
DIT948, Lecture 4

Lecture 4: Programming in the Large I

Instructor: Musard Balliu, musard@chalmers.se

http://www.cse.chalmers.se/~musard

musard@chalmers.se
http://www.cse.chalmers.se/~musard


DIT948, Lecture 4

QUESTIONS?



DIT948, Lecture 4

Plan

I Last time

1. conditionals: if and switch
2. loops: for and while

I Today’s Plan:

1. subroutines

2. arrays



DIT948, Lecture 4

Minimum of three numbers

Let us revisit the problem of computing the minimum of three
numbers.

We can start with the observation that the minimum of n1, n2,

n3 is the minimum of n1 and the minimum of n2 and n3.

This leads to the following code:
New Min3 program

The problem is that we have basically copied the code from the
Min2.java twice.

code/Min3.java


DIT948, Lecture 4

Ordering three numbers

Similarly, let us revisit the problem of ordering three numbers n1,

n2, n3 in ascending order.

We observe that the first number must be the minimum of n1,
n2, n3. We compute that minimum and swap it with n1.

Now we know that n1 contains the minimum, so the middle
number should be the minimum of n2 and n3. We compute that
and swap it with n2. After that, n3 must be the largest number of
the three.

This leads to the following code: New Order3 program

Now we have copied the code from Min2 and Swap1 three times!

code/Order3.java


DIT948, Lecture 4

Integer expressions

Still, with the means at our disposal, we cannot do better. We
must change the values of the numbers, and we can only do that
by means of assignments of the type

min = intExpression

The intExpression can be something like n1 + n2 or n1 % n2,
but we have no intExpression that gives us the minimum of n1
and n2.



DIT948, Lecture 4

Subroutines

With subroutines, we can extend the set of allowed expressions.

For example, just as we have an expression that gives us the sum
n1 + n2, we can introduce an expression min(n1, n2) which has
as value the minimum of n1 and n2.



DIT948, Lecture 4

Subroutines

The general form of a subroutine is

typeS name(type1 arg1, type2 arg2, ..., typeN argN) {

statements

}

Magic: We always have to prefix the whole by static (will be
explained next time).

This extends the expressions of type typeS with a new one, namely

name(x1, x2, ..., xN)

The subroutine must end with a statement of the form

return x;

where x has type typeS. (There is one exception we’ll see later.)



DIT948, Lecture 4

Subroutines

The semantics of

x = name(x1, x2, ..., xN)

is:

{ // A new block is started!

type1 arg1 = x1;

type2 arg2 = x2;

// ...

typeN argN = xN;

statements; // subroutine block statements

} // The new block has finished

// arg1, ..., argN no longer in scope!

x = returned value // (last statement in block)



DIT948, Lecture 4

Subroutines

The number of arguments of a subroutine, N, can be 0. For
example, a subroutine to model a dice roll would have the signature

int roll()

Additionally, we can have subroutines that return “nothing”. For
example, a subroutine that prints a given message on the screen
(like println). In this case, the return type is void, and the last
statement can be something other than return (a return by
itself is also a legal way to end such a subroutine).



DIT948, Lecture 4

Subroutine exercises

Write subroutines to

1. calculate the minimum of two numbers

2. calculate the minimum of three numbers

3. calculate the maximum of two numbers

4. calculate the maximum of three numbers

5. calculate the middle of three numbers

Initial code
Solution

code/Sub3.java
code/Sub3Sol.java


DIT948, Lecture 4

An impossible exercise

Write a subroutine which swaps the values of its arguments, i.e.:

void swap(int x, int y){

}

// assume x = X and y = Y

swap(x, y);

// x = Y and y = X

This cannot be done, because inside the subroutine we only have
access to the values of x and y, not the names themselves.



DIT948, Lecture 4

Arrays

Arrays do for data what loops do for code: they make it possible
for us to work with huge quantities of data without having to
address each piece individually.

Arrays allow us to introduce a number of variables of the same
type in one go, corresponding to the common mathematical usage
“let x0, x1, . . . , xn−1 be n variables of type type”. (Note that the
numbering starts with zero).

The type of the variables must be the same. The n variables are
also called array elements. n is referred to as the size of the array.



DIT948, Lecture 4

Arrays

The general form of an array declaration is

type[] arrayName;

This is read as “arrayName will be used to refer to several variables
arrayName0, arrayName1, . . . , arrayNamen−1, all of type type”.

In Java, instead of arrayNamek , we write arrayName[k]. This is
known as indexing.



DIT948, Lecture 4

Initializing arrays

Before initializing an array, its size n must be known and enough
space must be allocated to store the values of the variables. The
general form of this instruction is:

arrayName = new int[n];

The array elements can then be initialized individually, by
assignment. For example:

for(int i = 0; i < n; i++)

arrayName[i] = expression;

is a common way of initializing the array elements.



DIT948, Lecture 4

Array initialization

Example:

Create an array x of 100 elements, such that x[i] = i * i.
Initial code

Solution

code/ArrayInit.java
code/ArrayInitSol.java


DIT948, Lecture 4

Array initialization

If the array is small and the values of the array variables are
known, then the array can be initialized by enumeration at the
same time with the declaration. For example:

char[] grades = {’A’, ’B’, ’C’, ’D’, ’E’};

This line declares the variable grade of type char[] (array of
characters) and initializes the array elements with the given
characters, in the order given.

Values lists can also be used outside declarations, but in
conjunction with memory allocation:

char[] grade;

// grade = {’A’, ’B’, ’C’, ’D’, ’E’}; Error!

grade = new char[] {’A’, ’B’, ’C’, ’D’, ’E’}; // OK



DIT948, Lecture 4

char[] versus String

In some languages, char[] and String are synonymous or at least
closely related. In Java, that is not the case. In particular, you
cannot index a string, or use .length to find out its length.

The main operation on strings is concatenation, which we have
used many times already in printing messages to the screen. The
important thing to know is that “adding” a string to something,
e.g. an integer, will result in the concatenation of that string with
a textual representation of that something. Thus

"x = " + 4 evaluates to the string "x = 4"

"x = " + 2 + 2 evaluates to "x = 22"

"x = " + (2 + 2) evaluates to "x = 4".



DIT948, Lecture 4

Array exercises

1. By default, printing an array will just print a less-than-helpful
representation. Write a subroutine to convert an array of
integers to a string representation, with the values of the array
elements appearing between square brackets, separated by
commas.

Initial code
Solution

2. Write a subroutine to compute the minimum of an array.
Initial code

Solution

code/PrintArray.java
code/PrintArraySol.java
code/MinArray.java
code/MinArraySol.java


DIT948, Lecture 4

Exercises

Make sure you understand and can compile and run all the
examples and exercises from this lecture.

Read sections 4.1, 4.3, and 4.4 from Eck’s book.


