
Silent Spring: Prototype Pollution Leads to Remote Code Execution in Node.js

Mikhail Shcherbakov
KTH Royal Institute of Technology

Musard Balliu
KTH Royal Institute of Technology

Cristian-Alexandru Staicu
CISPA Helmholtz Center for Information Security

Abstract
Prototype pollution is a dangerous vulnerability affecting
prototype-based languages like JavaScript and the Node.js
platform. It refers to the ability of an attacker to inject prop-
erties into an object’s root prototype at runtime and subse-
quently trigger the execution of legitimate code gadgets that
access these properties on the object’s prototype, leading to
attacks such as Denial of Service (DoS), privilege escalation,
and Remote Code Execution (RCE). While there is anecdo-
tal evidence that prototype pollution leads to RCE, current
research does not tackle the challenge of gadget detection,
thus only showing feasibility of DoS attacks, mainly against
Node.js libraries.

In this paper, we set out to study the problem in a holistic
way, from the detection of prototype pollution to detection
of gadgets, with the ambitious goal of finding end-to-end
exploits beyond DoS, in full-fledged Node.js applications.
We build the first multi-staged framework that uses multi-
label static taint analysis to identify prototype pollution in
Node.js libraries and applications, as well as a hybrid ap-
proach to detect universal gadgets, notably, by analyzing the
Node.js source code. We implement our framework on top
of GitHub’s static analysis framework CodeQL to find 11
universal gadgets in core Node.js APIs, leading to code exe-
cution. Furthermore, we use our methodology in a study of 15
popular Node.js applications to identify prototype pollutions
and gadgets. We manually exploit eight RCE vulnerabilities
in three high-profile applications such as NPM CLI, Parse
Server, and Rocket.Chat. Our results provide alarming evi-
dence that prototype pollution in combination with powerful
universal gadgets lead to RCE in Node.js.

1 Introduction

In recent years we have seen a growing interest in running
JavaScript outside of the browser. A prime example is Node.js,
a popular server-side runtime that enables the creation of
full-stack web applications. Its package management system,

NPM, is the world’s largest software repository with millions
of packages. Researchers have studied this ecosystem exten-
sively to discover several security risks [14,20,31,44–47,51],
showing that these risks are further exacerbated by the inter-
connected nature of the ecosystem [52]. While most prior
work focuses on libraries, the problem of automatically de-
tecting vulnerabilities in Node.js applications is still open.

Prototype pollution is a JavaScript-driven vulnerability that
manifests itself powerfully in the Node.js ecosystem. The
vulnerability is rooted in the permissive nature of the lan-
guage, which allows the mutation of an important built-in
object in the global scope – Object.prototype – called the
root prototype. JavaScript’s prototype-based inheritance en-
ables accessing this important object through the prototype
chain. Thus, attackers can instruct vulnerable code to mutate
the root prototype by providing well-crafted property names
to be accessed at runtime. As a consequence, every object
that inherits from the root prototype, i.e., the vast majority
of objects in the runtime, inherits the mutation on the root
prototype, e.g, an attacker-controlled property. This vulner-
ability was first introduced by Arteau [12], showing that it
is a widespread problem in Node.js libraries. Recently, Li et
al. [31,32] explore static analysis to detect prototype pollution
vulnerabilities using object property graphs.

The few prior works [25, 27, 31, 32, 51] on prototype pol-
lution consider a successful attack any mutation of the root
prototype. An immediate consequence of such mutations is
Denial of Service (DoS) due to the overwriting of important
built-in APIs, e.g., toString. By contrast, our work studies
the implications of prototype pollution beyond DoS. In par-
ticular, we propose a semi-automated approach for detecting
Remote Code Execution (RCE) vulnerabilities pertaining to
prototype pollution. While there is anecdotal evidence about
the possibility of such attacks [5, 12], we are the first to pro-
pose a principled and systematic approach to detect them. Our
key focus is on gadget identification and end-to-end exploita-
tion which no prior work has addressed thoroughly.

Moreover, we note the important similarities between ob-
ject injection vulnerabilities (OIVs) [17, 41] and RCEs based

on prototype pollution. These attacks work in two stages: (1)
there is an untrusted flow from an application’s untrusted entry
points to an injection sink, e.g., the property of an object; (2)
there is a gadget that further propagates the attacker-controlled
data from the injection sink to a security-relevant attack sink.
In analogy, the attacker loads the gun in stage one (by placing
the payload into the injection sink), while letting someone
else (a gadget) pull the trigger in stage two and carry out the
attack (through an attack sink). We propose calling the class
of OIVs pertaining to prototype pollution, prototype-based
object injection vulnerabilities (POIV).

In statically-typed languages, OIVs are enabled by inse-
cure deserialization, which allows instantiating objects of an
unexpected type, thus triggering otherwise unused methods.
Similarly, in a duck-typed language like JavaScript, if an at-
tacker mutates the root prototype, they change the dynamic
type of multiple objects in the runtime. This in turn activates
otherwise unused code paths that correspond to the new type,
e.g., object foo having a property bar defined. Thus, code
reuse is done at a finer granularity and in a less localized
manner in dynamically typed languages. We also note that at-
tackers can mutate several properties at once, hence chaining
gadgets in the fashion of property-oriented programming [17].

Our technical contribution is a multi-staged framework that
uses multi-label static analysis for detecting prototype pollu-
tion, and a hybrid solution, i.e., combining dynamic and static
analysis, for detecting gadgets. We observe that code patterns
that lead to prototype pollution, i.e., injection sinks, are rather
rare in real-world code. Thus, different from prior work, we
propose tuning the static analysis for improved recall, rather
than precision. Additionally, to emphasize the feasibility of
the attack, we detect universal gadgets in Node.js’ source
code, which can be exploited in a wide-range of applications
as they come packaged with the Node.js runtime.

Drawing on security advisories [10], we aggregate a set of
100 vulnerable packages, which we use to design and validate
our pollution detection analysis. In comparison with the state-
of-the-art tool ODGen [32], we empirically show that one can
significantly increase recall and scalability, while only paying
a modest decrease in precision.

We then design and evaluate our novel gadget detection
analysis against four widely-used APIs for handling code or
command execution in Node.js. We find a total of 11 gadgets
that can be triggered during typical execution of these APIs.
While some gadgets enable code injection directly, others
allow attackers to load arbitrary files from the disk into the
runtime, by confusing the module resolution mechanism. We
also conduct a quantitative study on packages to estimate the
prevalence of these gadgets in the Node.js ecosystem. We
believe that we are the first to show evidence that control flow
can be hijacked in this way in Node.js, further emphasizing
the dangers of shipping unused code with applications [28].

Finally, we analyze 15 popular Node.js applications, re-
porting on the effort to finding RCE with our methodology.

We identify eight exploitable RCE vulnerabilities in highly-
popular applications such as NPM CLI, Parse Server and
Rocket.Chat. We have responsibly disclosed these critical
vulnerabilities to developers and they are now fixed, acknowl-
edging our contributions with a high-severity advisory (e.g.,
CVE-2022-24760) and bug bounties.

Contrary to established recommendations, this work em-
braces false positives. We show that a motivated attacker can
sieve through the manageable amount of false positives to
find critical zero-day exploits against well-tested, mature ap-
plications. We believe that vulnerability detection tools tuned
for offensive security can afford this luxury due to the high
return on investment provided by a single true positive.

In summary, the paper offers the following contributions:

• We are the first to study the impact of prototype pollution
vulnerabilities in full-fledged Node.js applications, beyond
denial-of-service attacks.

• We present a principled approach for detecting RCE vul-
nerabilities that are enabled by prototype pollution.

• We show that our pipeline is directly applicable to real-
world code: we find 11 universal gadgets in Node.js’ source
code and eight RCEs in popular applications.

• We provide initial evidence that unused code shipped with
the application, e.g., third-party dependencies, can be lever-
aged as part of code reuse attacks in Node.js.

2 Context and Technical Background

This section provides background information and discusses
the targeted threat model.

2.1 Prototype-based OIV
Prototypes are a key feature to implement inheritance of
JavaScript properties and methods to form a prototype chain.
When creating an empty object, e.g., const obj = {}, it al-
ready contains many built-in properties and functions, for
instance, the toString function. When invoking toString
on an object, the runtime engine will first check if the function
is explicitly defined for the given object. If not, it will recur-
sively look for its definition on the object’s prototype chain.
Unfortunately, most objects share the same root prototype.
For example, all objects created via the literal {} or the new
Object() constructor share the same prototype unless it is
explicitly overridden. The following code snippet illustrates
the problem:

1 const o1 = {};
2 const o2 = new Object();
3 o1.__proto__.x = 42;
4 console.log(o2.x);

Although objects o1 and o2 are unrelated, their prototype
properties __proto__ point to the same object. In fact, if we
add the new property x to the prototype of object o1 it will

also affect object o2, resulting in a print of value 42 to the
console. Therefore, if we modify the root prototype shared by
different objects, all these objects will reflect the modification.

