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Graph decompositions

Treewidth (by Robertson and Seymour) is the
most well-known and widely studied graph
decomposition.

Treewidth describes how much a graph looks
like a tree.

A large number of graph problems can be
solved efficiently (in FPT time) for low
treewidth. (Courcelle’s theorem)

Many equivalent definitions (e.g.
cops-and-robber games, minimum fill-in,
elimination orderings).
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Digraph decompositions

Treewidth is generally considered the right
measure for undirected graphs.

Treewidth can usually be employed for
digraph problems as well: take the tree
decomposition of the underlying undirected
graph.

This solution is not perfect. E.g. ignoring the
direction of edges on a DAG may lead to a
clique (large treewidth). But the problem may
be trivial on DAGs (e.g. Hamiltonian Cycle).
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Digraph decompositions

What is the right treewidth analogue for
digraphs?

Directed treewidth [Johnson et al., 2001]

DAG-width [Obdrzálek, 2006]

Kelly-width [Hunter and Kreutzer, 2007]
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Relations between measures

Directed Treewidth

DAG-width Kelly-width

Directed pathwidth

Cycle rank Hardness results

Algori thms
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Known results

An O(nk) algorithm for Hamiltonian Cycle
where k is the directed treewidth.
[Johnson et al., 2001]

An O(nk) algorithm for parity games where k

is the DAG-width [Obdrzálek, 2006]

A O(nk) algorithms for both where k is the
kelly-width [Hunter and Kreutzer, 2007]

No FPT algorithms are known!
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Our results

MaxDiCut is NP-complete when restricted to
DAGs

Hamiltonian Cycle is W [2]-hard when the
parameter is the cycle rank of the input graph.

Implication:

Both problems are intractable for all
considered complexity measures.
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Hamiltonian cycle

Reduction from Dominating Set.

We are given an undirected graph G and a
number k. Does G have a dominating set of
size k?

Construct a digraph G′. G′ will be Hamiltonian
iff G has a dominating set of size k.

G′ will have small width (a function of k) under
all definitions.
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The reduction

Size Choice Satisfaction

Construction has three parts.
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The reduction

Size Choice Satisfaction

Construction has three parts.

The first part makes sure that G′ can only be
Hamiltonian iff I pick a dominating set of size
k.
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The reduction

Choice Satisfaction...

k vert ices

This is accomplished by using exactly k

vertices.
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The reduction

Choice Satisfaction...

k vert ices

The second part represents a choice of
dominating set.
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The reduction

Satisfaction...

k vert ices

...

n-cycle

This is accomplished by using an n-cycle.

The exit points from the cycle correspond to
vertices in the dominating set.
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The reduction

Satisfaction...

k vert ices

...

n-cycle

Finally, the third part makes sure that the
choice is indeed a dominating set.
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The reduction

...

k vert ices

...

n-cycle

G1 G2 G3 Gn...

n gadgets

This is accomplished by placing a gadget to
check domination for each vertex of G.
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Example
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Suppose that we want to see if this graph has a
dominating set of size 2.
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Example
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2 vertices

6-cycle

G1 G2

6 gadgets

G3 G4 G5 G6
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The satisfaction gadget
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In Out

G1

Vertex 1 can be dominated in 4 ways: by
picking 1,2,3 or 5.

The gadget G1 will have 4 inputs and 4
outputs.
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The satisfaction gadget
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For each input/output point use one vertex.
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The satisfaction gadget
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G1

Connect them in a directed cycle.
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The satisfaction gadget

1

4

5

6

2

3

1

2

3

5

In Out

G1

This makes any Hamiltonian tour of the
gadget exit from the same set of outputs it
entered.
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The satisfaction gadget
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G1

Example: Entering through input point 1.
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The satisfaction gadget
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Entering through input points 1 and 3.
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The satisfaction gadget
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Why this is important: The gadgets maintain
the choices made in the second part of the
graph.
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Full example
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Full construction.

G′ has Hamiltonian cycle for dominating set
2, 5.
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Full example
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G′ has Hamiltonian cycle for dominating set
2, 5.
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Completing the proof

What remains is to show that G′ has small
width.

If we remove the k vertices of the first part,
we are left with an ordered set of n + 1
directed cycles.

Each of these has small width.
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Summary of results

Hamiltonian Cycle MaxDiCut
Treewidth FPT FPT
Dir. Treewidth XP
DAG-width XP
Kelly-width XP
Dir. Pathwidth XP
Cycle rank XP
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Summary of results
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Conclusion

Currently known digraph decompositions
don’t work as well as treewidth.

Why?
Perhaps DAGs are not a good starting
point.
Perhaps different cops-and-robber games
could reveal something interesting.

What if we allow the robber to move
backwards sometimes?

Finding a good treewidth for digraphs is an
interesting open problem.
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Thank You!
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