosion is confined to k. This has led treewidth to
become one of the cornerstones of parameterized complexity theory, a theory
which describes the distinction between algorithms with running times of the
form O(f(k) · nc), where c is a constant (called fixed-parameter tractable or
FPT) and algorithms of the form O(ng(k)). For an introduction to param-
eterized complexity see the monograph by Downey and Fellows [9] or the
introductory books by Niedermeier [19] and by Flum and Grohe [11].

Several attempts have been made recently to generalize the notion of
treewidth to directed graphs. The motivation behind this line of research is
that, although it is possible to solve many hard problems on digraphs when
the underlying undirected graph has low treewidth by using traditional tree

2

decompositions, this approach sacrifices a great deal of generality. A prob-
lem which demonstrates this to a great degree is Directed Hamiltonian

Circuit. This problem is trivial when the input graph is a DAG, but there
exist DAGs of unbounded treewidth if the direction of the edges is ignored.
Thus, it is desirable to come up with an alternative measure of digraph com-
plexity which better characterizes the class of digraphs where hard problems
become tractable. It should be noted at this point that Hamiltonian Cir-

cuit admits an FPT solution with a treewidth based algorithm, therefore
a logical target when defining a digraph complexity measure would be to
achieve fixed-parameter tractability for Directed Hamiltonian Circuit

as well.

Previous work

The most notable variations of treewidth for digraphs that have been
proposed in the past are probably directed treewidth [16], DAG-width [20]
and Kelly-width [15]. All these three measures can be viewed as good gen-
eralizations of treewidth in the sense that, if we take an undirected graph
and replace each edge with two opposite directed edges the width of the new
digraph will be the same for all three definitions and equal to the treewidth
of the original graph. Directed treewidth is the most general of the three,
in the sense that a graph of bounded Kelly-width or DAG-width will also
have bounded directed treewidth, while the converse may not be true. Also
DAG-width and Kelly-width are conjectured to be only a constant factor
apart on any graph ([15]).

Thus, Kelly-width and DAG-width have the potential to provide better
algorithmic properties than directed treewidth and some evidence is given
in this direction in the form of an algorithm for solving a class of parity
games, a problem that is open so far for directed treewidth (note though
that this algorithm is not FPT, and that the problem is not believed to be
NP-complete).

The most important positive result of directed treewidth (which can be
extended to all the three measures) is an algorithm that solves Directed

Hamiltonian Circuit in O(nf(k)) time, k being the width of the input
graph. Nevertheless, this algorithm is still far from the performance of the
best treewidth-based algorithm for Hamiltonian Circuit, which runs in
fixed-parameter linear time. Unfortunately, the reason for this distance is not
addressed in [16] or in [15] where another algorithm (of similar complexity) for
this problem is given. In addition, the few already known algorithmic results

3

on these measures don’t seem to indicate that they are likely to achieve a level
of success comparable to treewidth, as no FPT algorithms are known for any
hard digraph problems. Of course, it could be conceivable that this is due
to a lack of effort so far, since digraph decompositions have been introduced
much more recently than treewidth.

More recently in [17] Kreutzer and Ordyniak investigate the concepts
of DAG-width and Kelly-width more closely and prove several interesting
results: First, they show that the cops-and-robber games associated with
both measures are non-monotone, which draws a contrast with the case of
treewidth whose associated cops-and-robber games have been shown to be
monotone. Second, they show that several problems which are polynomially
solvable for DAGs are still NP-complete even for graphs of constant Kelly-
width and DAG-width. Yet more hardness results are shown in [7] where
the Minimum Leaf Outbranching problem is shown to be NP-complete
even for constant width, even though it is polynomially solvable on DAGs.
Although [17] and [7] do not touch on the issue of parameterized hardness, as
we do later on, we believe that these results fit very nicely together with the
results of this paper, since they serve to underline even more the algorithmic
contrast between treewidth and its directed counterparts.

A related measure is directed pathwidth. Just as pathwidth is a restric-
tion of treewidth in the undirected case directed pathwidth is a restriction
of all the previously mentioned directed measures, thus having even greater
algorithmic potential. However, to the best of our knowledge no such results
have been shown for directed pathwidth. In [2] it is shown that a cops-and-
robber game is equivalent to directed path-width and that there always exists
an (almost) optimal monotone strategy. It is worthy of note that, unlike the
undirected case where treewidth and pathwidth are generalizations of differ-
ent graph topologies (trees and paths respectively) in the directed case all
the measures we have mentioned are based on the concept of DAGs as the
simplest case.

Finally, it is worth noting the existence of a related digraph complexity
measure which is often overlooked in this discussion: cycle rank. Cycle rank
was first defined in the 1960s in [10] and it has mainly found applications in
the context of regular languages (it has been shown that the star height of
a regular language is connected to the cycle rank of the NFAs which accept
it). As pointed out in [14] cycle rank is also relevant in our discussion here,
since it can be shown ([13]) that the directed pathwidth of a graph is upper
bounded by its cycle rank.

4

Our contribution

In this paper we try to address the question of whether the already pro-
posed digraph complexity measures will be able to match the success of
treewidth. Our answer is given in the form of two negative results, which
show that the lack of FPT algorithms for Directed Hamiltonian Circuit

and Max Di Cut is not due to a lack of effort, but because such algorithms
can not exist (under some widely believed complexity assumptions).

Our first result concerns Directed Hamiltonian Circuit which we
show to be W [2]-hard when the parameter is the width of the input graph for
any of the mentioned widths. Under the assumption that W [2] 6= FPT this
implies that no FPT algorithm is possible. Therefore, under this standard
complexity assumption, our result implies that no significant improvement is
possible for the O(nf(k)) algorithms of [16] and [15].