We now explain the two stages needed to carry out a
prototype-based attack that leads to code execution.

Stage 1: Polluting the prototype. Listing 1 shows a con-
trived example to illustrate key ingredients defining an injec-
tion sink in a POIV. We assume that the attacker controls all
three arguments of function entryPoint. The first ingredient
is an object that inherits a prototype that the attacker wants
to pollute, as shown by the object in line 2, which inherits
Object.prototype.

1 function entryPoint(arg1 , arg2 , arg3) {
2 const obj = {};
3 const p = obj[arg1];
4 p[arg2] = arg3;
5 return p; }

Listing 1: Prototype pollution example

The second ingredient is the attacker-controlled access to
the prototype property, as shown in line 3 via the bracket
notation. The attacker can pass __proto__ to arg1 to store
Object.prototype in variable p. The last two ingredients re-
quire creating a target property in the prototype and assigning
an attacker-controlled value. In fact, line 4 assigns an attacker-
controlled value to a property of Object.prototype. Since
the attacker controls arg2 and arg3, they can write any value
to any property. The JavaScript engine will create a new prop-
erty, if such property does not exist. In general cases, the
attacker cannot fully control all the ingredients, e.g., the prop-
erty in arg2 or the value in arg3.

An immediate effect of this vulnerable pattern is the at-
tacker’s ability to perform a DoS attack, e.g, by executing the
function entryPoint("__proto__", "toString", 1);
to alter the state to an unexpected integer value, i.e.,
Object.prototype.toString = 1, thus, forcing an
application that calls toString() to crash.

Stage 2: Executing the gadget. This stage requires identify-
ing gadgets that contain insecure flows from injection sinks
to attack sinks that perform security-sensitive actions.

1 const { execSync } = require("child_process");
2 function gadget(args , options) {
3 const cmd = options.cmd || "cmd.exe /k";
4 return execSync(‘${cmd} ${args}‘);
5 }
6 const args = ...;
7 gadget(args , {});

Listing 2: Gadget example

Consider the benign example in Listing 2, where a list of
arguments args and a command object options is passed
to a function gadget with the intention to execute command
options with arguments args. The intended use of function
gadget is to either execute the command that is specified
via the property cmd of the options object or execute the

default command cmd.exe. However, since the developer
passed an empty object to function gadget (line 7), the pro-
gram is expected to execute the default command, because
options.cmd is undefined (line 3).

Consider now an execution of the program in Listing 1 such
that entryPoint("__proto__", "cmd", "calc.exe&");
The attacker manipulates the cmd property of the root pro-
totype, causing the undefined property options.cmd to fall
back to the value in the prototype chain. Hence, the attacker
can control the command passed to execSync, which leads
to code execution, launching a calculator via calc.exe&.

2.2 Threat Model

Our threat model targets an attacker that controls the un-
trusted entry points of a Node.js application with the goal
of exploiting prototype-based OIVs to perform arbitrary code
execution on the application. These untrusted entry points
are application-specific, however, candidates include HTTP
connections, untrusted database reads, and the like. We also
consider a weaker threat model targeting only universal gad-
gets that occur in the source code of Node.js. Because these
gadgets appear in code that executes with the Node.js runtime,
they are available for exploitation in any Node.js application.
For this threat model, we assume that the attacker controls the
injection sinks pertaining to the execution of a gadget.

3 Overview

This section provides an overview of our multi-staged analy-
sis framework, illuminating on the key challenges in detecting
and exploiting prototype-based object injection vulnerabili-
ties. We use our newly-detected vulnerability in NPM CLI
to illustrate the complexity and challenges of such an en-
deavor. NPM CLI [9] is the command line client that allows
developers to install and publish packages in NPM registries.
It comes bundled with the Node.js runtime and consists of
713,648 lines of code.

Detecting prototype pollution. Figure 1 shows the simpli-
fied code fragment of the function diffApply from NPM
CLI’s codebase, which is subject to prototype pollution.

The function takes the array path from the attacker-
controlled parameter diff and calls the built-in function
shift() that returns the first element of the array. The
data flow then goes through the loop storing a property
value to the variable obj (red line). Because the attacker
indirectly controls the property name thisProp in line 8,
the property read allows them to access the object’s root
prototype by setting thisProp to __proto__. Subsequently,
the attacker can assign any value to any property of the root
prototype as illustrated by the assignment in line 11. As
a result, the attacker has full control of the injection sink
denoted by the blue dotted lines. For instance, the function call

1 function diffApply(obj , diff) {
2 var lastProp = diff.path.pop();
3 var thisProp;
4 while ((thisProp = diff.path.shift()) != null) {
5 if (!(thisProp in obj)) {
6 obj[thisProp] = {};
7 }
8 obj = obj[thisProp];
9 }

10 if (diff.op === REPLACE || diff.op === ADD) {
11 obj[lastProp] = diff.value;
12 }
13 }

1

Figure 1: Injection sink in NPM CLI

diffApply({}, {path: [’__proto__’, ’env’], value:
’payload’, op: ADD}) injects into Object.prototype
the environment property env with payload payload.

This code fragment illustrates the challenges that a static
analysis should overcome. First, in contrast to standard taint
analysis, injection sinks cannot be identified syntactically as
they require specialized data flow analysis that record ac-
cesses to object properties, as illustrated by the blue dotted
line. The analysis should identify attacker-controlled inputs
that allow to control the prototype object, followed by uses
of this prototype object as a receiver in a property assign-
ment [31]. Second, the analysis should handle language con-
structs such as loops and model the JavaScript built-in func-
tions, e.g., shift() to correctly propagate data flows. Third,
given the size of the targeted codebases, the analysis should
be scalable, seeking the sweet spot between precision and
recall. While prior work achieves high precision, it reports
low recall, thus increasing the possibility to miss flaws in real
applications [31, 32]. These requirements lead us to our first
research question: How to design and implement a scalable
static analysis that effectively identifies prototype pollution in
real-world libraries and applications? To answer this ques-
tion we develop a multi-label static taint analysis, which we
discuss in Section 4.1 and evaluate in Section 6.1.

Detecting code gadgets. Recall that our threat model requires
identifying code gadgets that read the attacker payloads from
the injection sink and pass it into an attack sink. Figure 2
shows a universal gadget we identified, stemming from the
popular spawn function of the Node.js standard library. This
function first calls normalizeSpawnArgs and reads the value
of property opts.env in line 11. This optional parameter con-
tains key-value pairs of the environment variables of a new
process. If a developer passes an object without property env,
the JavaScript runtime will look up the property in the proto-
type chain. Alternatively, attacker can inject the environment
variable directly using the for..in loop in line 13 to sub-
sequently read it either from the opts.env or process.env
object in line 11.

The reader may at this point wonder about our second re-
search question: How to identify universal properties reads
such as env? In fact, a prerequisite for gadget detection is to

1 const {ArrayPrototypePush} = primordials;
2 const {Process} = internalBinding(’process_wrap’);
3 function spawn(file , args , opts) {
4 opts = normalizeSpawnArgs(file , args , opts);
5 this._handle = new Process();
6 this._handle.spawn(opts);
7 }
8
9 function normalizeSpawnArgs(file , args , opts) {

10 let envKeys = [], envPairs = [];
11 const env = opts.env || process.env;
12 /* ... */
13 for (const key in env)
14 ArrayPrototypePush(envKeys , key);
15
16 for (const key of envKeys) {
17 const v = env[key];
18 ArrayPrototypePush(envPairs , ‘${key}=${v}‘);
19 }
20
21 return { /* ... ,*/ envPairs /*, ... */ };
22 }

1

Figure 2: Universal gadget in Node.js standard library

identify property reads that delegate the lookup of the prop-
erty to the prototype chain, while filtering out cases where
the property is defined in the object itself. This is a compli-
cated task for a static analysis, hence we use dynamic analysis
instead. We discuss the details in Section 4.2.

