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Abstract We investigate the parameterized computational complexity of the
satisfiability problem for modal logic and attempt to pinpoint relevant struc-
tural parameters which cause the problem’s combinatorial explosion, beyond
the number of propositional variables v. To this end we study the modal-
ity depth, a natural measure which has appeared in the literature, and show
that, even though modal satisfiability parameterized by v and the modality
depth is FPT, the running time’s dependence on the parameters is a tower
of exponentials (unless P=NP). To overcome this limitation we propose pos-
sible alternative parameters, namely diamond dimension and modal width.
We show fixed-parameter tractability results using these measures where the
exponential dependence on the parameters is much milder (doubly and singly
exponential respectively) than in the case of modality depth thus leading to
FPT algorithms for modal satisfiability with much more reasonable running
times. We also give lower bound arguments which prove that our algorithms
cannot be improved significantly unless the Exponential Time Hypothesis fails.

1 Introduction

In this paper we consider the computational complexity of deciding formula
satisfiability, for modal logics, focusing on the standard modal logic K. We
attempt to present a new point of view on this important topic by making use
of the parameterized complexity framework, which was pioneered by Downey
and Fellows. Although the complexity of satisfiability for modal logic has been
studied extensively in the past, to the best of our knowledge this is the first
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time this has been done from an explicitly parameterized perspective. More-
over, the parameterized complexity of logic problems has been a fruitful field
of research and we hope to extend this success to modal logic (some examples
are the celebrated theorem of Courcelle [3] or the results of [8]; for an excel-
lent survey on the interplay between logic, graph problems and parameterized
complexity see [9]).

Modal logic is a family of systems of formal logic where the truth value of
a sentence φ can be qualified by modality operators, usually denoted by � and
♦. Depending on the specific modal logic and the application one considers, �φ
and ♦φ can be informally read to mean, for example, “it is necessary that φ”,
or “it is known that φ” for � and “it is possible that φ” for ♦. The fundamental
normal modal logic system is known as K, while other common variations of
this logic system include T, D, S4, S5. Modal logic systems provide a diverse
universe of logics able to fit many modern applications in computer science
(for example in AI or in game theory), making modal logic a widespread topic
of research. The interested reader in the recent state of modal logic and its
applications is directed to [1].

As in propositional logic, the satisfiability problem for modal logic is one of
the most important and fundamental problems considered and many results
are known about its (traditional) computational complexity. Ladner in [13]
showed that satisfiability for K, T and S4 is PSPACE-complete, while for S5 the
problem is NP-complete. Furthermore, in [10], Halpern shows that the problem
remains PSPACE-complete when the formulae have at most one variable and
in [2] it is shown that satisfiability for K and K4 is PSPACE-complete even
for formulae without any variables. In [12], Halpern and Rêgo showed that the
negative introspection axiom is in an essential way what makes the difference
between normal modal logics whose satisfiability problem is in NP and those
for which it is PSPACE-complete. It should be noted that the satisfiability
of propositional logic is a subcase of satisfiability for any normal modal logic,
thus for any normal modal logic the problem is NP-hard. In this paper we will
focus on the standard modal logic K. For an introduction to modal logic and
its complexity see [11,5].

Traditional computational complexity theory attempts to characterize the
complexity of a problem as a function of the input size n. The notion of
parameterized complexity introduces to every hard problem a structural pa-
rameter k, which attempts to capture the aspect of the problem which causes
its intractability. The central notion of tractability in this theory is called
fixed-parameter tractability (FPT): an algorithm is called FPT if it runs in
time O(f(k) · nc), where f is any recursive function and c a constant. For an
introduction to the vast area of parameterized complexity see [4,7].

Because the definition of FPT allows for any recursive function f(k), fixed-
parameter tractable problems can have complexities which depend on k in very
different ways, ranging from sub-exponential to non-elementary. Thus, it is one
of the main goals of parameterized complexity research to find the best possible
f(k) for every problem and this will be one of the main concerns of our work.
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Our contribution

In this paper we study the complexity of modal satisfiability from a parame-
terized, or multi-variate, point of view. Just as parameterized complexity at-
tempts to refine traditional complexity theory by more specifically identifying
the aspects of an intractable problem which cause the problem’s unavoidable
combinatorial explosion, we attempt to identify some structural aspects of
modal formulae which can have an impact on the solvability of satisfiability.

One natural parameter for the satisfiability problem (in any logic) is the
number of propositional variables in the formula, which we denote by v. In
propositional logic, when v is taken as a parameter, the propositional satis-
fiability problem trivially becomes fixed-parameter tractable. As was already
mentioned, this does not generally hold in the case of satisfiability for modal
logics where the problem is hard even for constant number of variables.

On the other hand since the satisfiability problem for modal logics is a
generalization of the same problem for propositional logics, considering the
modal satisfiability problem without bounding the number of variables or im-
posing some other propositional restriction on the formulae will result in an
intractable problem. It would certainly be interesting to investigate modal
satisfiability when certain structural propositional restrictions are placed (for
example, we could say we are interested in formulae such that removing all
modality symbols leaves a 2-CNF or a Horn formula, which are tractable cases
of propositional satisfiability) but this goes beyond the scope of this work1. In
this paper we will focus on strictly modal structural formula restrictions and
therefore we will assume that the best way to make propositional satisfiability
tractable is to restrict the number of variables. Informally, we could say that
we are focusing on a case that is trivial for propositional logic, because we hope
this will help us better understand how the addition of modalities affects the
complexity of satisfiability. For our purposes the conclusion is that for modal
satisfiability to become tractable, bounding v is necessary but not sufficient.

Motivated by the above we take the approach of a double parameterization:
we investigate the complexity of satisfiability when v is considered a param-
eter and at the same time some other aspect contributing to the problem’s
complexity is identified and bounded.

