
On the Algorithmic Effectiveness of Digraph
Decompositions and Complexity Measures

Michael Lampis1, Georgia Kaouri2, and Valia Mitsou1

1 City University of New York
2 National Technical University of Athens

{mlampis,vmitsou}@gc.cuny.edu, gkaouri@corelab.ntua.gr

Abstract. We place our focus on the gap between treewidth’s success in
producing fixed-parameter polynomial algorithms for hard graph prob-
lems, and specifically Hamiltonian Circuit and Max Cut, and the
failure of its directed variants (directed tree-width [9], DAG-width [11]
and kelly-width [8]) to replicate it in the realm of digraphs. We answer the
question of why this gap exists by giving two hardness results: we show
that Directed Hamiltonian Circuit is W [2]-hard when the param-
eter is the width of the input graph, for any of these widths, and that
Max Di Cut remains NP-hard even when restricted to DAGs, which
have the minimum possible width under all these definitions. Our results
also apply to directed pathwidth. (Eligible for best student paper)

Keywords. Treewidth, Digraph decompositions, Parameterized Com-
plexity.

1 Introduction

Treewidth, first introduced by Robertson and Seymour in [13], has been one
of the most successful tools in the research for efficient algorithms for hard
graph problems in the last 15 years. Intuitively, treewidth allows us to distin-
guish graphs that have a relatively simple (tree-like) structure, and exploit that
structure to solve a plethora of otherwise intractable problems, usually by em-
ploying a dynamic programming technique. For an introduction to the notion of
treewidth see Bodlaender’s excellent survey papers [4, 3, 2].

One of the most celebrated theorems in the area of treewidth is Courcelle’s
theorem which states that every graph property that can be expressed in monadic
second order logic can be decided in linear time on graphs of bounded treewidth
[5]. Beginning from this starting point, algorithms for many hard graph prob-
lems have been devised using treewidth. They almost invariably have running
times of the form O(f(k) ·n), where k is the treewidth of the input graph and f
some exponential or super-exponential function which represents the complexity
of solving the problem exhaustively on k vertices. Thus, not only is the run-
ning time polynomial for fixed k, but also that the combinatorial explosion is
confined to k. This has led treewidth to become one of the cornerstones of pa-
rameterized complexity theory, a theory which describes the distinction between



algorithms with running times of the form O(f(k) · nc), where c is a constant
(called fixed-parameter tractable or FPT) and algorithms of the form O(ng(k)).
For an introduction to parameterized complexity see the monograph by Downey
and Fellows [6] or the introductory books by Niedermeier [10] and by Flum and
Grohe [7].

Several attempts have been made recently to generalize the notion of treewidth
to directed graphs. The motivation behind this line of research is that, although
it is possible to solve many hard problems on digraphs when the underlying undi-
rected graph has low treewidth by using traditional tree decompositions, this ap-
proach sacrifices a great deal of generality. A problem which demonstrates this
to a great degree is Directed Hamiltonian Circuit. This problem is trivial
when the input graph is a DAG, but there exist DAGs of unbounded treewidth
if the direction of the edges is ignored. Thus, it is desirable to come up with an
alternative measure of digraph complexity which better characterizes the class of
digraphs where hard problems become tractable. It should be noted at this point
that Hamiltonian Circuit admits an FPT solution with a treewidth based al-
gorithm, therefore a logical target when defining a digraph complexity measure
would be to achieve fixed-parameter tractability for Directed Hamiltonian
Circuit as well.

Previous work. The most notable variations of treewidth for digraphs that
have been proposed in the past are probably directed treewidth [9], DAG-width
[11] and kelly-width [8]. All these three measures can be viewed as good gen-
eralizations of treewidth in the sense that, if we take an undirected graph and
replace each edge with two opposite directed edges the width of the new digraph
will be the same for all three definitions and equal to the treewidth of the origi-
nal graph. Directed treewidth is the most general of the three, in the sense that
a graph of bounded kelly-width or DAG-width will also have bounded directed
treewidth, while the converse may not be true. Also DAG-width and kelly-width
are conjectured to be only a constant factor apart on any graph ([8]).