Further, the gadget contains intricate data flows from the
property read in line 11 to the attack sink in line 6 as de-
noted by the red arrows. Specifically, the for..in loop enu-
merates the property names of the read object and passes
them to an array through the ArrayPrototypePush call.
This is an internal function that implements the seman-
tics of Array.prototype.push and subsequently enumer-
ates the envKeys array, storing key-value pairs by the tem-
plate literal (line 18) and returning a new object with the
property envPairs. Therefore, an analysis should model
the semantics of internal functions, template literals, the
for..in and for..of statements to propagate the attacked-
controlled values properly. Moreover, function spawn (line
3) passes the modified object opts to method spawn of
the internal wrapper Process (line 6) that is implemented
in the C++ component of Node.js. This method corre-
sponds to the actual attack sink. Specifically, if an attacker
uses {GIT_SSH_COMMAND: ’calc&’} as payload for func-
tion diffApply, they can simply wait for an invocation of
the attack sink spawn from the git command. The latter
uses the specified command from the environment variable
GIT_SSH_COMMAND when connecting to a remote system. This
leads us to our third research question: How to identify the
attack sinks and data flows from universal property reads
to these attack sinks in Node.js? Gadget detection is a new
challenge with no prior research, except for some evidence
provided by the practitioners’ community [5, 12]. To address
this question, we develop a taint-based static analysis that
tracks flows from property reads to attack sinks, which we
discuss in Section 4.2 and evaluate in Section 6.2.3.
Putting it all together. The presence of prototype pollution

Pollution Detection

Injection Sink
Detection

Gadget Detection

Entry Point
Detection

Dynamic
Analysis

Gadget
Payload

Generation

Package Code
Patterns

Attack Sink
Detection

Property
Names

Exploit
Generation

Application Code

Node.js Instance

Node.js Code

Pollution
Payload

Generation

Figure 3: High-level workflow: automated steps (green) and
manual steps (blue).

and gadgets is not sufficient to carry out an end-to-end RCE
attack. The attacker needs to identify application-specific
untrusted entry points that enable the payload to reach the
injection sinks, and to subsequently propagate this payload
to an attack sink via the gadget. This step requires us to
combine data flow analysis with the call flow analysis, starting
at untrusted entry points, while driving the payload to reach an
attack sink. This leads to our final research question: How to
identify public entry points and payloads to demonstrate the
feasibility of RCE attacks? We use a combination of manual
and automated analysis to drive the exploit towards success,
as detailed in Section 4.3 and evaluated in Section 6.3.

4 Methodology

We present a semi-automated analysis framework for detect-
ing and exploiting prototype-based vulnerabilities. The frame-
work is divided into three major steps: (i) automated prototype
pollution detection; (ii) automated gadget detection; and (iii)
manual exploit generation for end-to-end attacks. Figure 3
illustrates the sequence of steps and their dependencies.

The prototype pollution detection step takes as input the
code of an application or NPM package and performs a multi-
label taint-based static analysis. Subsequently, the analysis
reconstructs the call graph of the application to find entry
points that reach the prototype pollution, thus facilitating the
task of identifying attacked-controlled entry points. The gad-
get detection step implements a hybrid solution. A dynamic
analysis first detects which properties can be actually polluted
by executing Node.js APIs of interest in a testing environment
that logs property accesses, ultimately returning a list of ac-
cessed property names. These property names, together with
the source code of Node.js, are used as input to our second
static analysis to identify (universal) gadgets in Node.js. Each
gadget includes an entry point that reaches a targeted property
read and an attack sink that is called with values read from the
target property. The last step of the approach is the end-to-end
exploit generation. This is a manual step that requires an in-
vestigation of the target application’s workflow to validate the
exploitability of the detected prototype pollution and gadget
to achieve code execution on the system.

4.1 Prototype Pollution Detection

Multi-label taint analysis. The detection of prototype
pollution requires specialized data flow analysis that
identifies injection sinks boiling down to the pattern
obj[prototype][property] = value. We find these pat-
terns by means of a flow- and context-sensitive multi-label
taint analysis. Specifically, we use two labels input and
proto to capture the temporal relationship between (attacker-
controlled) property accesses in an object. We use label input
to mark parameters that are directly controlled by the attacker
and label proto to record that the attacker already controls the
prototype of the labeled object.

The analysis works as follows: initially, it marks the pa-
rameters of the analyzed function with the input label. Then,
it performs (standard) taint analysis propagating this label
according to the JavaScript semantics until it reaches a prop-
erty read with a tainted value in the property name, e.g.,
obj[prototype] with prototype having label input. This
indicates that the attacker may control the property name and
get access to the root prototype. At this point, the label of the
resulting property read, e.g., obj[prototype], is changed
to the label proto to record that the attacker can now con-
trol the prototype. Subsequently, the analysis continues the
taint propagation until it reaches a property assignment, e.g.,
obj[prototype][property] = value, where the object of
the property assignment, i.e., obj[prototype], is marked
with the proto label, thus identifying the injection sink. We
note that this a general characterization of injection sinks,
where the attacker does not necessarily control the accessed
property (property) and the assigned value (value), so long
as they control the root prototype (prototoype). Because
this setting is more difficult to exploit, our analysis supports a
priority mode to identify attacker-controlled property names
and values in a property assignment. Specifically, it performs
two additional operations to check that the property read
(property) and the value (value) are marked with label in-
put, indicating that they may be controlled by the attacker. As
expected, these priority injection sinks are an easier target for
exploitation in practice.

Figure 1 illustrates the multi-label taint analysis for the pro-
totype pollution vulnerability in NPM CLI. We consider the
function diffApply as target function and mark the parame-
ters with label input. The red arrows depict the propagation of
label input. The parameter diff is an object and the taint anal-
ysis passes the tainted label to all its properties. The method
shift is a built-in method that returns the first element of the
array. The static analysis models JavaScript standard built-in
objects, and thereby, propagates the input label to thisProp
in line 4. The next node of the data flow is the property read
in line 8, hence the analysis changes its label to proto. The
blue dotted lines then visualize the proto label propagation.
The tainted value reaches the property assignment, and the
algorithm reports this expression as the injection sink. This

is also a priority sink because the parameters lastProp and
diff.value in line 11 have label input.

Methodology We define the (attacker-controlled) target
functions in two ways: (i) a package’s exported functions
(dubbed Exported Functions) or (ii) any function of the an-
alyzed codebase (dubbed Any Functions). We use the first
option for the package analysis only, assuming that the at-
tacker controls any exported function and class of a package.
The second option allows us to analyze real-world applica-
tions with no knowledge of the application’s entry points,
which usually depend on the specific threat model. We find
this option useful in practice to overcome inherent limitations
of static analysis for JavaScript, which does not always sup-
port the correct label propagation, e.g., due to callbacks or
dynamically-generated code. In this case, the analysis allows
us to detect injection sinks by propagating the input label
from the nearest function on the call graph. Yet, the semantic
modeling of built-ins is key to increasing the true positive
rate.

Ideally, a taint analysis should provide precise and com-
plete models of JavaScript constructs. CodeQL features many
person-hour contributions into the modeling of built-in func-
tions. Nonetheless, we observe that in practice these models
are still insufficient. Our approach relies on the ground truth
provided by known vulnerabilities to improve the tool in
modeling features that pertain to these vulnerabilities, thus
reducing the number of false negatives. Concretely, we re-
view the CodeQL standard library to identify and fix language
features, e.g., Arrays and reflection calls (see Section 5) that
affect the taint semantics for the considered packages. We
applied this process iteratively to achieve high recall.

Entry point detection. We propose a lightweight analysis to
detect application-level entry points that may trigger the in-
jection sinks. This helps with applications that receive tainted
data from external storage to find the external action that trig-
gers the data acquisition from the storage. The static analysis
first reconstructs a call graph where the functions with no
callers are represented by nodes with outgoing edges only.
The algorithm considers such nodes as potential application
entry points and reports the code paths to the injection sink.

Summary This step provides information about the pollu-
tion patterns and application’s entry points for future manual
validation and exploit generation. We contribute five analysis
variants: one analysis for entry point detection; two priority
analyses (for each type of target function) that report injection
sinks with all tainted ingredients; and two general analyses
(for each type of target function) that report injection sinks
with a tainted receiver only.

4.2 Gadget Detection

Dynamic analysis. We first parse the Node.js’ source code
and syntactically extract all directly-accessed properties. The

dynamic analysis defines a custom handler with a property get-
ter in Object.prototype for each extracted property name.
We systematically analyze the Node.js API documentation to
identify functions that potentially run processes or evaluate
arbitrary code in the runtime. We then invoke these APIs to
log their attempt of property reads from Object.prototype,
which result in reading uninitialized properties and getting the
value undefined. This means that the values of these prop-
erties can be tampered via prototype pollution. The dynamic
analysis passes the collected property names to the next step.

Static analysis. The analysis takes the Node.js’ source code
and the property names as input. The algorithm first performs
the call flow analysis of Node.js API functions, including in-
formation about aliases, ultimately allowing us to reconstruct
a precise call graph of the analyzed functions. We then use the
call flow analysis to identify paths from any exported function
to polluted property reads (identified by the dynamic analy-
sis) and subsequently combine it with context-sensitive taint
tracking to identify paths from these property reads to attack
sinks, represented as tainted arguments to internal function
calls. Specifically, the analysis propagates the taints on return
values only for functions that are reached by the Node.js API
on the analyzed call flow. Additionally, the analysis identifies
affected exported functions that were not analyzed dynami-
cally. For instance, the analysis of function spawn reports a
possible pollution of property env. The static analysis shows
the attack sinks that are affected by env include additional
Node.js API functions such as spawnSync, exec and fork.