We first study a natural notion of formula complexity called modality depth
or modal depth. This complexity measure is already known in [10] (see also
[15]) where in fact a fixed-parameter tractability result is shown when the
problem is parameterized by the sum of v and the modality depth of the
formula. However, since parameterized complexity was not well-known at the
time, in [10] it is only pointed out that the problem is solvable in linear time
for fixed values of the parameters, without mentioning how different values of
v and the depth affect the running time. We address this by upper bounding
the running time by an exponential tower of height equal to the modality
depth of the formula. More importantly, we show a lower bound argument

1 However, see [14] for related (non-parameterized) complexity results
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which proves that even though the problem is FPT, this exponential tower in
the running time cannot be avoided unless P=NP (Theorem 2). Our hardness
proof follows an approach of encoding a propositional formula into a modal
formula with very small modality depth. This draws a nice connection with
previously known lower bound results of this form which also use a similar
idea to prove the hardness of some model checking problems for first and
second-order logic ([8] and the relevant chapter in [7]).

This result indicates that modal depth is unlikely to be a very useful pa-
rameter because even for formulae where the depth is very moderate the sat-
isfiability problem is still very hard. This begs the natural question of whether
there is a way to work around the lower bound of Theorem 2 by using another
formula complexity measure in the place of modal depth. We show that this
is indeed possible by introducing two alternative formula complexity notions.

Specifically, we define the notion of diamond dimension and show that sat-
isfiability is FPT when parameterized by v and the diamond dimension and the
dependence on the parameters is (only) doubly exponential. We then demon-
strate a lower bound argument which proves that this dependence cannot be
significantly improved unless the Exponential Time Hypothesis fails, that is,
unless there exists an algorithm for n-variable 3-CNF-SAT running in time
2o(n).

Then we define a measure called modal width and show that satisfiability
is FPT when parameterized by v and the modal width and the dependence on
the parameters is now just singly exponential.

Thus, our work shows that there exist many natural formula complexity
parameters worth examining in the context of modal satisfiability and what’s
more that their complexity behavior can be vastly different and this could be
an interesting field of study. Let us also note in passing that our results for
modal width and depth directly apply also to satisfiability’s dual problem,
formula validity, since the validity of a formula can be solved by checking the
satisfiability of its negation and every formula has the same width and depth
as its negation. Our results for diamond dimension can also be extended for
this problem by defining a dual “box dimension” measure, suitable for the
validity problem.

2 Modal Logic

In this paper we study the language of modal logic. This language contains
exactly the formulae that can be constructed using propositional variables,
the standard propositional operators ∧,∨, ¬ (and the operators which can be
defined using these, such as →, ↔) and the unary modality operators (�, ♦).

More specifically, the language of modal logic is defined recursively in the
following way. We have a set of propositional variables, P . Any variable in P
is a formula. Furthermore, if φ, ψ are formulae, then (φ ∧ ψ), (φ ∨ ψ),¬φ and
�φ,♦φ are formulae of the language.
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It is usually assumed that P is infinite, but for our purposes we do not
need to assume anything about its cardinality. However, if P = ∅, we need to
include ⊥ (or ⊤) in our language in order to be able to form formulae. It is
true that we do not need so many operators in our language and that there
are many choices for more succinct list of initial symbols (ex. ∧ and ¬; ⊥ and
→, etc, with either � or ♦), but for our purposes it is convenient to include
all these.

In our language we do not include the constants ⊥ and ⊤, for false and true,
but we may use them to form formulas, as they can be considered shorthand
for x ∧ ¬x and x ∨ ¬x respectively, where x ∈ P .

Standard Kripke semantics are considered here: a Kripke frame is a pair
(W,R) of a set of states W and an accessibility relation R between states. A
Kripke frame together with a valuation V , which is a function that defines for
each propositional variables the set of states where it is true, is called a Kripke
structure.

In this paper we consider the system of modal logic usually denoted by K,
where R is allowed to be an arbitrary relation between states. Other standard
modal logics (e.g. T,D,S4) can be obtained by imposing various restrictions
on R (e.g. if we only allow reflexive relations).

Given a Kripke structure M = (W,R, V ), we define the relation |= between
states and formulae recursively on the structure of the formula:

M, s |= p if and only if s ∈ V (p),
M, s |= φ ∧ ψ if and only if M, s |= φ and M, s |= ψ,
M, s |= φ ∨ ψ if and only if M, s |= φ or M, s |= ψ,
M, s |= ¬φ if and only if M, s 6|= φ,
M, s |= �φ if and only if for any v ∈W , if sRs′, then M, s′ |= φ,
M, s |= ♦φ if and only if there is some s′ ∈ W , such that sRs′ and
M, s′ |= φ,

where p ∈ P , s ∈W and φ, ψ are formulae.

When M, s |= φ, we say that φ is satisfied at s, or that φ is true at s and
that φ is satisfied in M, or that M is a model for φ. A formula φ is valid in
a structure M, if it is satisfied at all states s of the structure and we say that
φ is valid if φ is valid in all structures.

The problem studied in this paper is modal satisfiability for K, that is,
given a modal formula φ, does φ have model? The modal validity for K is the
problem of determining whether a given modal formula is valid. Although we
focus on satisfiability, the two problems are equivalent for modal logic, as any
formula φ is satisfiable if and only if ¬φ is not valid.

