DIT948, Lecture 8

Lecture 8: Advanced Object-Oriented
Programming |l

Instructor: Musard Balliu, musard@chalmers.se

http://www.cse.chalmers.se/~musard


musard@chalmers.se
http://www.cse.chalmers.se/~musard

DIT948, Lecture 8

QUESTIONS?



DIT948, Lecture 8
Plan
» Last time
1. access modifiers
2. inheritance
3. interfaces and abstract classes
» Today's Plan:

1. packages

2. modifiers



DIT948, Lecture 8

Packages

So far, we have discussed in detail the scope of variables.
The question is: is there a scope of types?

In Java, types are organized in packages. Packages are organized
similarly (and are related to) the directories in which the compiled
classes are stored.

In general, a type will not be in scope, unless explicitely brought in
scope. Exceptions: the primitive types, the types in the java.lang
package, and the types in the same package are always in scope.



DIT948, Lecture 8

Packages

A package has the form levell.level2...levelN. This
corresponds roughly to classes compiled in the directory levelN,
which is a subdirectory of levelN-1, which is a subdirectory of ...,
which is a subdirectory of 1evel2, which is a subdirectory of
levell. (In most cases, N is not larger than three.)

Assume we want to bring a class T which is part of the package
A.B.C. We can do this in a way similar to accessing the fields of a
class:

A.B.C.T x = new A.B.C.T();
x.varl = 3;

A.B.C.T is called the fully qualified name of the type T.

Example: Using Random


code/ScopeRandom.java

DIT948, Lecture 8
Bringing types in scope: import

Accessing types by their fully qualified names is awkward. It is
usually easier to use an import statement.

Import statements are of the form:

1. individual import of a class: import java.util.Random;
The only class brought in scope is java.util.Random, and it
can be used throughout the class by its name Random.

2. import of all the classes in a package: import java.util.x*;
All the classes in the package java.util are brought in
scope, and can be used by their name (e.g. Random,
Scanner,...).

Import statements must be put outside the class declaration, at
the top of the file.



DIT948, Lecture 8

Adding a class to a package

To add a class to a package A.B.C you must do two things:

1.

insert the line

package A.B.C;

at the top of the file, before the import statements and the
class definition, and

make sure that the file is in the proper place. In principle, that
means the file should be in a directory C, which is inside B,
which is inside A; but the actual details are a matter of the
programming environment and are outside the scope of our
discussion.



DIT948, Lecture 8

The default package

If there is no package declaration, a class is placed by default in
the nameless packages.

This package is associated with the current directory. All classes
compiled in the current directory will be in scope.

The problem is that classes in the nameless package cannot be
brought in scope for classes in other packages. For these would
have to use either the fully qualified name, or the package name,
but neither exists.

Hence, only “throwaway” code is usually placed in the default
package (e.g. code written to test ideas or explain a point).



DIT948, Lecture 8

Access modifiers

Java has an additional mechanism for controlling scope, both at
the level of types and at the level of variables and methods.

This is done by adding a keyword to the standard declarations.
The absence of such a keyword is also significant!



DIT948, Lecture 8

Access modifiers for types

If you put the keyword public in the beginning of a class
declaration, as in

public class Player {

then the type Player can be brought in scope in the usual way in
any other class.

If, however, the keyword is missing, as in
class Player {

then the type Player will only be in scope for classes in the same
package as Player (i.e., for those classes for which it is
automatically in scope).

Notice that a public class in the default (nameless) package still
can't be brought in scope for a class in another package, although
for different reasons (see above).



DIT948, Lecture 8

Access modifiers for types

Remark: the default access (no keyword) is called package-private.

Question: can a type be out of scope for classes in the same
package?
Answer.


PackagePrivate.txt

DIT948, Lecture 8

Access modifiers for fields and methods

In the following, we consider fields and methods of class T.

If a member variable or method declaration is preceded by the
keyword public, as in

public int goals;
public int roll();

then that member variable or method can be brought in scope in
the usual way from any class in which the type T is accessible (i.e.,
if we have an instance x of type T, we can use x.goals or
x.r0ll1Q)).