The most important positive result of directed treewidth (which can be ex-
tended to all the three measures) is an algorithm that solves Directed Hamil-
tonian Circuit in O(nk) time, k being the width of the input graph. Neverthe-
less, this algorithm is still far from the performance of the best treewidth-based
algorithm for Hamiltonian Circuit, which runs in fixed-parameter linear time.
Unfortunately, the reason for this distance is not addressed in [9] or in [8] where
another algorithm (of the same complexity) for this problem is given. In addi-
tion, the few already known algorithmic results on these measures don’t seem to
indicate that they are likely to achieve a level of success comparable to treewidth,
as no FPT algorithms are known for any hard digraph problems. Of course, it
could be conceivable that this is due to a lack of effort so far, since digraph
decompositions have been introduced much more recently than treewidth.

A related measure is directed pathwidth. Just as pathwidth is a restriction
of treewidth in the undirected case directed pathwidth is a restriction of all the
previously mentioned directed measures, thus having even greater algorithmic

2



potential. However, to the best of our knowledge no such results have been
shown for directed pathwidth. In [1] it is shown that a cops-and-robber game
is equivalent to directed path-width and that there always exists an (almost)
optimal monotone strategy. It is worthy of note that, unlike the undirected case
where treewidth and pathwidth are generalizations of different graph topologies
(trees and paths respectively) in the directed case all the measures we have
mentioned are based on the concept of DAGs as the simplest case.

Our contribution. In this paper we try to address the question of whether the
already proposed digraph complexity measures will be able to match the success
of treewidth. Our answer is given in the form of two negative results, which
show that the lack of FPT algorithms for Directed Hamiltonian Circuit
and Max Di Cut is not due to a lack of effort, but because such algorithms can
not exist (under some widely believed complexity assumptions).

Our first result concerns Directed Hamiltonian Circuit which we show
to be W [2]-hard when the parameter is the width of the input graph for any
of the mentioned widths. Under the assumption that W [2] 6= FPT this implies
that no FPT algorithm is possible. Therefore, under this standard complexity
assumption, our result implies that no significant improvement is possible for
the O(nk) algorithms of [9] and [8].

Our second result concerns Max Di Cut, for which we show APX-hardness
even when we restrict the problem to DAGs and all edges have uniform weights.
This is a result that is interesting in its own right, and it is rather surprising
that it was not known until now, as Max Di Cut is a widely studied problem.
It is also very relevant in our case for two reasons: First, DAGs have the lowest
possible width for all the widths we have mentioned, therefore our proof implies
that none of them can help with Max Di Cut. Second, using (undirected)
treewidth leads to efficient FPT algorithms for both Max Cut and Max Di
Cut. Thus, this result helps draw further contrast between the performance of
treewidth and its directed variants.

Although our results are negative, they succeed in illuminating some fun-
damental weaknesses in the already proposed digraph measures, and thus they
show the way to a possible future digraph measure that might be able to over-
come them. Therefore, we believe that they serve as a starting point in a renewed
search for a successful digraph complexity measure that might yet manage to at
least partially match treewidth’s success.

The rest of this paper is structured as follows: In Section 2 we give some
necessary definitions and preliminary notions. In Section 3 we demonstrate the
hardness result for Directed Hamiltonian Circuit. In Section 4 we prove
the hardness of Max Di Cut. Finally, in Section 5 we conclude with some
discussion and directions to further research.

2 Definitions and Preliminaries

First, let us give the definitions of the two problems that will be our focus.

3



Definition 1. The Directed Hamiltonian Circuit problem is that of de-
ciding whether there exists a permutation (v1, v2, . . . , vn) of the vertices of an
input digraph G(V,E) s.t. ∀i ∈ {1, . . . , n− 1} (vi, vi+1) ∈ E and (vn, v1) ∈ E.

Definition 2. The Max Di Cut problem is the following: given a digraph
G(V,E) and a weight function on the edges w : E → N, find a partition of V into
two sets V0 and V1 so that the weight of the edge set C = {(u, v) | u ∈ V0, v ∈ V1}
is maximized. That is, the objective is to maximize

∑
e∈C w(e).

Max Di Cut was shown APX-hard in [12]. In Section 4 we show APX-
hardness for the problem’s restriction to DAGs. Then we show that APX-
hardness also holds for the cardinality version of the problem restricted to DAGs.