The taint analysis considers internal functions, i.e., func-
tions for which the analyzer cannot resolve the function body,
as candidate attack sinks. We conservatively cover all func-
tions with no implementation in the codebase. The taint analy-
sis also uses multi-labels. For property assignments, the algo-
rithm propagates the taint label polluted of the property and
applies the new label receiver to the receiver recursively. For
instance, if value in the assignment obj.prop = value has
label polluted, then the analysis applies the receiver label to
obj and the polluted label to its property prop. This is needed
because we cannot enumerate all properties of an object when
this object is used as parameter to an attack sink. Finally, the
static analysis reports internal functions with no arguments
and either polluted or receiver labels as attack sinks.

Figure 2 shows the analysis in action for property env.
The blue dotted arrows illustrate the call flow analysis from
the exported function spawn to the first function call. The
normalizeSpawnArgs contains the property read env which
is the starting node of the taint analysis (red arrows). Initially,
the taint analysis propagates the label polluted through the
data flows. When the tainted value reaches the object creation
statement in line 21, the analysis keeps the taint label for
the property envPairs and assigns the label receiver to the
created object. This object is further propagated to the caller
function and passed to the internal function _handler.spawn
in line 6, thus reporting _handler.spawn as a candidate sink.

4.3 Exploit Generation

Our approach relies on the human-in-the-loop model for ex-
ploit generation. For gadget exploits, the information about
attack sinks allows us to evaluate the impact of a polluted
property and filter out non-malicious sinks. The call flow and
taint analysis help to explore the code slice that reaches the
attack sink. We use this information to generate a payload and
test it on the detected Node.js APIs. We validate the detected
sinks and report new gadgets for Node.js in Section 6.2.3.

A security analyst first analyzes the prototype pollution
patterns to filter out false positives and non-executable cases
in the regular application workflow, e.g., patterns in testing
code and development tools. For suspicious cases, the analyst
uses the automatically-detected entry points to generate the
first version of a payload and validates it on the application. If
an exploit fails, the analyst investigates the cause using other
tools (e.g., a debugger) and modifies the payload.

If the validation of the prototype pollution succeeds, then
the next step is to search for gadget triggers. We extend the
universal gadget entry points (e.g., spawn) with functions
that evaluate JavaScript code represented as strings (eval(),
new Function(), new vm.Script) and provide a call graph
analysis for these calls. The analyst may use the call graph
analysis to detect calls to these functions as well as the appli-
cation’s entry points that reach these calls.

If the analyst detects a gadget trigger, they need to validate
that it is executed after the injection sink and then generate a
payload that pollutes the required properties. If code evalua-
tion function is detected, the analyst investigates the precondi-
tions for invoking it with attacker-controlled data. The input
data can be read from the polluted property, or the function’s
execution may be dependent on specific conditionals that use
the polluted property. These steps lead to arbitrary code exe-
cution inside the Node.js instance. We estimate the effort of
using such exploitation model in a study in Section 6.3.

5 Implementation

CodeQL [4] is a production-scale analysis engine to perform
semantics-based search on a target codebase, essentially by
treating code as data. The analysis first extracts a full hierar-
chical representation of code (e.g., the AST) into a relational
database. It then runs analysis queries against the database
to compute result tuples, for instance, pairs of source loca-
tions and error messages for bug finding. CodeQL queries are
written in a declarative, object-oriented logic programming
language called QL, which uses Datalog as underlying seman-
tic model [13]. It also provides a standard library of queries
that implement control-flow and data-flow analyses, as well as
support for mainstream languages including JavaScript. The
JavaScript model and the analyses are part of the open-source
QL standard library, making them amenable to extensions.

A key feature that we use in our analyses are path queries

that describe the data flow between a source and a sink in
the codebase. They support expandable taint tracking with
the possibility of using multiple flow labels. This is essen-
tial to implement our analysis algorithms described in Sec-
tion 4. Specifically, we develop the custom path queries for
pollution and gadget detection. We extend the taint tracking
configuration to combine the call-flow and data-flow analy-
ses, thus propagating tainted values through call flows in a
context-sensitive way. This feature is essential for some of our
analyses, e.g., to analyze entry points that receive tainted data
from a database and not propagate the taint labels through
code that is reachable from other entry points. We also model
the array built-in functions reduce, filter and more, to cor-
rectly propagate tainted values via callback functions passed
as arguments. This allows us to detect vulnerabilities that use
reduce in the injection sink. We also resolve new functions
created by bind call to propagate taints from the provided
values of the bind arguments to the bound function param-
eters. Other changes include support for parameter passing
via apply() and call() function calls, as well as the rest pa-
rameter syntax and the arguments object. We also improve
the detection of exported functions of Node.js packages. Our
analysis queries for pollution and gadget detection follow
the methodology described in Section 6.1 and are publicly
available as complementary material [43].

6 Evaluation

This section presents our experiments to validate the useful-
ness of our approach to detect and exploit POIVs. We perform
the experiments on an Intel Core i7-8850H CPU 2.60GHz,
16 GB of memory. The tool, the analysis results and data are
available in the GitHub repository [43].

6.1 Evaluation of Prototype Pollution

This section evaluates the effectiveness of our tool to detect
injection sinks, reporting on precision and recall. While re-
cent approaches already target this problem [27, 31, 32] for
Node.js libraries, our key contribution is scalability with low-
to-moderate precision loss, while achieving high recall. In
contrast to prior work on libraries, we find that injection sinks
are rare in real-world applications, motivating the need for
high recall to identify exploitable vulnerabilities.

Benchmark. We compile an open-source dataset of 100
vulnerable Node.js packages, collected from the Snyk
database [10]. By studying the proof-of-concept exploit pro-
vided in the vulnerability report, we manually identify code
locations (file name and line number) of injection sinks per-
taining to the assignment of an attacker-controlled value to
the polluted property. We observe that some packages contain
multiple exploitable injection sinks, which we also add to
our benchmark. This new dataset serves as ground truth to

evaluate the detection capabilities of static analyses. For com-
parison, we also consider the dataset of 19 packages provided
by the state-of-the-art work ODGen [32].
Setup. We use our benchmark to calculate the rate of true pos-
itives (TP), false positives (FP), and false negatives (FN) in
an effort to identify the sweet spot between the precision and
recall of the analysis. The precision metric describes how well
the tool identifies exploitable injection sinks, while recall rep-
resents the fraction of real vulnerabilities reported by a tool.
Following the methodology in Section 4.1, we run our tool
in four different modes with the goal of identifying the most
effective approach for detecting injection sinks in real-world
applications. Our benchmark shows that attackers can have
different levels of control over the injection sinks. While in
general it can be sufficient to control the injection of the root
prototype only, we notice that most exploits target injection
sinks with attackers controlling both the name and value of a
polluted property. Therefore, our tool distinguishes between
the two cases, respectively, denoted as General queries and
Priority queries. Moreover, since our analysis considers tran-
sitive dependencies, we distinguish between target functions
considering Exported Functions and Any Functions, with the
goal of identifying the best mode to analyze applications.

We also compare our results with three analysis queries
which CodeQL recently made available publicly. We consider
these CodeQL queries as baseline queries and run them on
our benchmarks. Moreover, we conduct a direct comparison
with ODGen [32] on the dataset of 119 libraries.
Results. We report the evaluation results in Table 3 in Ap-
pendix and here discuss only the precision and recall metrics
in comparison with CodeQL’s baseline queries and ODGen.

CodeQL provides three queries to detect prototype pollu-
tion, one of which yields no results, hence we discard it. The
remaining two queries detect vulnerabilities in 57 packages,
with 47% and 67% precision and 42% and 21% recall, re-
spectively. While our analysis queries have been developed
independently, our main goal is to achieve high recall with
good precision. A fair comparison with the CodeQL baseline
corresponds to our General queries with Exported Functions,
which yields 35% precision and 88% recall. The improved
recall is due to better support for exported functions, array
built-in functions, and complete semantic modeling of re-
flective invocations through apply(), call() and build()
functions. These results confirm the challenge of statically
analyzing data flows in JavaScript without precise models of
the language semantics and built-in functions.

Our second experiment is an evaluation of General queries
with Any Functions as entry points. The analysis achieves 31%
precision and 97% recall, producing 5 false negatives. This
false negatives are in packages such as Templ8 and total_js
with injection sinks into code that is generated dynamically
via new Function(), which CodeQL does not support. The
high recall shows that injection sinks appear in a few adjacent
functions, which reduces the risk of losing the taint marks

because of missing models of built-in functions. However, pre-
cision deteriorates because some detected patterns are not ac-
tually reachable from the library API with attacker-controlled
arguments. We also notice the precision loss is much less than
one would expect from an analysis with the strong assump-
tion that any function’s arguments are attacker-controlled. We
believe this is due to the shape of injection sinks requiring
patterns that are not very common in real-world code (see
Section 4.1). While 31% precision in aggregate results is not
ideal, our analysis produces less than 10 false positives for
90% of the benchmarks.