DIT948, Lecture 8

Access modifiers for fields and methods

If a member variable or method declaration is preceded by the
keyword protected, as in

protected int goals;
protected int rollQ);

then that member variable or method can be brought in scope in
the usual way only from classes in the same package as T and in
subclasses of T (which could be in a different package).



DIT948, Lecture 8

Access modifiers for fields and methods

If a member variable or method declaration is preceded by the
keyword private, as in

private int goals;
private int rollQ);

then that member variable or method is only in scope in class T.
private variables cannot be brought in scope in any other class,
irrespective of whether it is in the same package or not, or whether
it's a subclass of T or not.



DIT948, Lecture 8

Access modifiers for fields and methods

Finally, if a member variable or method declaration is preceded by
no keyword, as in

int goals;
int roll();

then that member variable or method is only in scope in classes
from the same package as T. It cannot be brought in scope in a
class, from a different package, irrespective of whether it's a
subclass of T or not.

Remark: the default (no keyword) access is called package private,
just as in the case of types.



DIT948, Lecture 8

The private modifier

It is a common mistake to confuse a restriction in scope (a static
property) with a restriction in object behaviour (a dynamic

property).

It might appear that a private field of an object cannot be
modified by other objects. That, however, is a statement about
run-time occurrences, whereas private is about static matters.
Not surprisingly, the statement is false. An instance of a class has
access to all fields of another instance of the same class.

What does the following code do?
Solution.


code/PrivateExample.java
code/PrivateExampleSol.java

DIT948, Lecture 8

Non-scope-related modifiers

We have already discussed the abstract keyword which applies to
classes (which then cannot be instantiated) and methods (which
then are left undefined).

There are two additional non-scope-related modifiers, which apply
to fields and methods: final and static.

A method which is declared final in a class cannot be overridden
in the subclasses. For example, in order to ensure that a certain
quantity will always be computed in the correct way.

A field which is declared final cannot be modified (and therefore
must be assigned a value), but it can be shadowed in a subclass.



DIT948, Lecture 8

The static modifier

In the general case, each object will have its own copy of the value
of a field or the body of a method.

However, if the field or method has been declared static, then its
value or body will be shared by all objects. In other words, it will
be independent of the existence of individual instances.

We have often used such fields and methods, for example:

Arrays.sort ()
System.out.println()

and, of course

public static void main(String[] args)



DIT948, Lecture 8

The static modifier

Because static fields and methods are independent of any object,
they behave similarly to variables and subroutines in the classical
programming languages.

That is why, in the beginning, we prefixed everything with static.



DIT948, Lecture 8

Object-oriented design

The package mechanism and the access modifiers allow a
fine-grained control over what a class exports to other classes, i.e.,
what is introduced in the scope of an other class which imports it.

The elements which are exported form the interface of the class
(note the name-clash with interface). As long as the interface of
a class does not change, any program using the class will remain
unaffected by changes in the implementation.



DIT948, Lecture 8

Object-oriented design

Because of this, object-oriented programming languages are
suitable for large-scale development, where several programmers
have to work together on a system. As long as the interfaces are
well-defined, each programmer can work independently of the rest.

However, knowing how to split as system in such interfacing units
is non-trivial (often more difficult than designing algorithms). This
is the subject of the (vast) literature on object-oriented
methodology.



DIT948, Lecture 8

Elementary rules of object-oriented design

1. Export as little as possible (do not pollute the namespace of
your clients with redundant expressions).

2. Prefer exporting methods to exporting variables; use get and
set methods to access variables;

3. If you have difficulties documenting your interfaces clearly and
concisely, then your interface design is probably wrong;

4. Keep your class hierarchies simple: if you have a superclass
which can only have one kind of subclass, the two probably
belong together.

There are many such rules: the best guide remains experience.



DIT948, Lecture 8

Homework

Read section 4.5 and once again section 5.5 of David Eck’s book.



