
DIT948, Lecture 7

Lecture 7: Advanced Object-Oriented
Programming I

Instructor: Musard Balliu, musard@chalmers.se

http://www.cse.chalmers.se/~musard

musard@chalmers.se
http://www.cse.chalmers.se/~musard


DIT948, Lecture 7

QUESTIONS?



DIT948, Lecture 7

Plan

I Last time

1. introduction object-oriented programming
2. classes and objects

I Today’s Plan:

1. access modifiers

2. inheritance

3. interfaces and abstract classes



DIT948, Lecture 7

Access modifiers: public vs private

Java has an additional mechanism for controlling scope, both at
the level of types and at the level of variables and methods.

This is done by adding a keyword to the standard declarations.
The absence of such a keyword is also significant! (more on this in
coming lectures)



DIT948, Lecture 7

Access modifiers for fields and methods

In the following, we consider fields and methods of class T.

If a member variable or method declaration is preceded by the
keyword public, as in

public int goals;

public int roll();

then that member variable or method can be brought in scope in
the usual way from any class in which the type T is accessible (i.e.,
if we have an instance x of type T, we can use x.goals or
x.roll()).



DIT948, Lecture 7

Access modifiers for fields and methods

If a member variable or method declaration is preceded by the
keyword private, as in

private int goals;

private int roll();

then that member variable or method is only in scope in class T.
private variables cannot be brought in scope in any other class.



DIT948, Lecture 7

The private modifier

It is a common mistake to confuse a restriction in scope (a static
property) with a restriction in object behaviour (a dynamic
property).

It might appear that a private field of an object cannot be
modified by other objects. That, however, is a statement about
run-time occurrences, whereas private is about static matters.
Not surprisingly, the statement is false. An instance of a class has
access to all fields of another instance of the same class.

What does the following code do?
Solution.

code/PrivateExample.java
code/PrivateExampleSol.java


DIT948, Lecture 7

The static modifier

In the general case, each object will have its own copy of the value
of a field or the body of a method.

However, if the field or method has been declared static, then its
value or body will be shared by all objects. In other words, it will
be independent of the existence of individual instances.

We have often used such fields and methods, for example:

Math.sqrt()

Arrays.sort()

System.out.println()

and, of course

public static void main(String[] args)



DIT948, Lecture 7

The static modifier

Because static fields and methods are independent of any object,
they behave similarly to variables and subroutines in the classical
programming languages.

That is why, in the beginning, we prefixed everything with static.

Magic is now solved!



DIT948, Lecture 7

Inheritance

Until now, we could only reuse code by packaging it in
subroutines/methods.

Classes allow us to reuse code by:

1. creating new datatypes on the basis of existing datatypes, i.e.
which have all the fields of an existing datatype without the
need for cut-’n-paste;

2. treating instances of these new types as instances of the types
they are based on, so they can be used in existing methods.



DIT948, Lecture 7

Inheritance syntax

If A is a class, then

class B extends A {

// new fields

// ...

// new methods

}

will create a new datatype B, which, in addition to the new fields
and methods will also contain all the fields and methods of A. That
means that a new method in B has in scope all new fields and new
methods, and all the fields and methods in A.

The fields and methods of B are in a new block, those of A in an
enclosing block. That means that, according to the scoping rules,
new fields and methods with the same name will shadow the old
ones. This is called overriding.



DIT948, Lecture 7

Inheritance: “is a”

Instances of type B can then be used in any context in which an
instance of type A can be used. We say, abusively, that an instance
of B “is an” A.

In particular, if a variable a has been declared to be of type A, it
can be assigned an expression of type B:

A a;

a = new B();



DIT948, Lecture 7

Example: extending Player

Let us first consider the simple Player class, with no constructor.

We might want, in addition to name and number of goals, to also
take into account the number of games played.

“Old style” we could only do this by adding a field games directly
to the Player class, or by creating an entirely new type with a
field of type Player and a games field.

The disadvantage of the first approach is that we need to
recompile all the libraries using the old version of Player. The
disadvantage of the second approach is that none of the existing
functions would work with the completely new type.

By extending the Player class, we avoid both disadvantages!

Simple player class
Extended class and exercises

Solutions

code/Player.java
code/PlayerG.java
code/PlayerGSol.java


DIT948, Lecture 7

Inheritance and constructors

If class B extends class A, then it inherits the fields and methods of
A. When a value of type B is created, these fields and methods
must also be created.

As we have seen, creation of fields and methods is done via
constructors, either default, provided by Java, or explicit, provided
by us.

For example, when ibrahimovic = new PlayerG(); above is
executed, first the default constructor of Player is called, then the
fields of PlayerG are allocated and initialized to default values.



DIT948, Lecture 7

Inheritance and constructors

However, if we had extended PlayerC instead of Player, then
there would have been no default constructor for the base class,
and we would have an error.

Therefore, we either have to implement a constructor with no
arguments in class Player, or an explicit constructor in class
PlayerC.

In any constructor of a derived class, the first thing to be executed
is a call to the constructor of the base class. This call must always
be written as the first statement in the derived class constructor!
(Exception: when the base class has a constructor with no
arguments, in which case a call to it is automatically inserted by
the compiler.)



DIT948, Lecture 7

super

The call to this constructor cannot have the form A(); (e.g.
PlayerC("Ibrahimovic", 5);) because such a statement will
return a new value of type A, when in fact we want it to allocate
and initialize the fields of the value we are in the process of
constructing!

The correct syntax is
super(arg1, ..., argN);

The keyword super refers to the superclass. In case any fields of
the superclass are shadowed in the baseclass, it also allows us to
access them. For example, if both the superclass and the subclass
contain a method m(), then, inside the subclass, a call to m() will
refer to the local, subclass method. To call the superclass method,
we use super.m().