In the following sections, three measures of formula complexity will be
defined and we will study how they influence the difficulty of solving the modal
satisfiability problem from a parameterized point of view.
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3 Modal Depth

In this section we give the definition of modality depth. As we will see, a
fixed-parameter tractability result can be obtained when satisfiability is pa-
rameterized by the number of propositional variables v and the modality depth
of the input formula. This was first observed in [10], but in this section we more
precisely bound the running time (in [10] it was simply noted that the running
time is linear for constant depth and constant v with a hidden constant which
“may be huge”). More importantly we show that the “huge constant” cannot
be significantly improved by giving a hardness proof which shows that, if the
running time of an algorithm for modal satisfiability is significantly less than
an exponential tower of height equal to the modality depth, then P=NP.

Definition 1 The modality depth of a modal formula φ is defined inductively
as follows:

– md(p) = 0, if p is a propositional variable,
– md(♦φ) = md(�φ) = 1 +md(φ),
– md(φ1 ∨ φ2) = md(φ1 ∧ φ2) = max{md(φ1),md(φ2)},
– md(¬φ) = md(φ)

Note that, since for all φ we have md(φ) = md(¬φ) this implies that the
results of this section, which we state in terms of the satisfiability problem,
also apply to the validity prodblem, since deciding if some formula is valid is
equivalent to deciding if its negation is satisfiable.

Theorem 1 ([10]) Modal satisfiability for the logic K is FPT when parame-
terized by v and md(φ).

Proof We define the d-type of a state s in a Kripke structure M to be the
set {φ | (M, s) |= φ and md(φ) ≤ d}. We will prove by induction on d that if
we restrict ourselves to formulae with at most v variables then for any d ≥ 0
there are at most fv(d) d-types, where fv is the function recursively defined:
fv(0) = 2v, fv(n+ 1) = 2fv(n)+v.

For d = 0 If md(φ) = 0, then the formula is propositional, thus the 0-type of
any state is directly defined by the set of propositional variables assigned
true in the state. The number of all such possible sets of variables is 2v =
fv(0).

For the case of d+ 1 The (d+1)-type of a state s depends on the assignment
of the propositional variables in s and on the truth values of formulae of
the forms �φ′ and ♦φ′, where md(φ′) ≤ d. Notice that these truth values
depend only on the set of d-types of the accessible states from s. Thus the
number of different (d+ 1)-types on a state s is fv(d+ 1) = 2fv(d)+v.

Now, suppose that φ is a satisfiable formula of modality depth d ≥ 1. We
will show how to construct a Kripke structure of about fv(d − 1) states to
satisfy φ. To achieve this, for all i ∈ {0, 1, . . . , d−1} and for all i-types we will
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construct a state of that i-type, thus in total we will construct
∑d−1
i=0 fv(i) =

O(fv(d−1)) states. To construct the fv(0) = 2v states that give all the different
0-types we just construct 2v states, each with a different valuation of the
propositional variables. For the subsequent levels, to construct all the states
for all the different (i + 1)-types we pick for each state a set of successor
states out of the states that give us the different i-types and a valuation of the
propositional variables. If φ is satisfiable, it must be satisfiable in this structure
by adding a new state s, selecting a subset of the states that give us the
different (d− 1)-types to be its successors and a valuation of the propositional
variables in s. The number of combinations of all possible subsets of successors
and all variable valuations is fv(d), so the problem is solvable in O(fv(d)·f

2
v (d−

1)·|φ|), because the structure has O(fv(d−1)) states and thus size O(f2v (d−1))
and model checking can be performed in bilinear time (linear with respect to
both |φ| and the size of the model).

⊓⊔

Lower Bound

Let us now proceed to the main result of this section, which is that even
though modal satisfiability is fixed-parameter tractable, the exponential tower
in the running time cannot be avoided. Specifically, we will show that solving
modal satisfiability parameterized by modality depth, even for constant v,
requires a running time which is a tower of exponentials with height linear in
the modality depth. We will prove this under the assumption that P 6=NP, by
reducing the problem of propositional satisfiability to our problem. Our proof
follows ideas similar to those found in [8].

Suppose that we are given a propositional CNF formula φp with variables
x1, . . . , xn and we need to check whether there exists a satisfying assignment
for it. We will encode φp into a modal formula φm (the subscripts p andm stand
for propositional and modal respectively) with small depth and a constant
number of variables. In order to do so we inductively define a sequence of
modal formulae.

– In order to encode the variables of φp we need some formulae to encode
numbers (the indices of the variables). The modal formula vi is defined
inductively as follows2: v0 := �⊥ and vn :=

(
∧

i:ni=1 ♦vi
)

∧�
(
∨

i:ni=1 vi
)

where by ni we denote the i-th bit of n when n is written in binary and
the least significant bit is numbered 0. So, for example v1 = ♦v0 ∧ �v0,
v2 = ♦v1∧�v1, v5 = ♦v2∧♦v0∧�(v2∨v0) and so on. Observe that v0 can
only be true in a state with no successor states. Also, what is important
is that these formulae allow us to encode very large numbers using only
a very small modality depth and no variables (or just one variable if ⊥ is
considered short for x ∧ ¬x).

2 We will use := to denote syntactic definitions of formulae and = to denote syntactic
equality between formulae.
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Fig. 1 A partial example, illustrating our construction for a specific clause. For the encoding
of the clause (x5 ∨ ¬x6) we build the formula C(x5 ∨ ¬x6) which holds in the state at the
top of the depicted model.

– Next, we need to encode the literals of φp. The modal formula L(xi) is
defined as L(xi) := ♦vi ∧�vi. The formula L(¬xi) is defined as L(¬xi) :=
♦vi ∧ ♦v0 ∧� (vi ∨ v0).

– Now, to encode clauses we set C(l1 ∨ l2 ∨ . . . ∨ lk) :=
(

∧k
i=1 ♦L(li)

)

∧

�

(

∨k
i=1 L(li)

)

.