Our hardness result has immediate implications for the Minimum Leaf

Outbranching problem, as Directed Hamiltonian Circuit (more pre-
cisely Directed Hamiltonian Path) is a special case of Minimum Leaf

Outbranching, specifically the case where we are looking for an outbranch-
ing with exactly one leaf. Thus, it follows that Minimum Leaf Out-

branching parameterized by the directed treewidth of the input graph is
W [2]-hard even when we are looking for a solution with only a constant
number of leaves. A modification of our reduction allows us to also prove a
W [2]-hardness result for the symmetric parameterization of Minimum Leaf

Outbranching, namely when the problem is parameterized by the number
of leaves and the input graphs are restricted to constant directed treewidth.
Informally, we can see Minimum Leaf Outbranching as a problem with
two natural potential parameters, the number of leaves k and the width of
the input graph w, and our results can be interpreted as meaning that both k

and w must appear in the exponent of n in the running time of an algorithm
for this problem. This observation fits nicely with the result of [7] where it
is shown that Minimum Leaf Outbranching is in P when both k and w

are constants.
Our second result concerns Max Di Cut, for which we show APX-

hardness even when we restrict the problem to DAGs and all edges have
uniform weights. This is a result that is interesting in its own right, and
it is rather surprising that it was not known until now, as Max Di Cut

is a widely studied problem. It is also very relevant in our case for two
reasons: First, DAGs have the lowest possible width for all the widths we

5

have mentioned, therefore our proof implies that none of them can help with
Max Di Cut. Second, using (undirected) treewidth leads to efficient FPT
algorithms for both Max Cut and Max Di Cut. Thus, this result helps
draw further contrast between the performance of treewidth and its directed
variants.

Although our results are negative, they succeed in illuminating some fun-
damental weaknesses in the already proposed digraph measures, and thus
they show the way to a possible future digraph measure that might be able
to overcome them. Therefore, we believe that they serve as a starting point
in a renewed search for a successful digraph complexity measure that might
yet manage to at least partially match treewidth’s success. We refer the
reader also to the recent paper [12] which discusses this very subject.

The rest of this paper is structured as follows: In Section 2 we give some
necessary definitions and preliminary notions. In Section 3 we demonstrate
the hardness result for Directed Hamiltonian Circuit. In Section 4 we
prove the hardness of Max Di Cut. Finally, in Section 5 we conclude with
some discussion and directions to further research.

2. Definitions and Preliminaries

First, let us give the definitions of the two problems that will be our focus.

Definition 1. The Directed Hamiltonian Circuit problem is that of
deciding whether there exists a permutation (v1, v2, . . . , vn) of the vertices
of an input digraph G(V,E) s.t. ∀i ∈ {1, . . . , n − 1} (vi, vi+1) ∈ E and
(vn, v1) ∈ E.

Definition 2. The Minimum Leaf Outbranching problem is the follow-
ing: given a directed graph G(V,E), find an outbranching (a spanning rooted
directed tree) such that the number of leaves of the tree is minimized. ([7])

Definition 3. The Max Di Cut problem is the following: given a digraph
G(V,E) and a weight function on the edges w : E → N, find a partition of V

into two sets V0 and V1 so that the weight of the edge set C = {(u, v) | u ∈
V0, v ∈ V1} is maximized. That is, the objective is to maximize

∑
e∈C w(e).

Max Di Cut was shown APX-hard in [21]. In Section 4 we show APX-
hardness for the problem’s restriction to DAGs. Then we show that APX-
hardness also holds for the cardinality version of the problem restricted to
DAGs.

6

We should also give the definitions of the two problems that will be the
starting points of our reductions.

Definition 4. Dominating Set is the problem of finding a minimum car-
dinality subset of vertices D of an undirected graph G(V,E) s.t. any vertex
in V \ D has a neighbor in D.

When a vertex u ∈ D is a neighbor of a vertex v, we will say that u dom-
inates v. We will also follow the convention of saying that any vertex in D

dominates itself. We will make use of the well-known result that Dominat-

ing Set is W [2]-complete when the parameter k is the size of the dominating
set we are looking for ([9]).

Definition 5. NAE3SAT is the problem of finding a truth assignment
which, for every clause of an input 3CNF formula, assigns the value true
to at least one literal, and the value false to at least one literal.

We follow the convention of saying that a clause is satisfied in the NAE-

SAT sense, or simply satisfied, when a truth assignment assigns different
truth values to two of its literals. We will mainly be concerned with the
maximization version of NAE3SAT where the objective is to find a truth
assignment that satisfies as many clauses as possible. This variant was shown
to be APX-hard in [21].

We have already mentioned that directed pathwidth can be defined in
terms of a cops-and-robber game. The game’s definition is the following:

Definition 6. The k-cop invisible-eager robber game is the game where k

cops attempt to catch an invisible robber hiding in a vertex of a digraph G.
The cops are stationed on vertices of G and a cop can move by removing
himself from the graph and then “landing” on any other vertex. The robber
can move at any time and he is allowed to follow any directed path of G,
under the condition that he does not enter vertices occupied by stationary
cops.

We say that k cops have a monotone strategy to win this game when
they have a strategy such that the robber can never visit a vertex previously
occupied by a cop. In [2] it was shown that k cops have a monotone strategy
on a graph G iff the graph has directed pathwidth k.

