DIT948, Lecture 10

Lecture 10: Application Programming Interfaces
1

Instructor: Musard Balliu, musard@chalmers.se

http://www.cse.chalmers.se/~musard


musard@chalmers.se
http://www.cse.chalmers.se/~musard

DIT948, Lecture 10

QUESTIONS?



DIT948, Lecture 10

Plan

» Last time

1. Robot APIs

» Today's Plan:

1. Continue with Robot APIs

2. Graphical User Interfaces



DIT948, Lecture 10

An exploding robot

We'd like to create a bomb (represented by a red Thing. If the
robot comes up on it, it explodes. How can we do this?

Bomb
Solution


code/Bomb.java
code/ExplodingRobot.java

DIT948, Lecture 10

More than one robot

We can try a little game by having two robots moving randomly in
a city with bombs in it:

Who explodes first?

Just uncomment the lines in the main method of
ExplodingRobot.



DIT948, Lecture 10

Threads

Problem: only one robot moves!

The solution is to use threads.

Instances of the interface Runnable have a run method, which,
when started, executes while the rest of the program also continues
to run.

In our case, we want the go of the two robots to execute
simultaneously.



DIT948, Lecture 10

Threads

Therefore, we need a new kind of robot, which implements
Runnable, and has a run method in which we call go.

ThreadedRobot


code/ThreadedRobot.java

DIT948, Lecture 10

GUI and OOP

GUIs are one of the success stories of OOP.

It is relatively easy to see the data and subroutines that “go
together” in the components of a GUI.

In this lecture, we examine the main such components provided by
Java in the context of providing a GUI for the “exploding robots”
application we wrote earlier.



DIT948, Lecture 10

JFrame

The JFrame is the main window and is the component that
interacts with the graphical environment of the operating system.

The other components will be added to the JFrame and be
“insulated” from the external environment.

This is a typical example of OO design, illustrating separation of
concerns, which is a fancy way of saying you shouldn’t have to
keep track of variables you don't need.



DIT948, Lecture 10

Experimenting with JFrame

JFrame documentation

An empty JFrame


http://docs.oracle.com/javase/7/docs/api/javax/swing/JFrame.html
code/EmptyFrame.java

DIT948, Lecture 10

A more reasonable frame

By default, instances of JFrame are neither visible, nor, when
visible, do they go away when you try to close them. We can
extend JFrame and have something more reasonable.

A reasonable frame


code/ReasonableFrame.java

DIT948, Lecture 10

Adding components to a JFrame

Can we put a City in a JFrame?

Try it!


code/CityInFrame0.java

DIT948, Lecture 10

Adding a City to a JFrame

The answer is “no”. We can only add instances of
java.awt.Component to a JFrame (or any other instance of
java.awt.Container), and City is not such an instance.

But we can add a CityView!
Documentation for CityView


http://www.learningwithrobots.com/doc/becker/robots/CityView.html

DIT948, Lecture 10

Adding a CityView to a frame

Problem: the constructor of CityView is protected, which means
we cannot get a CityView directly.

We need to find another way of obtaining a CityView. Examining
the documentation, we hit upon...



DIT948, Lecture 10

Adding a CityView to a frame

RobotUIComponents
We can now add the CityView to our frame.

Code

We still have to specify that the frame should be visible, the size,
and the behaviour on exit. Here we used pack(), which gives the
frame the “natural size".


http://www.learningwithrobots.com/doc/becker/robots/RobotUIComponents.html
code/CityInFrame.java

DIT948, Lecture 10

A remark on OO design

Note that the information about visible streets and avenues which
we use to construct the city is not passed on to
RobotsUIComponents. Therefore we have to pass it ourselves,
explicitely.

This leads to code duplication, so the design of becker.robots
could be improved.

The best way to do that is to subclass City, creating a class
ReasonableCity, for cities that explicitely store that information,
then subclass RobotUIComponents to create a class of
ReasonableRobotUIComponents that extract the information
from reasonable cities and use it to construct the city views.