– Finally, to encode the whole formula we use F(c1 ∧ c2 ∧ . . . ∧ cm) :=
∧m
i=1 ♦C(ci)

So far we have described how to construct a modal formula F(φp) from φp.
F(φp) encodes the structure of φp. Now we need to add two more ingredients:
we must use a modal formula to describe that φp is satisfied by an assign-
ment and that the assignment is consistent among clauses. We give two more
formulae, S and CA(n), which play the previously described roles respectively:

– S := �♦ [((♦v0) → (�¬y)) ∧ ((¬♦v0) → (�y))], where we have introduced
a single variable y.

– CA(n) :=
∧n
i=1 (♦♦♦(y ∧ vi) ↔ ¬♦♦♦(¬y ∧ vi))

Our full construction is, given a propositional CNF formula φp with n

variables named x1, . . . , xn, we create the modal formula φm := F(φp) ∧ S ∧
CA(n).

Lemma 1 φp is satisfiable if and only if φm is satisfiable in K.

Proof Suppose that φm is true at a state s of some Kripke structure. Then
CA(n) is true at s therefore for each i we have either that ♦♦♦(y ∧ vi) is
true at s or that ♦♦♦(¬y ∧ vi) is true at s. From this we create a satisfying
assignment: for those i for which the first holds we set xi = ⊤ and for the rest
xi = ⊥. We will show that this assignment satisfies φp.

Suppose that it does not satisfy φp, therefore there is some clause ci which
is not satisfied. However, since F(φp) is true at s there exists a state p with
sRp such that C(ci) is true at p. In every successor state of p we have that
L(lj) is true for some literal lj of ci and there exists such a state for ev-
ery literal of ci. Also, in s we have that S is true, therefore in p we have
♦ [((♦v0) → (�¬y)) ∧ ((¬♦v0) → (�y))]. Therefore, in some q such that pRq
we have ((♦v0) → (�¬y))∧((¬♦v0) → (�y)) and we also have that L(lj) is true
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for some literal lj of ci. Suppose that lj is a negated literal, that is lj = ¬xk.
Then L(lj) = ♦vk ∧ ♦v0 ∧ �(vk ∨ v0). Therefore, since ♦v0 is true at q this
means that �¬y is true. Because ♦vk and �¬y are both true at q there exists
an r such that qRr and vk ∧ ¬y is true at r. But then ♦♦♦(vk ∧ ¬y) is true
at s which implies that our assignment gives the value false to xk. Since ci
contains ¬xk it must be satisfied by our assignment, a contradiction. Similarly,
if lj = xk then L(lj) = ♦vk ∧ �vk. Clearly, v0 and vk cannot be true at the
same state for k > 0 therefore in q we have ¬♦v0 which implies �y. Therefore
in some r with qRr we have y ∧ vk which implies that our assignment sets xk
to true and since ci has the literal xk it must be satisfied.

The other direction is easier. We build a Kripke structure where for each
vi there exists a state such that vi holds in that state. We start by introducing
a state without successors, in which v0 holds. Then, for each i ∈ {1, . . . , n}
we add a state with appropriate transitions to states previously introduced so
that vi holds in that state (see Figure 1 for an example).

Note that each time we construct a new state and place the appropriate
transitions so that vi holds in that state, we know that no other vj with j 6= i

can hold in that state. The reason is that, as follows from the definition of vi,
the formula vi∧vj for i 6= j is unsatisfiable. This, in turn, can be established by
induction: first, v1 ∧ v0 is obviously unsatisfiable. Second, if for some i > j we
have vi ∧ vj is true at some state of some model, then in some state accessible
from it we will have vk ∧ vl, where k is the position of the most significant bit
where i and j differ and l 6= k is the position of some bit of j that is set to 1.
Clearly, k < i and l < j so this contradicts the inductive hypothesis.

Now the completion of the Kripke structure so that φm is satisfied is
straightforward. For every i with 1 ≤ i ≤ n we create two more states: the
first has as its only successor the state where vi is true. The other has two
successors: the state where vi is true and a state without successors (where
v0 holds). Thus, for each i we have a state where L(xi) is true and a state
where L(¬xi) is true. For every clause we create a state and for each literal lj
in the clause we add a transition to the state where L(lj) is true. Therefore,
for each clause ci we have a state where C(ci) is true. Finally, we add a state
and transitions to all the states where some C(ci) is true. Clearly, F(φp) is
true at that state, which we call the root state. Observe that CA(n) will also
be satisfied in the root state independent of where y is true, because for every
i ∈ {1, . . . , n} we have made a unique state pi where vi is true and pi is at
distance exactly 3 from the root.

Take a satisfying assignment; for every xi which is true set the variable y
to true at the state of the Kripke structure where vi is true. Set y to false in
every other state. Now, we must show that S is true at the root state. This
is not hard to verify because for every clause in the original formula there is
a true literal, call it l. If that literal is not negated then in the state where
L(l) is true we have ¬♦v0 (because the literal is not negated) and �y (because
the literal is true, so its variable is true thus we must have set y to true at
the variable’s corresponding state). Therefore (¬♦v0 → �y)∧ (♦v0 → �¬y) is
true at the literal’s corresponding state and ♦ [(¬♦v0 → �y) ∧ (♦v0 → �¬y)]
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is true at the clause’s corresponding state. Similar arguments can be made for
a negated literal. Since we start with a satisfying assignment the same can be
said for every clause, thus S is also true at the root state.

⊓⊔

Now, we need to show that the produced modal formula has very small
depth and the hardness result will follow in a way very similar to the results
of [8].

Definition 2 tow(h) is the inductively defined function tow(0) = 0 and tow(h+
1) = 2tow(h).

Lemma 2 Suppose that φp is a propositional CNF formula with n variables.
Then, if tow(h) ≥ n the formula φm = F(φp)∧ S ∧ CA(n) has modality depth
at most 4 + h.