Kelly-width, DAG-width and directed treewidth have also been shown
to be connected to similar games, restricted to monotone strategies. In fact,

7

DAG-width is equivalent to the above game but with the robber being visible,
while Kelly-width is equivalent to the above game but with the robber only
being allowed to move when a cop enters his vertex. Using the approximate
connection between directed treewidth and a similar game it was shown in
[15] that the directed treewidth of a graph is upper-bounded by its Kelly-
width multiplied by a constant.

It is not hard to infer from these results that, since the robber is stronger
in the game related to directed pathwidth, a graph G will have higher path-
width than any of the other widths. Since we are interested in proving
hardness results, it will therefore suffice to show that a problem is hard for
graphs of small directed pathwidth and hardness for the other widths will
directly follow.

In addition to the above widths we may also wish to consider cycle rank.
Cycle rank can be defined inductively as follows: if G(V,E) is acyclic then
cr(G) = 0, if G is strongly connected then cr(G) = 1+minv∈V cr(G−v) and
finally if G is not strongly connected then cr(G) is equal to the maximum
cycle rank of any of G’s strongly connected components. As mentioned,
it has been shown in [13] that in any digraph G the cycle rank is lower
bounded by the directed pathwidth (more precisely, this relation holds up to
an additive constant), therefore showing a hardness result for bounded cycle
rank immediately implies hardness for all the widths we have mentioned. For
the sake of completeness here is another short proof of the relation between
cycle rank and directed pathwidth.

Lemma 1. For any digraph G, dpw(G) ≤ cr(G) + 1, where dpw(G) denotes
the directed pathwidth of G and cr(G) the cycle rank of G.

Proof. By induction on cr(G). If cr(G) = 0 then G is acyclic and dpw(G) ≤
1. Suppose that the relation is true for all graphs of cycle rank up to k.
Consider a graph G with cr(G) = k+1. If it is strongly connected then there
exists a vertex v such that cr(G − v) = k. From the inductive hypothesis
this implies dpw(G− v) ≤ k + 1, which means that k + 1 cops have a wining
monotone strategy for G − v. Then k + 2 cops have a winning strategy for
G: just keep the extra cop in v at all times. If G is not strongly connected
there must exist an ordering of its strongly connected components, so that
edges with endpoints in different components are always directed towards
components later in the ordering. Applying the same argument to each
component in this order we obtain a monotone winning strategy for the
cops, because at any time the robber can either remain in the component he

8

currently is (where the cops have a strategy) or move to a component later
in the ordering (which means he can never come back).

3. Directed Hamiltonian Circuit

In this section we focus on the Directed Hamiltonian Circuit prob-
lem, a problem which can be solved using directed treewidth in O(nf(k)) time
([16]). Of course this algorithm also applies to DAG-width, Kelly-width and
directed pathwidth, as they are restrictions of directed treewidth. In addi-
tion, another O(nf(k)) algorithm for this problem tailored for Kelly-width
is given in [15]. Thus, a significant gap exists between the performance of
treewidth, which is fixed-parameter polynomial on the corresponding undi-
rected problem and the performance of its directed variants. We show that
this is a gap that can not be bridged unless W [2] = FPT , by demonstrating
that Directed Hamiltonian Circuit is W [2]-hard when the parameter
is any of these widths.

The hardness proof for Directed Hamiltonian Circuit will be a
parameterized reduction from the naturally parameterized version of Dom-

inating Set.

Theorem 1. The parameterized versions of Directed Hamiltonian Cir-

cuit, where the parameter is the directed treewidth, Kelly-width, DAG-width,
directed pathwidth or cycle rank of the input graph, are W [2]-hard.

Proof. We will show a parameterized reduction from the naturally parame-
terized version of Dominating Set, where the parameter k is the size of the
set by constructing a digraph whose cycle rank is bounded by a function of k

s.t. the digraph will be Hamiltonian iff the original graph had a dominating
set of size k.

Suppose we are given a graph G(V,E) with V = {1, 2, . . . , n} and need
to decide whether G has a dominating set of size k. Note that we assume
that V is ordered in some way. The ordering may be arbitrary, as long as we
fix it in the beginning.

Our digraph G′ has vertex set V ′ = V1 ∪ V2 ∪ V3 where

1. V1 = {u1, u2, . . . , uk}.

2. V2 = {v1, v2, . . . , vn}.

9

Figure 1: An example of our construction. The graph on the left is the original undirected
graph and we are looking for a dominating set of size 2. The three parts of the produced
graph are outlined. To simplify the figure some edges are not shown: the dark vertices of
V3 are the vertices which are connected to all the vertices of V1. The gadgets C1, C2 and
C3 are on top in V3, while C4, C5 and C6 are below.

3. V3 = {g(w,j,p) | w ∈ {1, . . . , n}, j ∈ N [w], p ∈ {In,Out}}. Here N [w]
denotes the neighborhood of vertex w in G including w itself (i.e. all
the vertices that w dominates). N [w] is an ordered set according to
the above mentioned ordering. It is also supplied with the constants fw

and lw which denote the first and the last elements in N [w] respectively
and the operation sw(j) which outputs the element that comes after j

in N [w] according to the ordering.

E(G′) consists of the following sets of directed edges

1. E1 = {(ui, vj) | i ∈ {1, . . . , k}, j ∈ {1, . . . , n}}.

2. E2 = {(vi, vi+1) | i ∈ {1, . . . , n}} (where we consider n + 1 to be the
same as 1).

3. E3 = {(g(w,j,In), g(w,sw(j),Out)) | w ∈ {1, . . . , n}, j ∈ N [w]}, where sw(lw) =
fw.

4. E4 = {(g(w,j,Out), g(w,j,In)) | w ∈ {1, . . . , n}, j ∈ N [w]}.

5. Finally, E5 contains the following edges: For any vertex w of the original
graph G, the edge (vw, g(fw,w,In)) and the edges (g(j,w,Out), g(sw(j),w,In))
for all j ∈ N [w] are included in E5. Finally, the edges (g(lw,w,Out), ui)
for all i ∈ {1, . . . , k} are also included in E5. We will call the subgraph
induced by the group of vertices g(w,j,p) for a specific w, the gadget Cw.