We should also give the definitions of the two problems that will be the
starting points of our reductions.

Definition 3. Dominating Set is the problem of finding a minimum cardinal-
ity subset of vertices D of an undirected graph G(V,E) s.t. any vertex in V \D
has a neighbor in D.

When a vertex u ∈ D is a neighbor of a vertex v, we will say that u dominates
v. We will also follow the convention of saying that any vertex in D dominates
itself. We will make use of the well-known result that Dominating Set is W [2]-
complete when the parameter k is the size of the dominating set we are looking
for ([6]).

Definition 4. NAE3SAT is the problem of finding a truth assignment which,
for every clause of an input 3CNF formula, assigns the value true to at least one
literal, and the value false to at least one literal.

We follow the convention of saying that a clause is satisfied in the NAESAT
sense, or simply satisfied, when a truth assignment assigns different truth values
to two of its literals. We will mainly be concerned with the maximization version
of NAE3SAT where the objective is to find a truth assignment that satisfies as
many clauses as possible. This variant was shown to be APX-hard in [12].

We have already mentioned that directed pathwidth can be defined in terms
of a cops-and-robber game. The game’s definition is the following:

Definition 5. The k-cop invisible-eager robber game is the game where k cops
attempt to catch an invisible robber hiding in a vertex of a digraph G. The cops
are stationed on vertices of G and a cop can move by removing himself from the
graph and then “landing” on any other vertex. The robber can move at any time
and he is allowed to follow any directed path of G, under the condition that he
does not enter vertices occupied by stationary cops.

We say that k cops have a monotone strategy to win this game when they
have a strategy such that the robber can never visit a vertex previously occupied
by a cop. In [1] it was shown that k cops have a monotone strategy on a graph
G iff the graph has directed pathwidth k.

4



Kelly-width, DAG-width and directed treewidth have also been shown to be
connected to similar games, restricted to monotone strategies. In fact, DAG-
width is equivalent to the above game but with the robber being visible, while
kelly-width is equivalent to the above game but with the robber only being
allowed to move when a cop enters his vertex. Using the approximate connection
between directed treewidth and a similar game it was shown in [8] that the
directed treewidth of a graph is upper-bounded by its kelly-width multiplied by
a constant.

It is not hard to infer from these results that, since the robber is stronger in
the game related to directed pathwidth, a graph G will have higher pathwidth
than any of the other widths. Since we are interested in proving hardness results,
it will therefore suffice to show that a problem is hard for graphs of small directed
pathwidth and hardness for the other widths will directly follow.

3 Directed Hamiltonian Circuit

In this section we focus on the Directed Hamiltonian Circuit problem,
a problem which can be solved using directed treewidth in O(nk) time ([9]). Of
course this algorithm also applies to DAG-width, kelly-width and directed path-
width, as they are restrictions of directed treewidth. In addition, another O(nk)
algorithm for this problem tailored for kelly-width is given in [8]. Thus, a signif-
icant gap exists between the performance of treewidth, which is fixed-parameter
polynomial on the corresponding undirected problem and the performance of
its directed variants. We show that this is a gap that can not be bridged un-
less W [2] = FPT , by demonstrating that Directed Hamiltonian Circuit is
W [2]-hard when the parameter is any of these widths.

The hardness proof for Directed Hamiltonian Circuit will be a param-
eterized reduction from the naturally parameterized version of Dominating
Set.

Theorem 1. The parameterized versions of Directed Hamiltonian Cir-
cuit, where the parameter is the directed treewidth, kelly-width, DAG-width or
directed pathwidth of the input graph, are W [2]− hard.

Proof. We will show a parameterized reduction from the naturally parameterized
version of Dominating Set, where the parameter k is the size of the set by
constructing a digraph whose directed pathwidth is bounded by a function of k
s.t. the digraph will be Hamiltonian iff the original graph had a dominating set
of size k.

Suppose we are given a graph G(V,E) with V = {1, 2, . . . , n}.
Our digraph G′ has vertex set V ′ = V1 ∪ V2 ∪ V3 where

1. V1 = {u1, u2, . . . , uk}.
2. V2 = {v1, v2, . . . , vn}.
3. V3 = {g(i,j,l) | i ∈ {1, . . . , n}, j ∈ {0, . . . , d(i)}, l ∈ {In, Out}}. Here d(i)

denotes the degree of vertex i in G.