Proof First observe that the modality depth of φm is at most

3 + max
0≤i≤n

md(vi).

Therefore, we just have to bound the modality depth of vi.
We will use induction on h to show that tow(h) ≥ n⇒ md(vn) ≤ h+1. For

h = 0 we have tow(h) ≥ n⇒ n = 0, therefore md(v0) = 1 and the proposition
holds.

Suppose that the proposition holds for h.
Observe that md(vn) ≤ 1 + max0≤i≤logn{md(vi)} because writing n in

binary takes at most log n + 1 bits. If we have n ≤ tow(h + 1) then log n ≤
tow(h). From the inductive hypothesis md(vi) ≤ h+1 for i ≤ log n. Therefore,
md(vn) ≤ h+ 2 and the proposition holds.

⊓⊔

Theorem 2 There is no algorithm which can solve modal satisfiability in K

for formulae with a single variable and modality depth d in time f(d) ·poly(|φ|)
with f(d) = O(tow(d− 5)), unless P=NP.

Proof Suppose that there exists an algorithm A which in time f(d) · poly(|φ|)
can decide if a modal formula φ with modality depth d and just one variable
is satisfiable. We will use this algorithm to solve propositional satisfiability in
polynomial time.

Given a propositional CNF formula φp we construct φm as described, and
if φp has n variables let H = min{h | n ≤ tow(h)}. Then md(φm) ≤ H + 4
and of course φm can be constructed in time polynomial in |φp|. Now we can
use the hypothetical algorithm to see if φm is satisfiable.

We have that f(d) = O(tow(d−5)). Therefore, running this algorithm will
take time f(H + 4) · poly(|φm|) = O(tow(H − 1) · poly(|φm|)). But by the
definition of H we have tow(H−1) ≤ n, therefore this bound is polynomial in
|φm| and therefore, also in |φp|, which means that we can solve an NP-complete
problem in polynomial time.

⊓⊔
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4 Diamond Dimension

In this Section we propose a structural characteristic of modal formulae called
diamond dimension. This is an alternative natural formula complexity measure
which intuitively bounds the size of a model required to satisfy a formula. As
we will see the parameter dependence of a satisfiability algorithm for formulae
of small diamond dimension is doubly exponential, immensely lower than the
dependence for modal depth. However, we will also show a lower bound indi-
cating that it is unlikely that an algorithm with singly exponential parameter
dependence could exist for this measure.

Definition 3 Let φ be a modal formula in negation normal form, that is, with
the ¬ symbol appearing only directly before propositional variables. Then its
diamond dimension, denoted by d♦(φ) is defined inductively as follows:

– d♦(p) = d♦(¬p) = 0, if p is a propositional variable
– d♦(φ1 ∧ φ2) = d♦(φ1) + d♦(φ2)
– d♦(φ1 ∨ φ2) = max{d♦(φ1), d♦(φ2)}
– d♦(�φ) = d♦(φ)
– d♦(♦φ) = 1 + d♦(φ)

Our goal with this measure is to prove that if d♦(φ) is small then φ’s
satisfiability can be checked in models with few states. This is why the two
properties of φ which can increase d♦(φ) are ♦ (which requires the creation of
a new state) and ∧ (which requires the creation of states for both parts of the
conjunction).

Lemma 3 If a modal formula φ is satisfiable and d♦(φ) ≤ k then there exists
a Kripke structure with O(2k/2) states which satisfies φ.

Proof Suppose that there exists a Kripke structure which satisfies φ, that is
there exists some state s in that structure where φ holds. We will construct a
working set of modal formulae S which will satisfy the following properties:

(i) All formulae in S hold in s.
(ii) (

∧

φi∈S
φi) → φ is a valid formula.

(iii) d♦(φ) ≥
∑

φi∈S
d♦(φi).

We begin with S = {φ} which obviously satisfies the above properties. We
will apply a series of transformations to S while retaining these properties
until eventually we reach a point where every formula in S is simple (in a
sense we will make precise later) and then we will construct a model with the
promised number of states for φ.

While possible we apply the following rules to S:

1. If there exists a formula ψ ∈ S such that ψ = ψ1 ∧ψ2 then remove ψ from
S and add ψ1 and ψ2 to S.

2. If there exists a formula ψ ∈ S such that ψ = ψ1 ∨ψ2 then remove ψ from
S. If ψ1 is true at state s add ψ1 to S, otherwise add ψ2 to S.
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3. If there are two formulae �ψi and �ψj in S then remove them and insert
the formula �(ψi ∧ ψj).

It should be clear that rule 1 does maintain the properties of S. Rule 2
also maintains the properties: property (i) is maintained because we assumed
that ψ is true at state S therefore if ψ1 is not true we add ψ2 which must
be true. The other properties are also straightforward. Finally, the third rule
maintains the properties of S because of the fact that �ψi∧�ψj ↔ �(ψi∧ψj)
is a valid formula.

It should be clear that applying all the rules until none applies will take
polynomial time. When we can no longer apply the rules we have that S =
{�ψ,♦φ1, . . . ,♦φk, l1, . . . , lm}, where the li are propositional literals; in other
words, we have (at most) one formula that starts with a �, say �ψ, and some
number k of formulae that start with ♦, say ♦φi, 1 ≤ i ≤ k.

Now we will use induction on the diamond dimension to prove the lemma.
Let s(d) be a function which upper bounds the number of states in the smallest
model which are needed to satisfy formulae of diamond dimension d (we are
going to calculate s(d) recursively and prove that it is finite). First, we can say
that s(0) = 1, because a formula with diamond dimension 0 has no diamonds.
Therefore, S contains one formula that starts with a � and some literals,
for which there exists an assignment to make them all true (because of the
first property of S). Clearly, a model with just one state where we pick this
assignment will also make the formula that starts with � trivially true, and
by the second property of S will satisfy φ.