Let us now discuss the basic idea behind this construction, before we get
into more details. Our digraph G′ consists of three parts: a constraint part
V1, a choice part V2 and a satisfaction part V3. V1 functions as a constraint

10

part because it only has k vertices and the only edges going into V2 originate
here, thus forcing us to enter the choice part exactly k times. A Hamiltonian
tour will leave V2 k times. The vertices from which it leaves V2 must be
(as we will prove) a dominating set of G, and that is why V2 is the choice
part. Finally, V3 is arranged in such a way that it can only be traversed in a
Hamiltonian way if the choice made in V2 is indeed a dominating set.

It is clear that every gadget Cw is a directed cycle of 2 · |N [w]| vertices.
Furthermore, the gadget Ci is connected to the gadget Cj iff there exists a
vertex w in the original graph such that i, j ∈ N [w] and j = sw(i). Also
notice that all edges between gadgets connect vertices having the same second
coordinate and any vertex vw of V2 is only connected with vertices of the
gadgets having w as the second coordinate.

Figure 1 gives an example of our construction and makes it clear how the
edges of E5 are placed. For example, consider the edges we place for vertex
5 of the original graph. N [5] = {1, 4, 5, 6} in the original graph. So we must
have a directed edge from v5 to C1, from C1 to C4, from C4 to C5, from C5

to C6 and C6 back to both vertices of V1. In order to do so we connect the
vertices of each gadget that correspond to 5. Such a vertex exists in every
gadget C1, C4, C5, C6 according to the construction of V3.

The crucial part of this reduction is the way the gadget Cw works. Notice
that the gadget’s vertices induce a directed cycle. Also, the only way to enter
this cycle is through an In vertex, and the only way to leave is through an
Out vertex. Suppose that a Hamiltonian tour enters a gadget Cw m times
and that X ⊆ N [w] is the index set of the In vertices which were used. Then
it must also be the index set of the Out vertices used. To see that, suppose
that X = {j1, j2, . . . , jm} in increasing order. When entering from g(w,j1,In)

the tour has no choice but to proceed to g(w,sw(j1),Out). Then if sw(j1) 6= j2

the tour must move to g(w,sw(j1),In), because if it were to exit, it would be
impossible to visit g(w,sw(j1),In) in the future. Using this argument again can
exclude the possibility of this part of the tour exiting through any vertex
other than g(w,j2,Out). Similarly, the path that starts at g(w,j2,In) will exit at
g(w,j3,Out) and so on, with g(w,jm,In) exiting through g(w,j1,Out). This procedure
covers all the vertices of the gadget, therefore we proved that, for any set of
entry vertices X, the gadget can be traversed in a way that does not exclude
the existence of a Hamiltonian tour of the whole graph iff X corresponds also
to the exit vertices used.

Suppose that G does not have a dominating set of size k, but that a
Hamiltonian tour of G′ exists. As noticed, a Hamiltonian tour will traverse

11

V2 in total k times. Let D be the set of choices made by the tour in V2, i.e. the
set of vertices through which the tour exits V2. The selection of the set D in
G leaves some vertex not dominated, say vertex w. Consider the gadget Cw.
Since the tour is Hamiltonian, the gadget Cw should be traversed. Suppose
that the Hamiltonian tour enters Cw through vertex g(w,q,In). That means
that q belongs in N [w]. Combining the previously established properties of
the gadgets, the Hamiltonian tour enters and exits every gadget using only
vertices having second coordinates from the set D. From this we conclude
that q belongs to D. Thus, we have a contradiction since D dominates w.

It remains to prove the converse, namely that a dominating set of size k

implies a Hamiltonian tour. Let D = {d1, d2, . . . , dk} be a dominating set.
Informally, these will be exactly the vertices through which our tour will exit
V2. Also, because of the construction of the Cw gadgets, if such a gadget
through a set of In vertices it is possible to traverse it in a Hamiltonian way
exiting exactly from the same set of corresponding Out vertices. Keeping
that into account we will have to show that all Cw gadgets are entered at
least once, but that follows from the fact that D is a dominating set.

Let us first describe the tour outside the gadgets. Starting at u1, move
to vdk+1 (once again, vn+1 is the same as v1) and then follow the edges in V2

until vd1
is reached. Then we exit V2 towards the gadgets. When we reach

an Out gadget vertex that points to V1 we move to u2. From there we move
to vd1+1, then to vd2

and so on. This procedure makes sure that, even though
we enter V2 only k times, all of its n vertices are covered.

Let us now describe the traversal of the gadgets, starting from gadget 1.
First note that D∩N [1] 6= ∅ because D is a dominating set. It is not hard to
see that our tour will enter gadget C1 through vertices g(1,dj ,In) for all j such
that dj ∈ D ∩ N [1], since fj = 1 for all these j and we leave V2 only from
exit points corresponding to D. Once inside the gadget at the vertex g(1,dj ,In)

our tour follows the unique path to g(1,dl,Out), where dl is the next element
of D ∩N [1] according to the ordering (or the first element of D ∩N [1] if dj

is the last). Note that if |D ∩N [1]| = 1 then dl = dj. Thus, all vertices of
gadget C1 are visited exactly once and the gadget is exited through vertices
corresponding to D ∩N [1].