5



E(G′) consists of the following sets of directed edges

1. E1 = {(ui, vj) | i ∈ {1, . . . , k}, j ∈ {1, . . . , n}}.
2. E2 = {(vi, vi+1) | i ∈ {1, . . . , n}} (where we consider n + 1 to be the same

as 1).
3. E3 = {(g(i,j,In), g(i,j+1,Out)) | i ∈ {1, . . . , n}, j ∈ {0, . . . , d(i)}}, (where we

consider d(i) + 1 to be the same as 0).
4. E4 = {(g(i,j,Out), g(i,j,In)) | i ∈ {1, . . . , n}, j ∈ {0, . . . , d(i)}}.
5. Finally, E5 contains the following edges: For any vertex a of the original

graph, let j0, j1, . . . , jd(a) be the vertices of G a dominates in lexicographic
order. Also, let p(a, i) denote the number of vertices that dominate a vertex
i and come before a in lexicographic order. Then the edge (va, g(j0,p(a,j0),In))
and the edges (g(ji,p(a,ji),Out), g(ji+1,p(a,ji+1),In)) for all i < d(a) are included
in E5. Finally, the edges (g(jd(a),p(a,jd(a)),Out), ui) for all i ∈ {1, . . . , k} are
also included in E5.

Let us now discuss the basic idea behind this construction, before we get
into more details. Our digraph G′ consists of three parts: a constraint part V1,
a choice part V2 and a satisfaction part V3. V1 functions as a constraint part
because it only has k vertices and the only edges going into V2 originate here,
thus forcing us to enter the choice part exactly k times. A Hamiltonian tour
will leave V2 k times. The vertices from which it leaves V2 must be (as we will
prove) a dominating set of G, and that is why V2 is the choice part. Finally, V3

is arranged in such a way that it can only be traversed in a Hamiltonian way if
the choice made in V2 is indeed a dominating set.

We will call the group of vertices g(i,j,l) for a specific i, the gadget Ci. The
crucial part of this reduction is the way the gadget Ci works. Notice that the
gadget’s vertices induce a directed cycle. Also, the only way to enter this cycle
is through an In vertex, and the only way to leave is through an Out vertex.
Suppose that a Hamiltonian tour enters a gadget Ci m times and that X ⊆
{0, . . . , d(i)} is the index set of the In vertices that were used. Then it must
also be the index set of the Out vertices used. To see that, suppose that X =
{j1, j2, . . . , jm} in lexicographic order. When entering from g(i,j1,In) the tour has
no choice but to proceed to g(i,j1+1,Out). Then if j2 6= j1 +1 the tour must move
to g(i,j1+1,In), because if it were to exit this vertex would be impossible to visit
in the future. Using this argument again can exclude the possibility of this part
of the tour exiting through any vertex other than g(i,j2,Out). Similarly, the path
that starts at g(i,j2,In) will exit at g(i,j3,Out) and so on, with g(i,jm,In) exiting
through g(i,j1,Out). This procedure covers all the vertices of the gadget, therefore
we proved that for any set of entry vertices X the gadget can be traversed in
a way that does not exclude the existence of a Hamiltonian tour of the whole
graph iff X corresponds also to the exit vertices used.

Let us now make use of the property we just established. Suppose that G
does not have a dominating set of size k, but that a Hamiltonian tour of G′

exists. Let D be the set of choices made by the tour in V2, i.e. the set of vertices
through which the tour exits V2. The selection of the corresponding set in G
leaves some vertex not dominated, say vertex i. Consider the gadget Ci. It can

6



not be entered directly from a vertex in V2, since none of the vertices from which
we exited V2 corresponds to one that dominates i. Also, if all the other gadgets
are traversed in a way that does not exclude a Hamiltonian cycle, we established
above that the set of entry indices in each is the same as the set of exit indices.
Thus, if the set of input indices into a gadget Cj corresponds to its domination
by some vertices in D, the tour when exiting Cj will be led to other gadgets
also corresponding to dominated vertices, and therefore it will not be lead to Ci.
Thus, we have a contradiction and no Hamiltonian tour is possible.