Our third experiment is the evaluation of Priority queries
with Any Functions as entry points. In this setting, the attacker
controls the name and value of the polluted property, thus
it can leverage any existing gadget. The analysis achieves
40% precision and 93% recall. The additional restrictions on
arguments increase the precision metric and keep high recall.
Because the analysis starts from any function and does not
require specifying the entry points, we can easily apply it
to real-word application analysis. We identify this analysis
query as the sweet spot between precision and recall, and use
it to detect vulnerabilities in real applications (Section 6.3).

Our final experiment is a direct comparison with
ODGen [32]. ODGen’s analysis corresponds to our General
queries with Exported Functions. ODGen is tailored towards
high precision, while the authors recognize the need for high
recall. In fact, our experiment shows that ODGen achieves
100% precision and 50% recall on the dataset of 19 libraries,
while our analysis achieves 95% precision and 95% recall
(see the evaluation results in [43]). Nonetheless, ODGen
detects vulnerabilities in 17 out of the 19 libraries, but fails
to detect some variants of these vulnerabilities. We further
evaluate ODGen on our dataset of 100 packages to find that it
achieves 87% precision and 33% recall.

6.2 Gadget Detection

We evaluate the feasibility of our universal gadget detection
analysis and discuss the most important gadgets. We run our
analysis on Node.js version 16.13.1 and exploit each gadget
both on Linux and on Windows operating systems.

6.2.1 Dynamic Analysis

We download the source code of Node.js and parse it to extract
all directly-accessed properties. We obtain a total of 18,741
property names for the analyzed codebase [8]. For each name,
we install a getter on Object.prototoype to detect any po-
tential access to that property by Node.js’ internals.

Subsequently, we exercise the APIs under test with
typical inputs from the Node.js documentation, e.g., exe-
cute the ls command with spawn [7], and log any poten-
tial accesses observed by the getter. In total, we analyze
three APIs, i.e., child_process.spawnSync, require, and

vm.runInNewContext, and obtain 10, 11, and 16 candidate
properties, respectively. The usage of these properties is fur-
ther analyzed in the Node.js’ codebase, using static analysis.

We note that the inputs used for driving the dynamic anal-
ysis are by no means exhaustive. We probably cover only a
small part of the target APIs in our tests, potentially missing
property accesses that only happen when the API is invoked
with certain arguments. Nonetheless, for such cases, the re-
sulting gadgets would be of limited use, as they would require
the target application to pass those exact arguments to trigger
the gadget. Instead of being comprehensive in our test case,
we focus on the typical usages of the target APIs, which we
believe yields easy-to-trigger gadgets.

Given the low number of properties detected in this step,
one could directly fuzz these properties and build proof-of-
concept exploits. However, we further trace their usage inside
the Node.js codebase to understand if they are exploitable.

6.2.2 Static Analysis

As discussed in Section 4.2, our approach takes the JavaScript
source code of Node.js and the property names from the
dynamic analysis phase as input, and reports a call chain
to reach a property read and a data flow from the property
read to an internal function invocation. We only analyze the
JavaScript code from the folder lib of the repository [8]. The
analyzed codebase contains 70,493 lines of code (LOC).

In total, we identify 778 exported functions that reach the
property reads (sources), and 342 in which values read from
these properties flow into internal functions (sinks). We note
that while inspecting all these code locations rigorously re-
quires a significant amount of manual effort, we opt for prag-
matic exploration: we first analyze the sink and decide if the
invoked API, usually a native binding to the C/C++ code, is a
relevant injection sink. If so, we continue with inspecting the
sources to see which JavaScript APIs we can use to reach a
particular code location.

Let us consider the case of shell, a universal prop-
erty identified by our dynamic analysis. The static analy-
sis identifies 8 sources, meaning that the reads of shell
are reached from eight Node.js exported functions, mostly
from the file lib/child_process.js. By propagating
taints from all detected property reads, we identify 11
function invocations in which the tainted value leaves
the JavaScript world. One of them is located in the file
lib/internal/child_process.js and is a call to the na-
tive spawnSync in the C++ bindings. By studying the bind-
ings and the way they are invoked, we conclude that the shell
universal property is a candidate for developing a gadget.

We thus proceed to further study the operations performed
on the value stored in the universal property inside the Node.js
codebase. CodeQL provides great support in this step, allow-
ing us to jump at the relevant code locations where this value
is read and then manipulated. We already know from the dy-

namic analysis step that the Node.js core performs a read
from this universal property when the function spawnSync is
invoked, but by running a call graph reachability analysis we
identify four other APIs that reach one of the sources.

We build a simple test case to first pollute the shell prop-
erty with the value touch and then invoke one of the affected
JavaScript API, i.e., spawnSync. By observing the side-effect
of this test case, i.e., the file creation in the current directory,
we conclude that if an attacker can pollute shell, the API
under test uses its value as command, instead of the argument
passed by developers. We next discuss this gadget and others.

6.2.3 Universal Gadgets

We open source all the detected gadgets for Node.js in a
GitHub repository [42]. Table 1 overviews the gadgets for the
target Node.js version. Some of the gadgets are OS-specific,
while most of them run on both considered OSs. We empha-
size the diverse set of universal properties involved, showing
that gadgets are not isolated buggy cases, but they are com-
mon place. These gadgets correspond to a handful of target
APIs inside the Node.js core, but that a motivated attacker
can probably find many more inside the codebase of a target
application. Finally, as we discuss below, some gadgets allow
arbitrary code execution with a relatively strong precondition,
while others allow hijacking the control flow with a weaker
precondition. More importantly, an attacker can combine two
such gadgets to get the best of both worlds.

We now discuss some of our most important gadgets and
their assumptions to be fulfilled. Let us consider an applica-
tion that invokes the execSync API with a string literal:

1 const { execSync } = require(’child_process’);
2 console.log(execSync(’echo "hi"’).toString());

This benign looking code prints the string hi in the console.
Staicu et al. [45] report that such API calls are prevalent in
the NPM ecosystem, but they consider safe all call sites with
constants as arguments, like the one above. That is because
they assume an attacker cannot manipulate the command’s
value as it is set to a fixed value by developers. We find that
this assumption does not hold in the presence of prototype
pollutions. If attackers can pollute arbitrary properties in the
runtime, they can hijack both the command to be executed and
its environment variables. Consider the polluted properties:

1 Object.prototype.shell = "node";
2 Object.prototype.env = {};
3 Object.prototype.env.NODE_OPTIONS =

"--inspect -brk=0.0.0.0:1337";

They trick the benign code above into spawning a new
Node.js process with the debug port open, acting as a reverse
shell. This is because the polluted property shell overwrites
the command given by developers and env.NODE_OPTIONS
is set as environment variable of the current process and sub-
sequently copied to all children processes.

ID Universal properties Trigger Impact OS

G1 shell, env Call command injection API Execute an arbitrary command L+W
G2 shell, env Call command injection API Execute an arbitrary command L
G3 shell, input Call command injection API Execute an arbitrary command W
G4 main Import a package without a declared "main" Import an arbitrary file from the disk∗ L+W
G5 main Require a package without a declared "main" Require an arbitrary file from the disk∗ L+W
G6 exports, 1 Require a file using a relative path Require an arbitrary file from the disk∗ L+W
G7 ’=C:’ Resolve a file path Resolve the path to a different file W
G8 contextExtensions Require a file using a relative path Overwrite global variables of the file L+W
G9 contextExtensions Compile function in a new context Overwrite function’s global variables L+W

G10 shell, env, main Require a package without a declared "main" Execute an arbitrary command L+W
G11 shell, env, exports, 1 Require a file using a relative path Execute an arbitrary command L+W

Table 1: A summary of the identified Node.js universal gadgets. For each gadget, we show the properties that the attacker must
pollute beforehand, the action that triggers the gadget, and the produced effect. The last column shows the operating system on
which the gadget works: Linux (L), Windows (W), or both (L+W). ∗ denotes gadgets for which we have a Windows variant that
achieves arbitrary command execution using the SMB protocol.

The presented gadget affects all the APIs for command
execution in Node.js: spawn, spawnSync, exec, execSync,
execFileSync. A precondition for this attack is that the tar-
get command execution call site should not explicitly set an
options argument, e.g., for an execSync call, there should
be no second argument passed. The existence of this gadget
implies that every Node.js application that is vulnerable to
prototype pollution and uses a command execution API after
a pollution is vulnerable to remote code execution.