We will now inductively prove the same for all gadgets. Suppose that
for all gadgets up to gadget Ci we have shown that all their vertices are
visited exactly once and the gadgets are entered and exited through vertices
corresponding to D ∩ N [i]. Let us now consider gadget Ci+1. Once again
D ∩N [i + 1] 6= ∅ because D is a dominating set. The gadget Ci+1 is entered

12

only through vertices g(i+1,dj ,In) such that dj ∈ D∩N [i+1] because the only
edges going into gadget Ci+1 originate in V2 or one of the previous gadgets for
which we have assumed that they are exited through vertices corresponding
to D. Once inside gadget Ci+1 we follow a similar tour as in gadget 1; starting
from vertex g(i+1,dj ,In) we follow the unique path to g(i+1,dl,Out) and leave the
gadget, where dl is the element of D ∩N [i + 1] which comes after dj (or the
first element of D ∩ N [i + 1] if dj is the last). With the same reasoning as
previously, all vertices of gadget Ci+1 are visited exactly once and the gadget
is exited only through vertices corresponding to D∩N [i+1]. This completes
the proof that a Hamiltonian tour can be constructed.

Finally, what is left is to argue is that G′ has low width.
First, notice that cr(G′) ≤ |V1| + cr(G′ − V1) = k + cr(G′ − V1). But

G′ − V1 is not strongly connected and all its strongly connected components
are directed cycles (V2 and the gadgets Ci). Therefore, cr(G′ − V1) ≤ 1.

We modify the above reduction in order to prove the following theorem

Theorem 2. The parameterized version of Minimum Leaf Outbranch-

ing where the parameter is the number of the leaves of the outbranching is
W[2]-hard even when restricted to graphs with constant cycle rank.

Proof. We reduce the Dominating Set problem to the Minimum Leaf

Outbranching problem. We modify the construction of the graph G′ of
theorem 1, adding a vertex r with arcs pointing to the k vertices of set V1

and deleting those edges of E5 that connect the gadgets with V1. We name
the new graph G′′.

Vertex r will definitely serve as the root of the outbranching since it is
a source. We prove that G has a dominating set of size k iff G′′ has an
outbranching with k leaves.

Suppose that there is a dominating set of size k in G. From theorem
1 we have that G′ has a hamiltonian cycle which uses k edges of E5 that
connect V3 with V1. Those edges are missing from G′′. Therefore there are k

disjoint paths from V1 to V3 that cover all the vertices of G′. Thus there is
an outbranching with root r with k leaves.

Furthermore suppose that G′′ has an outbranching T with at most k

leaves. Notice that, since r is its root and there are no arcs from V2 or V3

to V1, all the k arcs from r to V1 are contained in T . Thus there are exactly
k disjoint paths in T , thus exactly k leaves. Notice that if the k leaves

13

are vertices of V3 that connect to V1 in G′ then from T we can construct
a hamiltonian circuit in G′, which can help find a dominating set of size k

in G (by theorem 1). Name these vertices of V3 that connect to V1 in G′

black vertices. We prove that from any outbranching T with k leaves we can
construct an outbranching T ′ with k black leaves.

First of all we can assume that T has no leaves in V1 or V2. If there
was a leaf ui in V1 and the arc (vj−1, vj) is part of T then we could add the
arc (ui, vj) and remove the arc (vj−1, vj) from T so ui wouldn’t be a leaf
anymore. If there was a leaf vj in V2, following a similar procedure as above
we could add the arc (vj, g(fj ,j,In)) and remove the arc (g(fj ,j,Out), g(fj ,j,In)),
so vj wouldn’t be a leaf anymore. Furthermore notice that there is no way
that a vertex g(i,w,In) could be a leaf since vertex g(sw(i),w,Out) could not be
reached. So wlog we can assume that all the leaves of T are out vertices of
the gadgets.

We show by induction on the gadgets that we can eliminate all non-black
leaves from T . For every gadget i starting from gadget 1 up to n−1 we elim-
inate all the black leaves from gadget i. Suppose that there is a leaf g(i,w,Out)

in T which is not a black vertex. Then the arc (g(i,w,Out), g(sw(i),w,In)) is not in
T . However, vertex g(sw(i),w,In) is in T , thus the arc (g(sw(i),w,Out), g(sw(i),w,In))
should be in T . By removing (g(sw(i),w,Out), g(sw(i),w,In)) and then adding
(g(i,w,Out), g(sw(i),w,In)) we assure that g(i,w,Out) is not a leaf anymore while
making sure that this procedure doesn’t create non-black leaves in gadgets
1 . . . i − 1. We repeat the procedure until no non-black leaf exists in gadget
i. Then we continue with gadget i+1. Finally the last gadget n cannot have
a non-black leaf since all its Out vertices are black.

Furthermore, G′′ has constant cycle rank since it is not strongly connected
and all the strongly connected components are cycles which have constant
cycle rank.

4. Maximum Directed Cut

Let us now focus on a problem of much different nature: Max Di Cut.
Even though, as we saw in Section 3, no digraph complexity measure manages
to provide an FPT algorithm for Directed Hamiltonian Circuit, they
do succeed in providing algorithms with polynomial running times, when the
width k is fixed. For Max Di Cut the situation is much worse, as we will
show that the problem is NP-hard even for k = 1. This creates an even

14

Figure 2: The above figure presents an example of the construction for the formula φ =
(x1 ∨x2 ∨¬x3)∧ (¬x2 ∨x3 ∨x4). From φ we construct φ′ = (x1 ∨x2 ∨¬x3)∧ (¬x1 ∨¬x2 ∨
x3) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ ¬x4). In order for the figure to be understandable we
excluded most of the edges of E5 together with some edges of E3.

larger gap with the FPT performance of treewidth than we had in the case
of Directed Hamiltonian Circuit.

