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Positive results

• Problem X is tractable.

Negative results

• Problem X is hard.

• An algorithmic meta-theorem is a statement of the form:

“All problems in a class C are tractable”

• Meta-theorems are great! (more in a second)

Main objective of today’s talk: barriers to meta-theorems:

“There exists a problem in class C that is hard”
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• Most famous meta-theorem: Courcelle’s theorem

All MSO-expressible properties are solvable in linear time on graphs
of bounded treewidth.

• Can we do better?

• More graphs?

• Wider classes of problems?

• Faster?

Faster than linear time?

This is the main question we are concerned with today.
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• Courcelle’s theorem:

There exists an algorithm which, given an MSO formula φ and a
graph G with treewidth w decides if G |= φ in time f(w, φ)|G|.

• But the function f is a tower of exponentials!

• Unfortunately, this is not Courcelle’s fault.

Thm: If G |= φ can be decided in f(w, φ)|G|c for elementary f then
P=NP. [Frick & Grohe ’04]

• In fact, Frick and Grohe’s lower bound applies to FO logic on trees!
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This is bad! Can we somehow escape the Frick and Grohe lower bound?

Recently, a series of meta-theorems that evade it give “better” parameter
dependence.

• For vertex cover, neighborhood diversity, max-leaf [L. ’10]

• For twin cover [Ganian ’11]

• For shrub-depth [Ganian et al. ’12]

• For tree-depth [Gajarský and Hliňený ’12]

Predominant idea: Removing isomorphic parts of the graph, when we
have too many

What’s next?
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• In this talk the pendulum swings again.

• Main goal: prove hardness results even
more devastating than Frick& Grohe.

• Motivation: If we know what we can’t
do, we might find things we can do.

Today: Three new hardness results.

• Threshold graphs

• Paths

• Bounded-height trees



Threshold Graphs
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Theorem:

• MSO1 expressible properties can be decided in linear time on graphs
of bounded clique-width [Courcelle, Makowsky, Rotics ’00]

• Trees have clique-width 3.
Frick&Grohe → non-elementary dependence.

• Graphs with clique-width 1 are easy for MSO1.

What about clique-width 2?
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A graph is a threshold graph if it can be constructed with the following
operations:

• Add a new vertex and connect it to everything.

• Add a new vertex and connect it to nothing.

ujuj

Thm: Threshold graphs have clique-width 2.
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We use the following result of Frick& Grohe:

• There is no elementary-dependence model-checking algorithm for
FO logic on binary strings.

Given a string w we construct a threshold graph G

• w : 0 1 1 0. . .

• G : uuj uj ujj ujj uj. . .

This allows us to interpret the string property as a graph question.

Thm: There is no elementary-dependence model-checking algorithm for
FO logic on threshold graphs.
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Recall some of the “good” graph classes we know

• Some are closed under complement (neighborhood diversity,
shrub-depth)

• Some are closed under union (tree-depth)

• None are closed under both operations. . .

Any class of graph closed under both operations
must contain threshold graphs.
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Main question:

• Is there an elementary-dependence algorithm for MSO1 on paths?

Equivalent question:

• Is there an elementary-dependence algorithm for MSO1 on unary
strings?

Why?

• Do Frick and Grohe really need all trees?

• FO is easy on paths.

• MSO is hard on binary strings/colored paths.

• MSO for max-leaf is open!
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• MSO on paths = Regular language over unary alphabet

• FO is easy

• Reduction seems impossible. . .

“Normal” reduction:

• Start with n-variable 3-SAT

• Construct graph G with |G| = nc

• Construct formula φ with |φ| = log∗ n

• Prove YES instance ↔ G |= φ

Problem: New instance would be encodable with O(logn) bits. We are
making a sparse NP-hard language!
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• Motivation: reduction must construct exponential-size graph, so
should be allowed exponential time.
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Key idea: do not use P6=NP but EXP6=NEXP

• Motivation: reduction must construct exponential-size graph, so
should be allowed exponential time.

Plan:

• Start with an NEXP-complete problem and n bits of input.

• Construct a path on 2n
c

vertices.

• Construct a formula φ with |φ| = log∗ n.

• Prove YES instance ↔ G |= φ.

Elementary parameter dependence gives EXP=NEXP.

• Formula will be somewhat larger, but still small enough.
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• Start with an NEXP Turing machine, n bits of input. Does it accept?

• The machine runs in time T = 2n
c

.

• Is there a transcript (of length T 2) that proves acceptance?

• We have to be able to express the property “these vertices are at
distance T ”.

• We have to do it with log∗ n quantifiers.

• This is possible by encoding counting in binary. . .



Consequences

Model Checking Lower Bounds 17 / 22

Unless EXP=NEXP:

• Max-leaf is hard

• Graph classes closed under edge sub-divisions are hard

• Graph classes closed under induced subgraphs with unbounded
(dense)∗ diameter are hard



Trees of bounded height
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This class of graphs is important for two recent meta-theorems:

• Shrub-depth in “When trees grow low: Shrubs and fast MSO1”
[Ganian et al. MFCS ’12]

• Tree-depth in “Faster deciding MSO properties of trees of fixed
height, and some consequences” [Gajarský and Hliňený FSTTCS
’12]

In both cases the main tool is the following:

MSO model-checking for q quantifiers on trees of height h colored with
t colors can be done in exp(h+1)(O(q(t+ q)) time.
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Thm: h+ 1 levels of exponentiation are exactly necessary.

Rough idea: use Frick& Grohe proof for trees, use (few colors) to cut
down their height.

• Start from an n-variable 3-SAT instance.

• Construct a tree of height h. Use t = log(h)(n) colors.

• Construct a formula with q = O(h) quantifiers.

• Prove equivalence between instances.
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Thm: h+ 1 levels of exponentiation are exactly necessary.

Rough idea: use Frick& Grohe proof for trees, use (few colors) to cut
down their height.

• Start from an n-variable 3-SAT instance.

• Construct a tree of height h. Use t = log(h)(n) colors.

• Construct a formula with q = O(h) quantifiers.

• Prove equivalence between instances.

Argument: an algorithm running in exp(h+1)(o(t)) would run in 2o(n) here,
disproving ETH.



Conclusions - Open problems

Model Checking Lower Bounds 21 / 22

• Three natural barriers to future improvements.
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• (Uncolored) tree-depth?

• Height of tower for paths?
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• Three natural barriers to future improvements.

• Paths are probably the toughest to work around.

Future work

• (Uncolored) tree-depth?

• Height of tower for paths?

• Other logics?!?
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Thank you!
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