Now consider an application that does not directly use such
APIs in user-facing code. An attacker can still leverage code
that is present on the machine to trigger a command execution
API. We found three gadgets that exploit the require and
import methods. Consider the following example:

1 Object.prototype.main = "./../../ pwned.js"
2 // trigger call
3 require(’my-package’)

A precondition for this gadget is that my-package does not
have a main property defined in its package.json. If the
main property of the root prototype is polluted, at require
time, the value of this property is used for retrieving the code
to be executed, instead of the legitimate code of the module.
The attacker can thus indicate an arbitrary file on the disk to be
loaded in the engine. In particular, they can specify a file that
contains calls to command execution APIs. For example, the
popular growl package [6] contains a file called test.js that
invokes the package with different test values. Considering
that growl uses spawn internally, the attacker can successfully
trigger such APIs call by setting the main property to point
to the growl’s test file. Moreover, we identified a file shipped
with the NPM command line tool that can be used for the
same nefarious purpose: npm/scripts/changelog.js.

To the best of our knowledge, the gadget above is the first
evidence ever reported that shows that hijacking control flow
through code reuse attacks is possible in Node.js. This moti-

vates the need for debloating techniques like Mininode [28].
In addition to the already alarming findings, an attacker

can combine the two gadgets discussed above to obtain a
powerful universal gadget:

1 // pollutions for the first gadget
2 Object.prototype.main = "/path/to/npm/scripts/

changelog.js";
3 // pollutions for the second gadget
4 Object.prototype.shell = "node";
5 Object.prototype.env = {};
6 Object.prototype.env.NODE_OPTIONS =

"--inspect -brk=0.0.0.0:1337";
7 // trigger call
8 require("bytes");

When the bytes package is loaded, the first gadget in-
structs the engine to load the changelog.js file. This file
in turn invokes execSync, which triggers the second gadget,
starting a Node.js process with a debugging session.

Finally, let us present another gadget that lets attackers
load arbitrary files into the engine. By polluting the root
prototype’s properties 1 and exports, an attacker can execute
an arbitrary file from the disk when a relative path is loaded:

1 let rootProto = Object.prototype;
2 rootProto["exports"] = {".":"./changelog.js"};
3 rootProto["1"] = "/path/to/npm/scripts/";
4 // trigger call
5 require("./target.js");

While performing relative path resolution, the require
method checks if the target path points to an ES6 module.
During this process, the polluted property 1 is inadvertently
read when applying a destructuring operator in the file
/internal/modules/cjs/loader.js:

1 const { 1: name , 2: expansion = "" } =
StringPrototypeMatch (...) || [];

Thus, the attacker-controlled value is assigned as the tar-
get module’s name. Thereafter, the require method wrongly

concludes that the relative path ./target.js resolves to the
attacker-controlled location /path/to/npm/scripts/ and
that the path corresponds to an ES6 module. The exports
property is used to confuse the require method further by
providing the entry point for this non-existing module. Al-
though at the attacker-controlled target location, there is no
package.json file present, the require method still con-
cludes that this is a valid module path. We note that this
gadget is not portable to legacy Node.js versions, e.g., version
14.15.0. Thus, an important precondition for exploitation is
that the target system must use a recent Node.js version.

We emphasize once again how dangerous the identified
gadgets are. Many fairly-large applications would probably
meet the preconditions for an RCE, once a prototype pollution
is in place: (i) require a file using a relative path or a package
with no main entry, and/or (ii) have a dependency that uses a
command execution API when loaded.

To further study the impact of our gadgets, we estimate the
prevalence of their triggers in an experiment with the 10,000
most dependent-upon NPM packages. We measure that 1,958
have no main entry in their package.json (G4, G5, G10), 4,420
use relatives paths inside require statements (G6, G8, G11),
and 355 directly use the command injection API (G1, G2, G3).
This indicates that many of our gadgets could be deployed
against clients of these packages, once a pollution is in place.
However, this is an upper bound on the actual prevalence of
the gadgets because: (i) the attacker may have a hard time
invoking the trigger’s code through the public interface of the
package, e.g., the code using the command injection API, (ii)
some gadgets may not work out of the box because of side-
effects in the target package, i.e., polluting the property 1 may
have many unintended side-effects that can prevent the gadget
from working, (iii) an attacker may find it difficult to deploy
a pollution before the gadget, e.g., for the require gadgets,
very often, the pollution needs to happen in the application’s
initialization phase. Nonetheless, considering the power of
these gadgets and their widely-available triggers, prototype
pollution should be considered a critical security vulnerability
in the current Node.js landscape.

6.3 End-to-End Exploitation
We evaluate our approach on popular Node.js applications
from GitHub to validate its usefulness in a practical setting.
Setup. We use the GitHub API to search for JavaScript repos-
itories and order them by the number of stars. We then select
for further analysis the top 14 web applications running on
Node.js, as well as NPM CLI, the JavaScript package man-
ager, because it is installed on every machine with Node.js
as default. NPM CLI is also the largest analyzed applica-
tion in our dataset. We clone the GitHub repository of each
application locally and perform the analysis against it.
Methodology. Following the workflow described in Section 4,
we first run our Priority query with Any Functions as entry

points against a target application. The query reports the po-
tential injection sinks and a list of the functions that pass
tainted data to these sinks. The list contains functions that
are actual entry points of the application and functions that
take data from the environment (e.g., a database) and pass
it to the injection sink. For the latter, we perform a call flow
analysis to detect the application entry points. Second, we
manually classify all reported cases as either false positives
or locally exploitable. Based on the project structure, we also
filter out cases in testing and client-side code. We discard
these cases because the code does not execute on the server
and cannot lead to RCE. Third, we study the application’s
threat model to detect conditions for exploiting the remain-
ing (locally exploitable) cases. This is a manual process that
requires studying the documentation and code of the applica-
tion. We match the entry points pertaining to the threat model
with the detected entry points leading to the injection sinks.
Fourth, we verify the matched entry points dynamically by
deploying the application locally and generating a payload to
pollute the toString property. Whenever the payload fails,
we rely on the debugger by examining code transformations
and validations along the path, and modifying the payload ac-
cordingly. Finally, once the pollution is confirmed, we search
for the gadgets that may lead to RCE, as described in Section
6.2. If the gadget can be triggered after the execution of the in-
jection sink, we change the payload to pollute gadget-specific
properties.

Results. Table 2 presents the analysis results for 15 widely-
used Node.js applications. Total provides the number of de-
tected prototype pollutions in the application’s codebase and
the total time for their manual analysis. The analysis finds
cases in 8 applications, which we investigate and classify
manually. False Positives contains the false positives due
to over-approximate analysis; Client-Side and Testing Code
show the cases that do not execute on a server-side directly.

We mark the remaining cases (column Suspicious) for fur-
ther investigation. Suspicious cases are locally exploitable
patterns, i.e., they can be exploited if an attacker controls
all function parameters. We verified the suspicious cases to
find eight prototype pollutions (in NPM CLI, Parse Server
and Rocket.Chat) that are exploitable according to the threat
model of these applications. We also found the gadgets that
lead to RCE as explained below. As a sanity check, we run
the original CodeQL baseline queries for NPM CLI and Parse
Server applications, however, they do not detect exploitable
prototype pollutions.

To estimate the manual effort, we track the time to verify
the reported cases by one of the authors. A false positive takes
an average of 2.6 minutes because the analysis affects a small
code fragment. Similarly, non server-side code and testing
code take on average 3.8 minutes and 1.2 minutes, respec-
tively. The analysis of suspicious cases takes more time and
depends on the quality of the documentation and application’s
code. The time in Suspicious column includes the study of the

Application’s Repository Stars Lines of code Total Exploitable Suspicious Testing Code Client-Side Code False Positives
Cases Time Cases Time Cases Time Cases Time Cases Time Cases Time

typicode/json-server 57,257 2,374 0 - - - - -
expressjs/express 54,883 14,450 0 - - - - -

meteor/meteor 42,673 202,213 26 255 0 5 210 4 10 8 5 9 30
strapi/strapi 40,724 168,998 3 5 0 0 0 0 3 5

TryGhost/Ghost 38,944 125,696 4 55 0 1 50 0 2 3 1 2
hexojs/hexo 33,666 21,073 1 40 0 1 40 0 0 0

sahat/hackathon-starter 32,431 2,326 0 - - - - -
koajs/koa 31,910 4,596 0 - - - - -

RocketChat/Rocket.Chat 31,059 242,949 5 1555 1 1500 3 50 0 1 5 0
balderdashy/sails 22,085 24,445 0 - - - - -
emberjs/ember.js 22,034 113,749 6 60 0 2 40 1 10 0 3 10

fastify/fastify 21,043 37,049 0 - - - - -
parse-community/parse-server 19,045 107,909 7 3225 5 3220 0 0 0 2 5

docsifyjs/docsify 18,946 7,603 0 - - - - -
npm/cli 5,371 713,648 15 603 2 360 6 230 1 3 0 6 10

Table 2: Evaluation results for the applications’ analysis. Cases shows the number of detected cases of a certain category; Time
shows the time in minutes to manually classify and validate these cases.

threat model and the matching of detected entry points. The
Exploitable column includes the time to set up an application,
debugging and verification of prototype pollution, search for
gadgets, and combination of all attack ingredients. For exam-
ple, most time for the Parse Server exploit was spend to find
a race condition that triggers the injection and attack sinks
in the correct order. For NPM CLI, a time-consuming task
was to find a way to store the payload to NPM Registry via a
malicious package and subsequently parse it during the pack-
age installation. The analysis and exploitation of Rocket.Chat
required an LDAP server setup that provides a payload to the
injection sink, and the configuration of a custom synchroniza-
tion with the LDAP server. This process is not fully described
in the official documentation and required a lot of manual
testing of various options.