We will prove that Max Di Cut is both NP and APX-hard, even when
restricted to DAGs by showing a reduction from the maximization version of
NAE3SAT.

Theorem 3. Max Di Cut is NP-hard and APX-hard, even when restricted
to DAGs.

Proof. We give a gap-preserving reduction from NAE3SAT to Max Di

Cut.
Given a NAE3SAT formula φ with m clauses and n variables we con-

struct a new NAE3SAT formula φ′ with 2m clauses and n variables and
show that φ is satisfiable iff φ′ is satisfiable (satisfaction is in the NAESAT
sense). Then from φ′ we construct a (weighted) DAG G and show that φ′ is
satisfiable iff G has a directed cut of size 46m. Without loss of generality,
we may assume that every clause of φ has exactly three literals (otherwise
we may repeat one).

The new formula φ′ is constructed by taking φ and adding to it, for every
clause the same clause with all literals complemented. If an assignment

15

satisfies t clauses of the original formula, it must satisfy exactly 2t of the 2m
clauses of φ′. Note that, if we denote by fi the number of appearances of
the variable xi in φ, then the same variable will appear 2fi times in φ′: fi

times as xi and fi times as ¬xi. In other words, the positive and negative
appearances of each variable in φ′ are balanced. We will make use of this fact
several times. Furthermore, since every clause of φ has exactly three literals,
we have that

∑
i fi = 3m

Let us now construct the DAG G(V,E). V consists of four disjoint sets
of vertices A,X,C,B. A = {a1, . . . , an} will be a set of source vertices. B =
{b1, . . . , b2m} will be a set of sink vertices. X = {x1, x

′

1, x2, x
′

2, . . . , xn, x′

n}
will be the set of vertices corresponding to literals of φ′ while C = {ci,j,k | i ∈
{1, 2, . . . , 2m}, j, k ∈ {1, 2, 3}} will correspond to the clauses of φ′.

E consists of the following sets of weighted edges:

1. The set E1 = {(ai, xi) | i ∈ {1, . . . , n}}. Each of these edges has weight
6fi, where fi is the total number of appearances of the variable xi in φ.

2. The set E2 = {(xi, x
′

i) | i ∈ {1, . . . , n}}. Each of these edges also has
weight 6fi.

3. The set E3 = {(ci,j,k, bi) | i ∈ {1, . . . , 2m}, j, k ∈ {1, 2, 3}, j 6= k}.
These have weight 1.

4. The set E4 = {(ci,k,k, ci,j,k | i ∈ {1, . . . , 2m}, j, k ∈ {1, 2, 3}, j 6= k}.
These also have weight 1.

5. Finally, E5 consists of edges that connect vertices of the set X to the
corresponding vertices of C. That is, we add the edges {(xl, ci,j,k), k ∈
{1, 2, 3}} when the literal xl appears in the j-th position of the i-th
clause of φ′, and the edges (x′

l, ci,j,k) when the literal ¬xl appears in
that position. These edges have weight 2.

An illustrative example of the construction is presented in figure 2. Ver-
tex x′

4 is connected to c4,3,1, c4,3,2 and c4,3,3 since ¬x4 appears in the third
position of the fourth clause. The intuition behind our construction is that
the placement of the vertices of C on either side of the cut will correspond
to the truth assignments for the literals. The edges inside C take care of
the satisfaction. For each clause we construct three triplets of vertices. Each
triplet corresponds to a different arrangement of the literals in the specific
clause, where in each arrangement a different literal of the clause is placed
on top and this retains the symmetry in the clauses. Specifically, the vertex
ci,j,k corresponds to the j-th literal of the i-th clause of φ′ in the arrangement
where the k-th literal is placed on top. In a satisfied clause one literal is false

16

and one true and there is always an arrangement which places the true literal
on top and the false one on bottom, thus contributing to the cut. However
for non-satisfied clauses none of the arrangements contribute to the cut.

Suppose we are given a truth assignment that satisfies (in the NAESAT

sense) t of the m clauses of φ. It must satisfy 2t of the 2m clauses of φ′. Let
us partition V into V0 and V1. Place all vertices of A into V0 and all vertices
of B into V1. Place the vertices of X that correspond to true literals in V1

and the rest in V0. Place the vertices of C that correspond to true literals in
V0 and the rest in V1.

Let us calculate the weight of this cut. If a variable xi is assigned the
value 1 in the assignment, the edge (ai, xi) contributes 6fi to the cut. If it is
assigned 0, then x′

i is in V1, therefore the edge (xi, x
′

i) contributes 6fi to the
cut. Thus, the total contribution of all edges in E1 ∪ E2 is 6

∑
i fi = 18m.

Because the appearances of each variable in φ′ are balanced, there are as many
literals that took the value true as there are literals that took the value false,
in any assignment. Therefore, exactly half the edges of E3 contribute to the
cut. The number of edges in E3 is 12m so, a weight of 6m is contributed
to the cut. It is not hard to see that, for a satisfied clause Ci, the edges
of E4 incident on vertices that correspond to this clause contribute exactly
2 to the cut. On the other hand, the edges of E4 incident on vertices of
C that correspond to a clause that is not satisfied will contribute 0 to the
cut, since all these vertices correspond to literals with the same truth value
and are therefore on the same side of the partition. Thus, we get a total of
4t contributed to the cut, since 2t clauses are satisfied. Finally, once again
because of the balancing of φ′, exactly half of the edges of E5 contribute to
the cut: those incident on vertices of X that we placed in V0, i.e. vertices
that correspond to false literals. For each such element of X we have in total
3fi edges. Since the weight of each such edge is 2, this adds up to a total
contribution of 6

∑
i fi = 18m.