DIT948, Lecture 7

Example

Simple player with constructor
Extended class and exercises

Solutions

code/PlayerC.java
code/PlayerCE.java
code/PlayerCESol.java


DIT948, Lecture 7

The class Object

If a class could extend more than one class, ambiguities would arise
if fields or methods with the same name existed in the extended
classes. In Java, you are only allowed to extend at most one class.

In fact, when creating a new datatype, you are always extending
one class. Either explicitly, using extend, or implicitly. Java will
insert an extends Object in all class declaration that do not
contain an explicit extends.

Thus, an instance of any class “is an” Object, and inherits
directly or indirectly all the fields and methods of Object.



DIT948, Lecture 7

The class Object

The class Object contains a few fields and methods which are
basic for any values of any type. For us, the most important are
toString() and equals(Object).

toString() creates a string representation of an instance of the
object. This is, in fact, how such a “general” method as
System.out.println() can exists: its argument is an instance of
Object and it uses the toString() method of that instance.



DIT948, Lecture 7

Overriding

For most new types, the inherited toString() method will not
yield good results. For example, if we try to print an instance of
our PlayerC class, we obtain something like

PlayerC@e51510

In order to obtain a better result, we must override the
toString() method, by creating a new method with the exact
signature as toString().

As explained before, since we will have two methods with the same
signature, the new one will shadow the outer one.



DIT948, Lecture 7

Overriding toString()

As an example, let us override the toString() method for the
PlayerC class.

We can do this by adding a toString() method to the Player

class we already have.

public class PlayerC {

String name;

int goals;

//...

public String toString() {

return name + " " + goals;

}

}



DIT948, Lecture 7

Overriding toString()

Now, when we execute

PlayerC ibrahimovic = new PlayerC("Ibrahimovic", 5);

System.out.println(ibrahimovic);

we obtain

Ibrahimovic 5



DIT948, Lecture 7

Extending PlayerC

Instead of adding the new toString() method to Player, we can
create a new class, PrintablePlayer which extends PlayerC.

public class PrintablePlayer extends PlayerC {

public PrintablePlayer(String name, int goals) {

super(name, goals);

}

public String toString() {

return name + " " + goals;

}

}

Remark: notice the use of super in the constructor!
Exercise: what does the code in the main method do?

The PrintablePlayer class.
Solution.

code/PrintablePlayer.java
code/PrintablePlayerSol.java


DIT948, Lecture 7

Interfaces and abstract classes

Now that we can put players in an array, we want to sort the array.

The Arrays class in Java provides many sorting routines, but, of
course, none that has a PrintablePlayer as argument. Instead,
they can sort instances of Object.

However, in order to sort objects, one has to be able to compare
them. But there is no corresponding method in Object, since
there is no default way of comparing arbitrary objects and deciding
which is “better”.



DIT948, Lecture 7

Interfaces and abstract classes

One possibility would have been to create an abstract class to
represent objects that can be compared. An abstract class is a
type for which no instances can be created, because in general it
will have “holes”.

The holes are methods which are only declared, not defined. They
must be prefixed with the keyword abstract. For example:

public abstract class Ordered {

public abstract int compareTo(Object other);

}



DIT948, Lecture 7

Interfaces and abstract classes

Subclasses of Ordered must then define compareTo or be declared
abstract themselves.

The sorting method can then be written to work with instances of
Ordered subclasses of Ordered. Note that no instances of
Ordered as such can exist, but every instance of a subclass of
Ordered “is an” Ordered.



DIT948, Lecture 7

Interfaces and abstract classes

This is not the approach actually used in Java. That is because, in
a system which only supports single inheritance, every time the
user is required to extend a class, a new level is added to the class
hierarchy. This leads to deep hierarchies, which are sometimes
difficult to work with.

In order to avoid this, Java provides an additional mechanism
which can be used in situations in which a base class only specifies
the required signature of methods, but does not implement
anything itself. Instead of a class (or an abstract class), one uses
an interface.

Interfaces are similar to abstract classes, in that they can have no
instances. Also, none of the methods may have implementations.
Interfaces just collect method declarations.

Since interfaces do not contain any definitions, there is no possible
ambiguity in implementing them, and a class can implement any
number of interfaces simultaneously.



DIT948, Lecture 7

Interfaces and abstract classes

For example, here is the Java interface for objects that can be
compared:

public interface Comparable<T> {

public int compareTo(T o);

}

This interface uses generics: when implementing the interface, we
need to specify the type T of objects which we can compare with
instances of our class. For example, here is the code which allows
us to sort PrintablePlayers:

The PrintablePlayers with order.

code/PrintablePlayerO.java


DIT948, Lecture 7

Interfaces and abstract classes

The version we have seen has many flaws. First, we are not really
sorting PrintablePlayers, but rather PrintablePlayerOs.
Second, what happens if we want to sort according to the number
of goals scored, instead of name? We’d need yet another class,
PrintablePlayerOG.

The Arrays class provides another solution: a sort using a
Comparator:

public interface Comparator<T> {

int compare(T o1, T o2);

boolean equals(Object obj);

}

Classes which implement Comparator<T> define a way in which
objects of type T can be compared. (By the way, since Object

defines a default equalsTo, only the implementation of compare
is required).



DIT948, Lecture 7

Interfaces exercises

Using comparators, we can sort PlayerC instances directly,
without having to create new types. Moreover, we can have one
comparator for sorting by name, and another for sorting by goals.

Exercise: implement the two comparators and use them to sort a
list of players.

Initial code.
Solution for comparison by name.

Solution for comparison by goals scored.

code/TestPlayerComp.java
code/CompByName.java
code/CompByGoals.java


DIT948, Lecture 7

Homework

Read section 5.5 of David Eck’s book.