We now describe the RCE exploits for two applications
and refer to the extended material for full details [43].

6.3.1 Parse Server RCEs

Parse Server is an open source Backend-as-a-Service (BaaS)
framework that provides REST APIs to object and file stor-
age, user authentication, push notifications, dashboard, and
uses MongoDB or PostgreSQL as database. The Parse Server
has pioneered BaaS systems in 2011 and has brought the
serverless, low-touch deployment model to web and mobile
backends.

Threat model. The Parse Server can be deployed as a self-
hosted solution. In this scenario, an attacker can send any
requests to the server, but cannot modify any settings on the
server. Therefore, we expect that an application must be se-
cure in the default configuration. In the second scenario, we
consider the Parse Server as a part of cloud infrastructure,
e.g., Back4App [1]. The attacker can create their own account
and become the administrator of that account. This allows the
attacker to change some settings, for example, the webhook

triggers. This scenario puts any available configuration at risk
for attacks including the default configuration.
Detecting sinks. Our static analysis framework detects 7
unique injection sinks. We marked 5 cases as suspicious by
manual validation. One of the suspicious cases is located in
the sanitizer of database records as shown in Listing 3.
1 function expandResultOnKeyPath(obj, key, res) {
2 if (key.indexOf(’.’) < 0) {
3 obj[key] = res[key];
4 return obj;
5 }
6 const path = key.split(’.’);
7 const firstKey = path[0];
8 const nextPath = path.slice(1).join(’.’);
9 obj[firstKey] = expandResultOnKeyPath(

10 obj[firstKey] || {},
11 nextPath , res[firstKey]);
12 return obj;
13 }

Listing 3: Injection sink in Parse Server

This function can be abused to pollute Object.prototype.
If the attacker controls the input data and passes the value
"obj.__proto__.evalFunctions" to the parameter key
and the object {obj:{__proto__:{evalFunctions: 1}}}
to result, then sanitization sets the new property
evalFunctions to Object’s prototype.

Following our methodology, we perform a call flow anal-
ysis to detect entry points for the injection sink. A handler
of the GET request triggers data reading from the database
and then executes the vulnerable sanitizing code. Other de-
tected injection sinks may be triggered via a PUT request by
a payload delivered from a third-party webhook application.

In order to detect potential RCE gadgets, we search in
Parse Server codebase for universal gadgets and functions that
evaluate the code at runtime, e.g., eval. The analysis reports
a gadget using the require function, where an attacker can
directly control its argument through a polluted property. The
analysis also reports an attack sink in the official MongoDB

BSON parser [2] that deserializes objects from a database, and
can evaluate JavaScript code stored in this object. However,
the code evaluation is possible only if we set the configuration
parameter evalFunctions, see Listing 4. This option is not
defined by default, but the attacker can pollute the prototype
and bypass the if-statement condition in line 5.
1 const evalFunctions =
2 options[’evalFunctions’] == null
3 ? false
4 : options[’evalFunctions’];
5 if (evalFunctions)
6 eval(functionString);

Listing 4: Attack sink in Parse Server

Exploitation. The attacker should first pollute the prototype
via the injection sink and then trigger the attack sink in a
second request. A challenge to exploit prototype pollution is
that the polluted property may break the application workflow.
In this setting, the web request handler throws an exception
whenever Object.prototype is polluted. Thereby, the at-
tacker cannot successfully handle the requests in the required
order. However, we could bypass it using a race condition in
the application workflow.

Four of the RCE exploits for Parse Server use the same gad-
get and attack sink in Listing 4 as follows: First, the attacker
sends requests to store payloads in the database. Second, it
sends the GET request to trigger the attack sink but delays
its execution in the database until the next request. Third, the
exploit sends the PUT request to trigger the injection sinks.
Because the first request takes longer, a payload triggers the in-
jection sink while another payload reaches the attack sink and
executes arbitrary code. The fifth exploit adapts the require
gadget discussed in Section 6.2.3.

6.3.2 NPM CLI RCEs

NPM CLI [9] is the command line client that allows develop-
ers to install and publish packages to NPM registries. During
a package installation, NPM CLI puts modules in place so
that Node.js can load them, manages dependency conflicts,
and may run the pre- and post-install scripts from the package.
Threat model. The public NPM registry can be untrusted,
e.g., by storing malicious packages. Since it is a shell tool that
is run on a developer’s machine, RCE attacks have the highest
impact. NPM CLI has the option --ignore-scripts to dis-
able running scripts specified in package.json files. There-
fore, the threat model considers the arbitrary script execution
that breaks out of the --ignore-scripts flag as unintended
RCEs. We have the following constraint: the injection and
attack sinks should be available during the execution of the
command that installs a malicious package.
Detecting sinks. The static analysis reports 15 unique
injection sinks. We marked 8 cases as suspicious. Due
to the restricted threat model, we then focus on match-
ing the detected cases to the threat model. When NPM

CLI installs the package, it parses the configuration
file npm-shrinkwrap.json from the package regardless
of the option --ignore-scripts. NPM CLI then in-
vokes diff-apply and copyPath functions from the
parse-conflict-json package to parse the configuration
file. Two of the suspicious cases are located in these functions.
Section 3 describes the injection sink in diff-apply and the
attack sink for the RCE exploitation. We verified manually
that the exploitation in both cases leads to RCE.

Exploitation. The NPM CLI invokes the spawn function
to run the git commands for git-located package depen-
dencies. This happens after parsing the configuration files,
and therefore, after the injection sink execution. The git
supports the command execution via the environment
variable GIT_SSH_COMMAND. If this environment variable
is set, git uses the specified command, instead of ssh, to
connect to a remote system. Thereby, the attacker can
craft the package configuration file to initiate the call
diffApply({}, {path:[’__proto__’,’env’], value:
{GIT_SSH_COMMAND: ’calc &’}, op: ADD}) and wait
for the spawn invocation of the git command. This payload
triggers arbitrary code execution, here launching a calculator.

7 Related Work

This section discusses closely related work targeting object
injection vulnerabilities in general and prototype pollution in
particular. We also discuss related security analyses for the
Node.js ecosystem and client-side JavaScript security.

Prototype pollution vulnerabilities. The security commu-
nity became aware of prototype pollution vulnerabilities in
2018 in a white paper of Arteau [12] which uses dynamic anal-
ysis to showcase feasibility in a number of Node.js libraries as
well as an end-to-end exploit in the Ghost CMS platform. The
risks and the impact of prototype pollutions has been mainly
discussed in security practitioner forums [3], with the excep-
tion of a handful of recent research papers [25, 27, 31, 32, 51].
Notably, the work of Li et al. [31, 32] proposes object de-
pendence graphs to statically find injection vulnerabilities in
Node.js libraries, including prototype pollution. Object de-
pendent graphs allow identifying prototype injection sinks
similar to our multi-taint analysis, though with higher preci-
sion due to the analysis of branch conditions. By contrast,
our approach trades precision for scalability to analyze fully-
fledged applications and libraries. In addition, our key focus
is on universal gadget identification and end-to-end exploita-
tion which no prior work has addressed systematically so far.
Kim et al. [27] develop DAPP, a static analysis tool to detect
prototype injection sinks in Node.js libraries by means of
pattern analysis. DAPP’s lightweight analysis results in low
precision and recall, while focusing only on libraries. The
recent work by Kang et al. [25] explores prototype pollution
on the client-side to exploit a range of vulnerabilities (XSS,

cookie and URL manipulation) by using dynamic taint track-
ing. Compared with static analysis, dynamic analysis may
miss some gadgets because of code coverage limitations, yet
it can be helpful to validate the reachability of our injection
and attack sinks, which we currently do manually. Xiao et
al. [51] study hidden property attacks in Node.js applications,
a type of vulnerability which is related to prototype pollution.