For the inductive step, suppose that all the satisfiable formulae of dimen-
sion at most d = d♦(φ) need at most s(d) states to be satisfied. Let’s consider
the diamond dimension of all the formulae in S. There are three cases: either S
does not have a formula that starts with a �, or it doesn’t have any formulae
that start with ♦, or it has both.

If we have no formulae starting with diamonds we can easily see that the
same model as in the base case suffices, since �ψ is trivially true at a state
without successors. So in this case we have just one state.

Suppose that all the formulae in S are literals or start with ♦. In this case,
we have for all φi that d♦(φi) ≤ d♦(φ)− k. Using the inductive hypothesis we
get that the number of states to satisfy each formula φi is at most s(d♦(φi)).
Clearly, we can create a model which is the union of the models for all the
φi plus one state where we give an appropriate assignment to the literals and
appropriate transitions so that ♦φi is true for all i. This model has at most
1 +

∑k
i=1 s(d♦(φi)) ≤ 1 + k · s(d♦(φ)− k) states.

Finally, if we have both types of formulae in S we construct the following
model: consider all the formulae ψ ∧ φi, for all i. Clearly, they are satisfiable,
because �ψ ∧ ♦φi is true at s. We know from the third property of S that
d♦(φ) ≥ d♦(ψ) + k+

∑k
i=1 d♦(φi). Therefore, d♦(ψ ∧ φi) = d♦(ψ) + d♦(φi) ≤

d♦(φ) − k −
∑

j 6=i d♦φj ≤ d♦(φ) − k. Now, we take the union of the models
for each ψ ∧φi, and each model has at most s(d− k) states. We add one state
and transitions to the appropriate states where ψ∧φi are true, which together
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with an appropriate assignment makes all formulae of S true at that state.
The number of states is at most 1 + k · s(d♦(φ)− k).

From all the above cases we can upper bound s(d) as s(d) ≤ max1≤k≤d{1+
k · s(d− k)}. The fastest growing of these functions, obtained for k = 2, is in
turn upper-bounded by O(2d/2).

⊓⊔

Theorem 3 Given a modal formula φ with v variables and diamond dimen-

sion d♦(φ) = k we can solve the satisfiability problem for φ in time 2O(2k·v) ·|φ|.

Proof From Lemma 3 it follows that if φ is satisfiable, this can be verified in a

model of O(2k/2) states. There are at most 2O(2k) Kripke frames from which
we can get such models. For each we just enumerate through all possible as-

signments to the v variables in the O(2k/2) states, a total of 2O(2k/2·v) different
assignments. Once we have fixed a model deciding if φ holds can be done in
bilinear time. ⊓⊔

Lower Bound

We will now present a lower bound argument showing that, under reasonable
complexity assumptions, the results we have shown for diamond dimension
cannot be improved significantly. We will once again encode a propositional
3-CNF formula φp into a modal formula φm, this time with a goal of achieving
small diamond dimension. We will also use a small number of propositional
variables. We assume without loss of generality that we are given a 3-CNF
formula φp with n variables, where n is a power of 2.

Let �j be short-hand for j consecutive repetitions of �, with �0φ being
equivalent to φ. We recursively define the formulae F (i) as F (0) := �⊥ and

F (i) :=
(

♦(
∧i−1
j=0 �

jbi)
)

∧
(

♦(
∧i−1
j=0 �

j¬bi)
)

∧�F (i− 1), where bi are propo-

sitional variables. It is not hard to see that d♦(F (i)) = 2i and also that F (i)
can only be satisfied in a model with at least 2i states. The model to keep in
mind here is a complete binary tree of height i.

We will use the formula F (log n) to encode a 3-CNF formula with n

variables and each leaf of the tree that must be constructed to satisfy it
will correspond to a variable. It is now natural to encode the variables of
the original formula using their binary representation. We define B(xk) :=
∧

ki=1 bi ∧
∧

ki=0 ¬bi, where once again ki denotes the i-th bit in the binary
representation of k, now with the least significant bit numbered 1.

Our modal formula will also have a propositional variable y which will
be true at leaves that correspond to variables of the 3-CNF formula that
must be set to true. We encode a literal consisting of the variable xk as
L1(xk) := �logn(B(xk) → y). The corresponding negated literal is L2(¬xk) :=
�logn(B(xk) → ¬y). A clause is encoded as the disjunction of the encodings
of its three literals. Our final modal formula φm is a conjunction of F (log n)
with the encodings of all the clauses of the propositional formula φp.
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Lemma 4 Given a propositional 3-CNF formula φp the modal formula φm is
satisfiable in K iff φp is satisfiable.

Proof Suppose that φp is satisfiable. We construct a binary tree of height log n
as our model and φm will be made true at the root. It is not hard to satisfy
F (log n) at the root: simply set blogn to be true on all states on one of the
subtrees of height log n − 1 and false in all states of the other, then proceed
to satisfy F (log n− 1) at the subtrees recursively in the same manner. Every
leaf of the model corresponds to a variable of φp if we read the variables bi as
encoding the binary representation of the index of the variable. We set y to be
true at the leaves that correspond to variables which are true at a satisfying
assignment. It is not hard to see that this satisfies the encoding of all the
clauses on the assumption that we started with an assignment satisfying φp.