It remains to establish the converse, namely that a dominating set of size
k implies a Hamiltonian tour. Let D = {d1, d2, . . . , dk} be a dominating set.
Let us first describe the tour outside the gadgets. Starting at u1, move to vdk+1

(once again, vn+1 is the same as v1) and then follow the edges in V2 until vd1 is
reached. Then we exit V2 towards the gadgets. When we reach an Out gadget
vertex that points to V1 we move to u2. From there we move to vd1+1, then to
vd2 and so on. This procedure makes sure that, even though we enter V2 only k
times, all of its n vertices are covered.

Now, suppose that our path has reached a gadget vertex g(i,j,In). This means
that we are following an edge that “belongs” to the j-th vertex of G that could
dominate vertex i. Call this vertex x. Take the first vertex in D that dominates
i and comes lexicographically after x. Suppose that this is the j′-th vertex that
can dominate i overall. (If there is no such vertex in D that dominates i and
comes after x take the first vertex in D that dominates i). Now, the traversal
of gadget Ci will be g(i,j,In) → g(i,j+1,Out) → g(i,j+1,In) → . . . → g(i,j′,Out),
from which point we exit the gadget. (Note that j and j′ need not necessarily
be distinct for the above argument to work).

Let us now prove this is indeed a Hamiltonian tour. It is not hard to see
that all vertices of V1 and V2 are visited exactly once, leaving the gadgets as
the hard part of this proof. The proof will be by induction. For gadget C1

we know that it is entered directly from V2 only (1 is always the first vertex
lexicographically that any other vertex dominates). Observe that the tour we
suggested is just a restatement of the reasoning we made on how gadgets work.
Then it is not hard to see that, no matter which vertices of D dominate 1, C1 will
be traversed correctly. The problem is that paths have been now “shifted”, i.e.
when entering from the entry point of the i-th vertex that dominates 1 we exit
from the exit point of the (i + 1)-th vertex that dominates 1. Therefore, we will
make a proof by induction. Suppose that we know that the tour we suggested
visits the vertices of gadgets C1, . . . , Ci exactly once and that the entry and
exit points for each gadget correspond to the vertices of D that dominate the
vertex this gadget represents. Now consider the gadget Ci+1. It is only entered
using edges that “belong” to vertices of D, because of the inductive hypothesis.
Suppose that one of its vertices is visited twice. Then, one of its entry points
must be used twice, meaning that an exit of a previous gadget or a vertex of
V2 is visited twice, a contradiction. Now, suppose that the vertices of D that
dominate vertex i + 1 are the j1-th, the j2-th, and so on of the vertices that
could dominate i + 1 overall. Our tour must visit vertex g(i+1,j1,In), because the

7



vertex of some previous gadget that point to it is used as an output point (by
the inductive hypothesis). Similar arguments hold for j2 and so on, leading us to
conclude that all appropriate entry points are used and gadget Ci+1 is traversed
correctly.

Finally, what is left is to argue that G′ has low directed pathwidth. Consider
the following cop strategy for the robber game: Keep k cops on the vertices of
V1 at all times. Now 2 cops are enough to clean V2, since it is just a directed
cycle with edges going out to V3 but no other incoming edges. Then, these two
cops can clean gadget C1 for the same reasons. After that, they can clean C2

and so on, until the whole graph is clean.

�

4 Max Di Cut

Let us now focus on a problem of much different nature: Max Di Cut.
Even though, as we saw in Section 3, no digraph complexity measure manages
to provide an FPT algorithm for Directed Hamiltonian Circuit, they do
succeed in providing algorithms with polynomial running times, when the width
k is fixed. For Max Di Cut the situation is much worse, as we will show that the
problem is NP-hard even for k = 1. This creates an even larger gap with the FPT
performance of treewidth than we had in the case of Directed Hamiltonian
Circuit.

We will prove that Max Di Cut is both NP and APX-hard, even when
restricted to DAGs by showing a reduction from the maximization version of
NAE3SAT.

Theorem 2. Max Di Cut is NP-hard and APX-hard, even when restricted to
DAGs.

