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Outline

Problem definition and motivation
3
√

3

2
-competitive algorithm for DAGs

Lower bound

3-competitive algorithm for general graphs.

Note: only deterministic algorithms are considered.
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Max (Di) Cut

Input: a (di)graph G with weights on the edges

Goal: divide the vertices into two sets V0,V1 so as to
maximize the total weight of edges going from V0 to V1.

In directed version arcs going from V1 to V0 are not
counted in the cut.
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Known results

Max Cut was one of Karp’s 21 original NP-complete
problems.

Very good SDP-based approximations (1.383 (Goemans
and Williamson) and 1.165 (Feige and Goemans))

Trivial 2 and 4-approximate combinatorial algorithms.

For Max Di Cut combinatorial 2-approximation (Halperin
and Zwick)

Max Di Cut is NP-hard even if restricted to DAGs (last
year’s ISAAC!)

ISAAC 2009 – p. 4/17



Why online?

Disclaimer: No real application is known!

For Max Di Cut it is natural to consider a class of greedy
heuristics

A vertex of high out-degree should be more likely to
be placed in V0.
Specifically, in DAGs, sources should always be
placed in V0.
For subsequent vertices we have a choice between a
certain profit and a potential profit.

This won’t work (the problem is NP-hard). But how bad
is it?
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The online model

Online model: algorithms make local choices based on
the past and vertex degree.

The adversary reveals with each vertex its connections
to previous vertices and its total in and out-degree.

The algorithm then places the vertex in V0 or V1.

For DAGs the adversary must reveal vertices respecting
the topological ordering of the DAG.
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Example – Naive Greedy
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A bird in the hand is worth two in the bush

Naive greedy is bad because it’s too optimistic.

Better to weigh the risks we take. Place a vertex in V0

only if the promised potential profit is at least twice as
much as the certain profit of V1.

Now harder to fool the algorithm to assign a long
string of 0s. The edge weights must increase
exponentially.
Easy to see algorithm is no better that 2-competitive.
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Worst case example
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A bird in the hand is worth λ in the bush

Previous algorithm is 8

3
-competitive.

Natural to optimize the weighing of risk versus payoff.

Optimal value is λ =
√

3 which gives a
3
√

3

2
≈ 2.6-competitive algorithm.
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Lower Bound

Main result: no deterministic algorithm can do better.

Now we play as the adversary and try to force any
algorithm to be λ-competitive.

Strategy: construct a directed path. Weights are
calculated in such a way that if the algorithm places a 1,
we immediately win (OPT ≥ λSOL).

If we can maintain this invariant and the weight
decreases at some point, the algorithm must assign 1
and we win!
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Example: Lower bound of 2
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Tight lower bound

For which λ can the adversary succeed with this
strategy?

We must have wk + wk−2 + . . . ≥ λwk−1 for all k, and wk is
not always increasing.

Cleaner form wk = λ(wk−1 − wk−3). This is not always
increasing for λ < 3

√

3

2
.

Upper and lower bounds match!
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General graphs

Again, weigh certain payoffs twice as much as potential
ones.

This algorithm is a greedy derandomization of the trivial
randomized algorithm.

⇒ 4-competitive

Is this the best we can say?
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3-competitive algorithm for general graphs

Actually, we know that SOL ≥ |E|/4 ≥ OPT/4.

These inequalities cannot be tight at the same time.

Using first inequality and modified arguments from the
case of DAGs we have SOL ≥ OPT/3.

There exists a tight example for this algorithm, but best
lower bound is the one for DAGs.
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Open problems

How to optimize λ for general graphs?

How to close upper-lower bound for general graphs?

Randomized algorithms?

Vertices considered in random order?
Decisions involving randomization based on vertex
degree?
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THANK YOU!
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