Now for the other direction, suppose that φm is satisfied in a state of some
model. A first observation is that for all i ∈ {1, . . . , n} there must exist a
state in which B(i) holds and is at distance log n from the state where φm
holds, as this is required for F (log n) to hold. From this we can infer that
�logn(B(i) → y) and �logn(B(i) → ¬y) cannot both hold in the state where
φm holds. Therefore, we can extract a consistent assignment for the variables
of φ from the model, by setting to true the xi for which �logn(B(i) → y)
holds. It is not hard to see that this assignment must satisfy φp because its
clauses are encoded in φm.

⊓⊔

Now that we have described how to embed a 3-CNF formula into a modal
formula with only logarithmically many variables and logarithmic diamond
dimension we can use this fact to prove a lower bound. This time we rely
on the stronger, but widely believed, assumption that 3-CNF SAT with n

variables cannot be solved in time 2o(n), also known as the Exponential Time
Hypothesis (this is a standard assumption, see for example [16]). This allows
us to obtain a much sharper bound than simply assuming that P 6=NP.

Theorem 4 There is no algorithm which can decide the satisfiability in K of

a modal formula φ with v variables and d♦(φ) = k in time 22
o(v+k)

poly(|φ|)
unless the Exponential Time Hypothesis (ETH) fails.

Proof Suppose that an algorithm running in time 22
o(v+k)poly(|φ|) did exist.

Then we could use the described construction to decide 3-CNF satisfiability
for any formula with n variables. It is not hard to see that v + k = O(log n)
and that the size of the produced modal formula is polynomial in the size of
the 3-CNF formula, thus this would give an algorithm running in time 2o(n),
contradicting the ETH. ⊓⊔

5 Modal Width

In this section we give another structural parameter for modal formulae called
modal width. We will show that satisfiability can be solved in time only singly
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exponential in the modal width and v. Thus, we will give an algorithm that
works more efficiently for the class of modal formulae which have small width.

To give some intuition, the modal width measures how many different
modal subformulae our formula contains at depth i. The idea is that the truth
value of the subformulae of depth i at some state s depends only on the truth
value of the subformulae of depth i+1 at the successors of s. If the maximum
width of the formula is bounded we can exhaustively check all possible truth
values for subformulae at the next level of depth and decide if some particular
truth assignment to the subformulae of depth i is possible. Using this idea it
is possible to obtain an algorithm with the promised running time if we use a
dynamic programming technique.

First we define inductively the function sub(φ) which given a modal formula
returns a set of modal formulae. Intuitively, whether φ holds in a given state
s of a Kripke structure depends on two things: the values of the propositional
variables in s and the truth values of some formulae ψi in the successor states
of s. These formulae are informally the subformulae of φ which appear at
modal depth 1 and sub(φ) gives us exactly this set of formulae.

– sub(p) = ∅ if p is a propositional variable
– sub(¬φ) = sub(φ), sub(φ1 ∨ φ2) = sub(φ1 ∧ φ2) = sub(φ1) ∪ sub(φ2)
– sub(�ψ) = sub(♦ψ) = {ψ}

Now we inductively define the set Si(φ), which intuitively corresponds to
the set of subformulae of φ at depth i.

– S1(φ) = sub(φ)
– Si+1(φ) =

⋃

ψ∈Si(φ)
sub(ψ)

Finally, we can now define the modal width of a formula φ at depth i as
mwi(φ) = |Si(φ)| and the modal width of a formula as mw(φ) = maximwi(φ).

Observe that, as in the case of modal depth, negations do not affect the
width of a formula. Therefore, the following results, which we state in terms
of the satisfiability problem, also apply to the validity problem.

The following lemma is a basic observation regarding mwi(φ) and md(φ).

Lemma 5 For all i ≥ md(φ) we have mwi(φ) = 0.

Proof Observe that for all formulae φ such that md(φ) ≥ 1 we have md(φ) >
maxψ∈sub(φ) md(ψ). Using this fact the proof follows easily by induction on
md(φ).

⊓⊔

Theorem 5 There exists an algorithm which decides the satisfiability of a
modal formula φ with v variables, md(φ) = d and mw(φ) = w in time O(22v+3w·
d · w · |φ|).

Proof We will need to use a function Prop(φ) which, given a modal formula
φ, returns a propositional formula which corresponds to φ with all modal sub-
formulae replaced by new propositional variables. Prop(φ) can be inductively
defined as follows (notice that once again we consider ♦φ as shorthand for
¬�¬φ):
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– Prop(p) = p if p is a propositional variable;
– Prop(φ1 ∨ φ2) = Prop(φ1) ∨ Prop(φ2);
– Prop(φ1 ∧ φ2) = Prop(φ1) ∧ Prop(φ2);
– Prop(¬φ) = ¬Prop(φ1);
– Prop(�φ) = qj , where qj is a new propositional variable.

Let P = {p1, p2, . . . , pv} be the set of propositional variables appearing in
φ. For all i ∈ {0, . . . , d − 1}, for all P ′ ⊆ P and for all S′ ⊆ Si(φ) we define
the formula F (i, P ′, S′),

F (i, P ′, S′) =
∧

pj∈P ′

pj ∧
∧

pj∈P\P ′

¬pj ∧
∧

ψ∈S′

ψ ∧
∧

ψ∈Si(φ)\S′

¬ψ.

Clearly there are at most 2v+wd formulae F (i, P ′, S′) defined and for each
one of these we will compute whether it is satisfiable or not using dynamic
programming. We will use a boolean matrix A(i, P ′, S′) of size 2v+wd to store
the results.

First, we have Sd(φ) = ∅. It is not hard to see that all formulae F (d, P ′, ∅)
are indeed satisfiable, so we initialize the corresponding entries in A to True.
Suppose now that for some i we have filled out completely all entries A(i +
1, P ′, S′). We will show how to fill out any position in row i, say position
A(i, P ′, S′). The crucial part now is that if we consider the formula Prop(F (i, P ′, S′)),
it will have some new variables qi which correspond to modal subformulae
which all appear in Si+1(φ).