Proof. We give a gap-preserving reduction from NAE3SAT to Max Di Cut.
Given a NAE3SAT formula φ with m clauses and n variables we construct

a new NAE3SAT formula φ′ with 2m clauses and n variables and show that
φ is satisfiable iff φ′ is satisfiable (satisfaction is in the NAESAT sense). Then
from φ′ we construct a (weighted) DAG G and show that φ′ is satisfiable iff G
has a directed cut of size 46m. Without loss of generality, we may assume that
every clause of φ has exactly three literals (otherwise we may repeat one).

The new formula φ′ is constructed by taking φ and adding to it, for every
clause (l1 ∨ l2 ∨ l3), the same clause with all literals complemented. If an assign-
ment satisfies t clauses of the original formula, it must satisfy exactly 2t of the
2m clauses of φ′. Note that, if we denote by fi the number of appearances of the
variable xi in φ, then the same variable will appear 2fi times in φ′: fi times as
xi and fi times as ¬xi. In other words, the positive and negative appearances of
each variable in φ′ are balanced. We will make use of this fact several times.

Let us now construct the DAG G(V,E). V consists of four disjoint sets
of vertices A,X,C,B. A = {a1, . . . , an} will be a set of source vertices. B =

8



{b1, . . . , b2m} will be a set of sink vertices. X = {x1, x
′
1, x2, x

′
2, . . . , xn, x′

n} will
be the set of vertices corresponding to literals of φ′ while C = {ci,j,k | i ∈
{1, 2, . . . , 2m}, j, k ∈ {1, 2, 3}} will correspond to the clauses of φ′.

E consists of the following sets of weighted edges:

1. The set E1 = {(ai, xi) | i ∈ {1, . . . , n}}. Each of these edges has weight 6fi,
where fi is the total number of appearances of the variable xi in φ.

2. The set E2 = {(xi, x
′
i) | i ∈ {1, . . . , n}}. Each of these edges also has weight

6fi.
3. The set E3 = {(ci,j,k, bi) | i ∈ {1, . . . , 2m}, j, k ∈ {1, 2, 3}, j 6= k}. These

have weight 1.
4. The set E4 = {(ci,k,k, ci,j,k | i ∈ {1, . . . , 2m}, j, k ∈ {1, 2, 3}, j 6= k}. These

also have weight 1.
5. Finally, we add edges that connect vertices of the set X to the corresponding

vertices of C. That is, we add the edges {(xl, ci,j,k), k ∈ {1, 2, 3}} when the
literal xl appears in the j-th position of the i-th clause of φ′, and the edges
(x′

l, ci,j,k) when the literal ¬xl appears in that position. These edges have
weight 2.

Suppose we are given a truth assignment that satisfies (in the NAESAT
sense) t of the m clauses of φ. It must satisfy 2t of the 2m clauses of φ′. Let us
partition V into V0 and V1. Place all vertices of A into V0 and all vertices of B
into V1. Place the vertices of X that correspond to true literals in V1 and the
rest in V0. Place the vertices of C that correspond to true literals in V0 and the
rest in V1.

Let us calculate the weight of this cut. If a variable xi is assigned the value 1
in the assignment, the edge (ai, xi) contributes 6fi to the cut. If it is assigned 0,
then x′

i is in V1, therefore the edge (xi, x
′
i) contributes 6fi to the cut. Thus, the

total contribution of all edges in E1 ∪E2 is 6
∑

i fi. Because the appearances of
each variable in φ′ are balanced, there are as many literals that took the value
true as there are literals that took the value false, in any assignment. Therefore,
exactly half the edges of E3 contribute to the cut. The number of edges in E3

is 12m so, a weight of 6m is contributed to the cut. It is not hard to see that,
for a satisfied clause Ci, the edges of E4 incident on vertices that correspond to
this clause contribute exactly 2 to the cut. On the other hand, the edges of E4

incident on vertices of C that correspond to a clause that is not satisfied will
contribute 0 to the cut, since all these vertices correspond to literals with the
same truth value and are therefore on the same side of the partition. Thus, we
get a total of 4t contributed to the cut, since 2t clauses are satisfied. Finally, once
again because of the balancing of φ′, exactly half of the edges of E5 contribute
to the cut: those incident on vertices of X that we placed in V0, i.e. vertices that
correspond to false literals. Since the weight of each such edge is 2, this adds up
to a total contribution of 2

∑
i fi.