Thus, the total size of the cut is 18m+6m+18m+4t = 42m+4t, which
is equal to 46m when the truth assignment satisfies every clause of φ.

Now for the other direction, suppose we are given a partition of V into
V0 and V1. We will show that we can transform such a cut into a cut of the
previous form, thus obtaining a truth assignment. First, observe that for
any optimal cut A ⊆ V0 and B ⊆ V1, because it is always optimal to place
a source in V0 and a sink in V1. Now, suppose that in the cut we are given,
for some i, xi, x

′

i ∈ V0. Then place x′

i in V1 and this will not make the cut
smaller because now the edge (xi, x

′

i) contributes to the cut and its weight

17

is exactly as much as the weight of all other edges incident on x′

i. Also, if
xi, x

′

i ∈ V1 place xi in V0. This can not make the cut smaller, since the only
edge lost is (ai, xi) and its weight is the same as that of (xi, x

′

i) which now
enters the cut. Therefore, we have now made sure that for all i, xi and x′

i

are on different sides of the partition, without decreasing the size of our cut.
Consider now a vertex ci,j,j. We know that there exists an edge (xi, ci,j,j)

(or an edge (x′

i, ci,j,j)) of weight 2, which is as much as the weight of all other
edges incident on ci,j,j. Therefore, if xi (resp. x′

i) is in V0, then we can place
ci,j,j in V1 without decreasing the size of the cut. Otherwise, we can place
ci,j,j in V0, because the edge of weight 2 can not be included in the cut by
changing the side of ci,j,j only, and therefore placing it in V0 is not worse
because this way we may also include some of the other edges in the cut.
This establishes that every vertex ci,j,j is on a different side of the partition
from its predecessor in X.

Finally, consider a vertex ci,j,k, j 6= k. If its predecessor in X is in V0 we
can place it in V1 without decreasing the size of the cut, because then the
edge of weight 2 is included. Otherwise we can place it in V0, and this will
include the edge (ci,j,k, bi) in the cut. This does not decrease the size of the
cut, since the edge of weight 2 was not included anyway, therefore we might
at most lose the other edge incident on this vertex, which also has weight 1.
This establishes that each of the remaining vertices of C is also on a different
side of the partition from its predecessor in X.

Now, observe that starting with any given cut, we have transformed it
into a cut of a special form, without decreasing its size. From this cut we
can construct a truth assignment: set to true the literals corresponding to
vertices in X that we placed in V1. This is a valid assignment, since exactly
one of xi, x

′

i is in V1. Also, if we repeat the process of the first direction
of this reduction starting from this assignment we will get the same cut.
Therefore, we have shown that there is a truth assignment that satisfies t of
the m clauses of φ iff there is a cut in the DAG G of size at least 42m + 4t.
Thus,

OPTNAESAT (φ) = m ⇒ OPTMDC(G) = 46m

OPTNAESAT (φ) ≤ (1 − ǫ)m ⇒ OPTMDC(G) ≤ (1 −
2ǫ

23
)46m

18

It is not hard to extend the results of the previous theorem to the cardi-
nality version of Max Di Cut, that is, the version where all edges have the
same weight.

Theorem 4. Cardinality Max Di Cut is NP and APX-hard, even when
restricted to DAGs.

Proof. First, observe that all the edge weights used in the proof of Theo-
rem 3 are polynomially (in fact linearly) bounded by the size of the original
NAE3SAT formula. Thus, if we extend the problem’s definition to include
multigraphs, we can replace every edge of weight w by w parallel edges of
weight 1. It is not hard to see that this does not affect the rest of the proof.

Now, let us show how to eliminate parallel edges. For each edge (u, v)
introduce a directed path of length 3 u,w1, w2, v where w1 and w2 are new
vertices. Observe that, if u is assigned 0 and v is assigned 1, then it is possible
to include 2 of the 3 edges of the path in the cut, by assigning 0 to w2 and
1 to w1. However, any other assignment to u and v ensures that at most
1 of the three edges can be included in the cut, and in fact this is always
possible by assigning 0 to w1 and 1 to w2. Thus, it is not hard to see that
the reduction’s arguments can now be applied with little modification.

Corollary 1. Max Di Cut is NP-hard and APX-hard even when restricted
to graphs of bounded directed treewidth, DAG-width, Kelly-width, directed
pathwidth or cycle rank.

Proof. The proof is immediate, because DAGs have width at most 1 under
the definitions of all these widths.

5. Conclusions and Further Work

In this paper we have presented two hardness results affecting all known
generalizations of treewidth to digraphs as well as directed pathwidth and
cycle rank. It may be worthwhile at this point to discuss why such results
hold for the directed cousins of treewidth, when in the undirected case there
has been such a huge success.

First, the hardness result for Max Di Cut, gives us one indication why
such hardness results hold. The reason is simply that for some problems
DAGs are not really an “easy” topology, as trees are in the undirected case.

19

The fact that DAGs are not as easy as trees has been more or less known
for years and in this sense it is quite surprising that essentially all of the
research on directed variants of treewidth has so far taken the approach of
generalizing DAGs. A further clue is given in this direction by the fact that
DAGs are the base case for both directed pathwidth and the three treewidth
variants we considered. One would probably expect pathwidth and treewidth
to be based on different graph topologies.