The formula Prop(F (i, P ′, S′)) has at most v+w variables. It is not hard to
see that if F (i, P ′, S′) is satisfiable, then Prop(F (i, P ′, S′)) is also satisfiable,
so our first step is to check this. The truth assignments for the v variables are
easy to infer, therefore we only need to go through the 2w possible assignments
for the new variables. For each satisfying assignment we find we then need to
check if a model that satisfies F (i, P ′, S′) can be built from it.

So, suppose that Q is the set of new variables, and we have found an
assignment which sets the variables of Q′ ⊆ Q to true and the rest to false and
satisfies Prop(F (i, P ′, S′)). Each variable qj of Q corresponds to a formula
�φj with φj ∈ Si+1(φ) ∪ P . If qj ∈ Q′ we must make sure that φj is true at
all successors of the state s where F (i, P ′, S′) will hold, in the model we are
building. Let S′′ ⊆ Si+1(φ) ∪ P be the set of formulae φj which we conclude
that must hold in all successors of s in this way.

If qj 6∈ Q′ we have that ¬�φj must hold in s, thus s must have a successor
where ¬φj is true, or equivalently φj is false. Let S

∗ ⊆ Si+1(φ)∪P be the set
of formulae φj for which we conclude that they must be false in some successor
of s in this way.

To decide if it is possible to build appropriate successors to s so that all
these conditions are satisfied, we look at row i+1 of A. Specifically we consider
the set of entries A(i+1, P ′, S′) such that S′′ ⊆ S′∪P ′ and A(i+1, P ′, S′) = T .
Informally, these correspond to formulae which are satisfiable (because the
corresponding entry is set to true) and which also can serve as successors
to s without violating the conditions of S′′, that is, in any state where they
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hold all formulae which we need to be true at all successors of s are indeed
true. Now, we simply check if for each φj ∈ S∗ there exists an entry in the
set we have selected so far with φj 6∈ S′ ∪ P ′. If this is the case we can
conclude that F (i, P ′, Q′) is satisfiable and set the corresponding entry of A
to true, otherwise we conclude that no satisfying model can be built from the
assignment we get from Q, even though Prop(F (i, P ′, S′)) is satisfied. This
whole process of computing S′′ and S∗ and checking through row i + 1 of A
can be performed in time O(w · 2v+w|φ|).

To decide if the initial formula φ is satisfiable, we compute Prop(φ) and
perform the same process: for every satisfying assignment of Prop(φ) we look
at corresponding entries of row 0 of A to see if a model for φ can be built.
The total time for this algorithm is O(23w+2vwd|φ|), because for each of the
at most 2v+wd entries of A we need to check through at most 2w assignments
and for each we spend at most O(w · 2v+w|φ|).

⊓⊔

Lower Bound

Intuitively, one would probably not expect that a significantly better algo-
rithm is possible in this case, since the algorithm we have described is singly
exponential in the parameter v+w. Indeed, it follows if one accepts the ETH
that for formulae of width 0 (that is, propositional formulae) it is not possi-
ble to achieve time 2o(v+w). Nevertheless, this kind of lower bound argument
is not entirely satisfactory for our purposes, since it completely neglects the
contribution of the modal width to the problem’s hardness. For all we know,
the best algorithm’s dependence on w alone might be sub-exponential, though
this would be surprising.

However, a more careful examination of the lower bound arguments we
have presented for diamond dimension is useful here. The formulae constructed
there have a logarithmic number of variables and linear modal width. There-
fore, an algorithm which in general runs in time 2O(v)+o(w) would in this case
give an algorithm running in time 2o(n) for propositional SAT, contradicting
the ETH. In addition, even if one assumes a constant v, things cannot improve
much. A second reading of the lower bound argument for modal depth shows
that our construction has modal width O(n · polylog(n)). This implies that
any algorithm which runs in 2O(wc) for any c < 1 in the case of constant v
would imply a 2o(n) algorithm for SAT, again contradicting the ETH. Thus,
the existence of an algorithm with significantly better dependence on w than
the one presented here is unlikely.

6 Conclusions and Open Problems

In this paper we have defined and studied several modal formula complexity
measures and investigated how each can be used to attack cases of modal
satisfiability. Our results show that proving fixed-parameter tractability is only
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a first step in such problems, because the dependence on the parameters can
vary significantly and some parameters offer much better algorithmic footholds
than others.

It is worthy of remark that the measures of formula complexity we have
discussed are not directly comparable; for example it is possible to construct a
formula with small modality depth and very high modal width, and vice-versa.
In this sense it is not possible to infer solely from our results which formula
complexity measure is the “best”, since each corresponds to a different family
of modal formulae. However, our results can be seen as a first attempt at
drawing a complexity “map” for different modal formula parameters, looking
for areas where satisfiability becomes more or less tractable. This perspective
creates a nice connection between this work and for example the research area
of graph widths, where the complexity of model checking problems on graphs is
explored in different graph families depending on a graph complexity measure.
This is a well-developed area whose insights may be applicable and helpful
in the study of the problems of this paper. (For a summary of the current
complexity “map” for graph width parameters see Figure 8.1 in [9] - a more
recent version of this paper appears in [6]).

A possible future direction is the investigation of yet more natural formula
complexity measures. Additionally, extending our results to other modal logics,
such as modal logics where Kripke structures are required to be reflexive or
transitive (e.g. T, S4) would be an interesting next step. Another direction
would be to extend this investigation to the multi-agent setting, where more
formula complexity measures can be defined; it is known from the examples
of logics S5 and KD45 that when making the transition from the single- to
the multi agent setting, the picture in terms of computational complexity may
change.
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