Thus, the total size of the cut is 6
∑

i fi + 6
∑

i fi + 2
∑

i fi + 4t. But, since
every clause of φ had exactly three literals,

∑
i fi = 3m. Therefore, the weight

of the cut is 42m+4t, which is equal to 46m when the truth assignment satisfies
every clause of φ.

9



Now for the other direction, suppose we are given a partition of V into V0

and V1. We will show that we can transform such a cut into a cut of the previous
form, thus obtaining a truth assignment. First, observe that for any optimal cut
A ⊆ V0 and B ⊆ V1, because it is always optimal to place a source in V0 and a
sink in V1. Now, suppose that in the cut we are given, for some i, xi, x

′
i ∈ V0.

Then place x′
i in V1 and this will not make the cut smaller because now the edge

(xi, x
′
i) contributes to the cut and its weight is exactly as much as the weight

of all other edges incident on x′
i. Also, if xi, x

′
i ∈ V1 place xi in V0. This can

not make the cut smaller, since the only edge lost is (ai, xi) and its weight is
the same as that of (xi, x

′
i) which now enters the cut. Therefore, we have now

made sure that for all i, xi and x′
i are on different sides of the partition, without

decreasing the size of our cut.
Consider now a vertex ci,j,j . We know that there exists an edge (xi, ci,j,j) (or

an edge (x′
i, ci,j,j)) of weight 2, which is as much as the weight of all other edges

incident on ci,j,j . Therefore, if xi (resp. x′
i) is in V0, then we can place ci,j,k in

V1 without decreasing the size of the cut. Otherwise, we can place ci,j,j in V0,
because the edge of weight 2 can not be included in the cut by changing the
side of ci,j,j only, and therefore placing it in V0 is not worse because this way we
may also include some of the other edges in the cut. This establishes that every
vertex ci,j,j is on a different side of the partition from its predecessor in X.

Finally, consider a vertex ci,j,k, j 6= k. If its predecessor in X is in V0 we
can place it in V1 without decreasing the size of the cut, because then the edge
of weight 2 is included. Otherwise we can place it in V0, and this will include
the edge (ci,j,k, bi) in the cut. This does not decrease the size of the cut, since
the edge of weight 2 was not included anyway, therefore we might at most lose
the other edge incident on this vertex, which also has weight 1. This establishes
that each of the remaining vertices of C is also on different a different side of
the partition from its predecessor in X.

Now, observe that starting with any given cut, we have transformed it into a
cut of a special form, without decreasing its size. From this cut we can construct
a truth assignment: set to true the literals corresponding to vertices in X that
we placed in V1. This is a valid assignment, since exactly one of xi, x

′
i is in V1.

Also, if we repeat the process of the first direction of this reduction starting from
this assignment we will get the same cut. Therefore, we have shown that there
is a truth assignment that satisfies t of the m clauses of φ iff there is a cut in
the DAG G of size at least 42m + 4t. Thus,

OPTNAESAT (φ) = m ⇒ OPTMDC(G) = 46m

OPTNAESAT (φ) < (1− ε)m ⇒ OPTMDC(G) ≤ (1− 2ε

23
)46m

�

It is not hard to extend the results of the previous theorem to the cardinality
version of Max Di Cut, that is, the version where all edges have the same
weight.

10



Theorem 3. Cardinality Max Di Cut is NP and APX-hard, even when re-
stricted to DAGs.

Proof. First, observe that all the edge weights used in the proof of Theorem 2 are
polynomially (in fact linearly) bounded by the size of the original NAE3SAT
formula. Thus, if we extend the problem’s definition to include multigraphs, we
can replace every edge of weight w by w parallel edges of weight 1. It is not hard
to see that this does not affect the rest of the proof.

Now, let us show how to eliminate parallel edges. For each edge (u, v) intro-
duce a directed path of length 3 u, w1, w2, v where w1 and w2 are new vertices.
Observe that, if u is assigned 0 and v is assigned 1, then it is possible to include 2
of the 3 edges of the path in the cut, by assigning 0 to w2 and 1 to w1. However,
any other assignment to u and v ensures that at most 1 of the three edges can
be included in the cut, and in fact this is always possible by assigning 0 to w1

and 1 to w2. Thus, it is not hard to see that the reduction’s arguments can now
be applied with little modification.