On the other hand, simply discarding DAGs as a starting point does not
seem like a good solution as directed treewidth variants have had some success
with path-based problems, such as Directed Hamiltonian Circuit. For
such problems, DAGs usually are indeed the trivial case and it makes sense to
design a width as a generalization of DAGs. However, we showed that none
of the currently known widths (including directed pathwidth) is restrictive
enough to provide an FPT algorithm for Directed Hamiltonian Circuit.

Therefore, we believe that our results may suggest that in the directed
case things may be more complicated and possibly no “right” complexity
measure exists. On one hand, it would probably make sense to explore the
possibility of a width (not based on DAGs) that can solve Max Di Cut and
similar problems, while still being more general than undirected treewidth.
And on the other hand, a more realistic goal might be to attempt to refine the
definition of some of the already known widths (which are based on DAGs)
in order to make it restrictive enough to solve Directed Hamiltonian

Circuit and related path problems in FPT time.
Acknowledgements. We would like to thank Hermann Gruber for stim-

ulating discussion on the subject and for pointing out the existence of cycle
rank to us.

References

[1] Stefan Arnborg, Bruno Courcelle, Andrzej Proskurowski, and Detlef
Seese. An algebraic theory of graph reduction. J. ACM, 40(5):1134–
1164, 1993.

[2] János Barát. Directed path-width and monotonicity in digraph search-
ing. Graphs and Combinatorics, 22(2):161–172, 2006.

[3] Hans L. Bodlaender. Treewidth: Algorithmic techniques and results. In
Igor Pŕıvara and Peter Ruzicka, editors, MFCS, volume 1295 of Lecture
Notes in Computer Science, pages 19–36. Springer, 1997.

20

[4] Hans L. Bodlaender. Treewidth: Characterizations, applications, and
computations. In Fedor V. Fomin, editor, WG, volume 4271 of Lecture
Notes in Computer Science, pages 1–14. Springer, 2006.

[5] Hans L. Bodlaender. Treewidth: Structure and algorithms. In Giuseppe
Prencipe and Shmuel Zaks, editors, SIROCCO, volume 4474 of Lecture
Notes in Computer Science, pages 11–25. Springer, 2007.

[6] Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Rec-
ognizable Sets of Finite Graphs. Inf. Comput., 85(1):12–75, 1990.

[7] P. Dankelmann, G. Gutin, and E.J. Kim. On Complexity of Min-
imum Leaf Out-Branching Problem. Discrete Applied Mathematics,
157(13):3000–3004, 2009.

[8] Nick D. Dendris, Lefteris M. Kirousis, and Dimitrios M. Thilikos.
Fugitive-search games on graphs and related parameters. Theor. Com-
put. Sci., 172(1-2):233–254, 1997.

[9] Rod G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
November 1999.

[10] LC Eggan. Transition graphs and the star-height of regular events.
Michigan Math. J, 10(4):385–397, 1963.

[11] J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in
Theoretical Computer Science. An EATCS Series). Springer, 1 edition,
March 2006.

[12] Robert Ganian, Petr Hlinený, Joachim Kneis, Alexander Langer, Jan
Obdrzálek, and Peter Rossmanith. On digraph width measures in pa-
rameterized algorithmics. In Jianer Chen and Fedor V. Fomin, editors,
IWPEC, volume 5917 of Lecture Notes in Computer Science, pages 185–
197. Springer, 2009.

[13] Hermann Gruber and Markus Holzer. Finite automata, digraph
connectivity, and regular expression size. Technical Report
http://drehscheibe.in.tum.de/forschung/pub/reports/2007/

TUM-I0725.pdf.gz, 2007.

21

[14] Hermann Gruber and Markus Holzer. Finite automata, digraph con-
nectivity, and regular expression size. In Luca Aceto, Ivan Damg̊ard,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, ICALP (2), volume 5126 of Lecture Notes in
Computer Science, pages 39–50. Springer, 2008.

[15] Paul Hunter and Stephan Kreutzer. Digraph measures: Kelly decompo-
sitions, games, and orderings. In Nikhil Bansal, Kirk Pruhs, and Clifford
Stein, editors, SODA, pages 637–644. SIAM, 2007.

[16] Thor Johnson, Neil Robertson, Paul D. Seymour, and Robin Thomas.
Directed tree-width. J. Comb. Theory, Ser. B, 82(1):138–154, 2001.

[17] Stephan Kreutzer and Sebastian Ordyniak. Digraph decompositions
and monotonicity in digraph searching. In Hajo Broersma, Thomas
Erlebach, Tom Friedetzky, and Daniël Paulusma, editors, WG, volume
5344 of Lecture Notes in Computer Science, pages 336–347, 2008.

[18] Dániel Marx. Can you beat treewidth? In FOCS, pages 169–179. IEEE
Computer Society, 2007.

[19] Rolf Niedermeier. Invitation to Fixed Parameter Algorithms (Oxford
Lecture Series in Mathematics and Its Applications). Oxford University
Press, USA, March 2006.

[20] Jan Obdrzálek. Dag-width: connectivity measure for directed graphs.
In SODA, pages 814–821. ACM Press, 2006.

[21] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, ap-
proximation, and complexity classes. J. Comput. Syst. Sci., 43(3):425–
440, 1991.

[22] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic
Aspects of Tree-Width. J. Algorithms, 7(3):309–322, 1986.

[23] Paul D. Seymour and Robin Thomas. Graph searching and a min-max
theorem for tree-width. J. Comb. Theory, Ser. B, 58(1):22–33, 1993.

22