DIT948, Lecture 10

Adding the Start/Stop button

The CityView does not provide the start/stop button. We need to
obtain it separately.

However, if we try adding to the frame, something unpleasant
happens.

Try it!


code/AddStartStop.java

DIT948, Lecture 10

Using a JPanel

When adding several components, we need to use a panel.

In line with the idea of separation of concerns, the layout of the
various components is taken care of not by the frame, but by a
JPanel.

The panel uses a layout manager in order to keep track of the
components.

There are myriad layout managers. The most common, presented
for example in Eck’s book, are FlowLayout, BorderLayout, and
GridLayout. They last two work well if the components are
relatively balanced in size, which is exactly the case we don't have.

We end up using a BoxLayout.

Try it!


code/LayoutGallery.java

DIT948, Lecture 10

Adding a menu

As always, there are exceptions to what we've just said.

Menus are added to the frame, not to the panel (which makes
sense, given you don't normally see menus in the windows, among
buttons and such).

We shall add a menu with two items: one for restarting or quitting
the game, and one for choosing the number of bombs.

Adding a menu


code/MenuCity.java

DIT948, Lecture 10

Event-driven programming

At the moment, it's not terribly exciting to use the menus.

When the user fumbles about a component, Java creates an
ActionEvent object (which depends on the user action). This
object is then sent to the event-listeners registered for that
component.

Therefore, we need to add event listeners to our menu items.

We start with the easiest: quitting the application.
The listener
Try it!


code/QuitListener.java
code/QuitMenuCity.java

DIT948, Lecture 10

Adding the other listeners

The Restart listener
Try it!

The pattern is always the same:

» the real work is done in the main class, which has access to all
needed data;

> the listener is only used to activate the appropriate method of
the main class;

» therefore, the listener is constructed with a reference to the
main class.

The Settings listener
Try it!


code/RestartListener.java
code/RestartMenuCity.java
code/SettingsListener.java
code/ActiveMenuCity.java

DIT948, Lecture 10

Inner classes

Because these listeners are in general very flimsy and almost always
use a reference to the main class, the Java designers have come up
with “inner classes”. That is, you can define new types inside
other types, with the usual scoping rules: the outer variables and
methods are visible inside, so no need to pass references to the
main class: the appropriate method can be called directly.

Inner class for SettingsListener

I am not a big fan of this idea, for instance because of this.


code/ActiveInnerCity.java

DIT948, Lecture 10

Inner classes

Even more, inner classes can be anonymous. Here is the same code
with an anonymous animal:
Anonymous classes for settings listeners

In this particular example, the advantages of anonymous classes
are not immediately obvious.


code/ActiveAnonCity.java

DIT948, Lecture 10

Choosing a robot

We want to start by asking the user to choose a robot.

The component to use is JOptionPane with the static method
showOptionDialog.

This component does not get added to the frame or the panel!
Moreover, the execution of the application stops while waiting for
an answer.

Once the user has made a choice, the game should start directly.
We can achieve this by “clicking” the Start button from the
program.

Adding an option pane


code/ChooseRobotCity.java

DIT948, Lecture 10

Game over, and restarting

The first robot to trip over a bomb loses. The game should stop,
the user should be shown a dialog informing him of the result and
asking whether to stop or to restart.

We can stop the game by again “pressing” the Start button.

To display the correct result, the robot must know whether it was
chosen by the user. To restart or quit the game, the robot must,
just like a listener, have a back reference to the main class.

Finally, the “identity” of the robot (i.e., chosen by the user or not),
must be initialized in the chooseRobot () method of the main
class.
The new game robot
The main game class


code/GameRobot.java
code/Game.java

DIT948, Lecture 10

Homework

» Create the reasonable components discussed in the slide A
note on OO design.

» Modify the game so that the robots are placed randomly in
the city, but never directly on top of a bomb.

» Read Chapter 6 (minus section 6.2) of Eck's book

» Read section 3.5.2 in Becker's book (about threads)