Corollary 1. Max Di Cut is NP-hard and APX-hard even when restricted to
graphs of bounded directed treewidth, DAG-width, kelly-width or directed path-
width.

Proof. The proof is immediate, because DAGs have width 1 under the definitions
of all these widths.

5 Conclusions and Further Work

Discussion of results In this paper we have presented two hardness results
affecting all known generalizations of treewidth to digraphs as well as directed
pathwidth. It may be worthwhile at this point to discuss why such results hold
for the directed cousins of treewidth, when in the undirected case there has been
such a huge success.

First, the hardness result for Max Di Cut, gives us one indication why such
hardness results hold. The reason is simply that for some problems DAGs are
not really an “easy” topology, as trees are in the undirected case. Therefore, it
would probably make sense in the future to focus research on directed treewidth
variants on generalizations of a graph topology that is even simpler than a DAG.
A further clue is given in this direction by the fact that DAGs (surprisingly) are
the base case for both directed pathwidth and the three treewidth variants we
considered. One would probably expect pathwidth and treewidth to be based on
different graph topologies.

On the other hand, directed treewidth variants have had some success with
path-based problems, such as Directed Hamiltonian Circuit. For such prob-
lems, DAGs usually are indeed the trivial case and it makes sense to design
a width as a generalization of DAGs. However, we showed that none of the
currently known widths (including directed pathwidth) is restrictive enough to
provide for an FPT algorithm for Directed Hamiltonian Circuit.

11



Therefore, we believe that our results may suggest that in the directed case
things may be more complicated and possibly no “right” complexity measure
exists. On one hand, it would probably make sense to explore the possibility of a
width (not based on DAGs) that can solve Max Di Cut and similar problems,
while still being more general than undirected treewidth. And on the other hand,
a more realistic goal might be to attempt to refine the definition of some of the
already known widths (which are based on DAGs) in order to make it restrictive
enough to solve Directed Hamiltonian Circuit and related path problems
in FPT time.

References

1. János Barát. Directed path-width and monotonicity in digraph searching. Graphs
and Combinatorics, 22(2):161–172, 2006.

2. Hans L. Bodlaender. Treewidth: Algorithmic techniques and results. In Igor
Pŕıvara and Peter Ruzicka, editors, MFCS, volume 1295 of Lecture Notes in Com-
puter Science, pages 19–36. Springer, 1997.

3. Hans L. Bodlaender. Treewidth: Characterizations, applications, and computa-
tions. In Fedor V. Fomin, editor, WG, volume 4271 of Lecture Notes in Computer
Science, pages 1–14. Springer, 2006.

4. Hans L. Bodlaender. Treewidth: Structure and algorithms. In Giuseppe Prencipe
and Shmuel Zaks, editors, SIROCCO, volume 4474 of Lecture Notes in Computer
Science, pages 11–25. Springer, 2007.

5. Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable
Sets of Finite Graphs. Inf. Comput., 85(1):12–75, 1990.

6. Rod G. Downey and M. R. Fellows. Parameterized Complexity. Springer, November
1999.

7. J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical
Computer Science. An EATCS Series). Springer, 1 edition, March 2006.

8. Paul Hunter and Stephan Kreutzer. Digraph measures: Kelly decompositions,
games, and orderings. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors,
SODA, pages 637–644. SIAM, 2007.

9. Thor Johnson, Neil Robertson, Paul D. Seymour, and Robin Thomas. Directed
tree-width. J. Comb. Theory, Ser. B, 82(1):138–154, 2001.

10. Rolf Niedermeier. Invitation to Fixed Parameter Algorithms (Oxford Lecture Series
in Mathematics and Its Applications). Oxford University Press, USA, March 2006.

11. Jan Obdrzálek. Dag-width: connectivity measure for directed graphs. In SODA,
pages 814–821. ACM Press, 2006.

12. Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation,
and complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991.

13. Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic Aspects of
Tree-Width. J. Algorithms, 7(3):309–322, 1986.

12