Object injection vulnerabilities. We classify POIVs in the
general context of object injection vulnerabilities (OIVs).
Prior work studies OIVs targeting insecure deserialization
by mean of static analysis in a variety of languages includ-
ing Java [24, 36], PHP [15, 17, 21], .NET [35, 41], and An-
droid [39]. The work of Dahse et al. [16, 17] develops static
analysis to systematically detect OIV gadgets in PHP applica-
tions. Shcherbakov and Balliu [41] propose a static analysis
for detecting object injection patterns for .NET application,
including the framework and libraries, and implement a tool
called SerialDetector. Arguably, our work faces similar chal-
lenges with scaling the static analysis to real-world languages,
though in the more intricate context of JavaScript.

Node.js ecosystem security. There is an increasing interest
in studying the security of Node.js, both in academia and in
industry. Most prior work has concentrated on so-called soft-
ware supply chain security, i.e., studying security problems
that are prevalent in libraries: injections [22, 32, 45], hidden
property abuse [51], prototype pollution [31, 32], malicious
packages [20, 52], running untrusted code [11, 49, 50], Re-
DoS [18,19,33,44], code debloating [28]. There is also initial
evidence that these problems in libraries affect websites in
production [31, 44]. We are the first to show the existence
of universal gadgets in Node.js and to study the impact of
prototype pollution, beyond denial-of-service attacks.

Static analysis for Node.js. Madsen et al. [34] propose aug-
menting call graphs with information about event propagation
to find bugs in Node.js programs. Staicu et al. [45] advo-
cate using intra-procedural data flow analysis to infer run-
time policies for injection sinks. Nielsen et al. [37] introduce
feedback-driven abstract interpretation for detecting injec-
tion vulnerabilities in Node.js code. More recently, Nielsen
et al. [38] show how modular call graphs can be used to re-
duce false positives alerts in software composition analysis.
Li et al. [31, 32] propose using object dependency graphs
for finding prototype pollution, injection, and path traversal
vulnerabilities. We are the first to propose using static taint
analysis for detecting universal gadgets.

Client-side JavaScript security. Lekies et al. [30] study XSS
vulnerabilities on the web using fine-grained dynamic taint
analysis. Hedin et al. [23] present JSFlow, a more sophisti-
cated information flow analysis for detecting integrity and
confidentiality problems in web applications. Recently, Lekies
et al. [29] discuss how script gadgets can be used to bypass
existing cross-site scripting mitigation. Roth et al. [40] further
study the effect of script gadgets on content security poli-

cies. Steffens and Stock [48] present PMForce, a lightweight
dynamic analysis augmented with forced execution for study-
ing post message handlers. Khodayari and Pellegrino [26]
propose JAW, a hybrid analysis tool based on code property
graph, showing its usefulness by studying client-side CSRF
vulnerabilities. None of the work above studies the relation
between prototype pollution and injection vulnerabilities.

8 Conclusion

We presented the first principled study on the impact of pro-
totype pollution vulnerabilities in Node.js. We propose a
semi-automated approach for detecting end-to-end exploits,
consisting of three phases: (i) static analysis for detecting
pollutions, (ii) hybrid analysis for detecting gadgets, and (iii)
static analysis with human-in-the-loop for developing end-to-
end exploits. We apply our approach to large codebases to
find eight exploitable RCE vulnerabilities directly enabled by
prototype pollution, and eleven universal gadgets [42] that
are shipped with the Node.js runtime. Finally, we show that
universal gadgets introduce a new threat in the Node.js ecosys-
tem: hijacking the control flow of a program to (ab)use unused
code available in the application’s dependencies.

Acknowledgments Thanks are due to anonymous review-
ers for the helpful feedback on this work. This work was
partially supported by the Swedish Foundation for Strategic
Research (SSF) under projects CHAINS and Trustfull, Digital
Futures, Google, and Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

References

[1] Back4App. https://www.back4app.com.

[2] BSON Parser for node and browser. https://github.
com/mongodb/js-bson.

[3] Client-Side Prototype Pollution and useful Script
Gadgets. https://github.com/BlackFan/
client-side-prototype-pollution.

[4] CodeQL. https://codeql.github.com.

[5] Exploiting prototype pollution – RCE in Kibana (CVE-
2019-7609). https://research.securitum.com/
prototype-pollution-rce-kibana-cve-2019-7609.

[6] Growl - NPM. Growl support for Node.js. https://
www.npmjs.com/package/growl.

[7] Node.js documentation. https://nodejs.org/api/
child_process.html.

https://www.back4app.com
https://github.com/mongodb/js-bson
https://github.com/mongodb/js-bson
https://github.com/BlackFan/client-side-prototype-pollution
https://github.com/BlackFan/client-side-prototype-pollution
https://codeql.github.com
https://research.securitum.com/prototype-pollution-rce-kibana-cve-2019-7609
https://research.securitum.com/prototype-pollution-rce-kibana-cve-2019-7609
https://www.npmjs.com/package/growl
https://www.npmjs.com/package/growl
https://nodejs.org/api/child_process.html
https://nodejs.org/api/child_process.html

[8] Node.js JavaScript runtime v16.13.1. https://github.
com/nodejs/node/tree/v16.13.1/lib.

[9] NPM - a JavaScript package manager. https://
github.com/npm/cli.

[10] Snyk. https://snyk.io.

[11] Mohammad M. Ahmadpanah, Daniel Hedin, Musard
Balliu, Lars Eric Olsson, and Andrei Sabelfeld. Sand-
Trap: Securing JavaScript-driven trigger-action plat-
forms. In USENIX Security Symposium, 2021.

[12] Olivier Arteau. Prototype pollution attack in NodeJS
application. NorthSec, 2018.

[13] Pavel Avgustinov, Oege De Moor, Michael Peyton
Jones, and Max Schäfer. Ql: Object-oriented queries
on relational data. In 30th European Conference on
Object-Oriented Programming (ECOOP 2016). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[14] Fraser Brown, Shravan Narayan, Riad S. Wahby, Daw-
son R. Engler, Ranjit Jhala, and Deian Stefan. Finding
and preventing bugs in JavaScript bindings. In Sympo-
sium on Security and Privacy (S&P), 2017.

[15] Johannes Dahse and Thorsten Holz. Static detection
of second-order vulnerabilities in web applications. In
USENIX Security 14, pages 989–1003, 2014.

[16] Johannes Dahse and Thorsten Holz. Static detection
of second-order vulnerabilities in web applications. In
USENIX Security Symposium, 2014.

[17] Johannes Dahse, Nikolai Krein, and Thorsten Holz.
Code reuse attacks in PHP: automated POP chain gener-
ation. In Conference on Computer and Communications
Security (CCS), pages 42–53, 2014.

[18] James C. Davis, Christy A. Coghlan, Francisco Servant,
and Dongyoon Lee. The impact of regular expression
denial of service (ReDoS) in practice: an empirical study
at the ecosystem scale. In Joint Meeting on Foundations
of Software Engineering (ESEC/FSE), 2018.

[19] James C. Davis, Francisco Servant, and Dongyoon Lee.
Using selective memoization to defeat regular expres-
sion denial of service (ReDoS). In Symposium on Secu-
rity and Privacy (S&P), 2021.

[20] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan El-
der, Brendan Saltaformaggio, and Wenke Lee. Towards
measuring supply chain attacks on package managers
for interpreted languages. In Network and Distributed
System Security Symposium (NDSS), 2021.

[21] Stefan Esser. Utilizing Code Reuse/ROP in PHP Ap-
plication Exploits. Proceedings of the Black Hat USA,
2010.

[22] François Gauthier, Behnaz Hassanshahi, and Alexander
Jordan. AFFOGATO: runtime detection of injection
attacks for node.js. In International Symposium on Soft-
ware Testing and Analysis (ISSTA), 2018.

[23] Daniel Hedin, Arnar Birgisson, Luciano Bello, and An-
drei Sabelfeld. JSFlow: tracking information flow in
JavaScript and its APIs. In Symposium on Applied Com-
puting (SAC), 2014.

[24] Philipp Holzinger, Stefan Triller, Alexandre Bartel, and
Eric Bodden. An in-depth study of more than ten years
of java exploitation. In Conference on Computer and
Communications Security (CCS), pages 779–790, 2016.

[25] Zifeng Kang, Song Li, and Yinzhi Cao. Probe the proto:
Measuring client-side prototype pollution vulnerabili-
ties of one million real-world websites. In Network and
Distributed System Security Symposium (NDSS 2022),
2022.

[26] Soheil Khodayari and Giancarlo Pellegrino. JAW: study-
ing client-side CSRF with hybrid property graphs and
declarative traversals. In USENIX Security Symposium,
2021.

[27] Hee Yeon Kim, Ji Hoon Kim, Ho Kyun Oh, Beom Jin
Lee, Si Woo Mun, Jeong Hoon Shin, and Kyounggon
Kim. Dapp: automatic detection and analysis of proto-
type pollution vulnerability in Node.js modules. Inter-
national Journal of Information Security, pages 1–23,
2021.

[28] Igibek Koishybayev and Alexandros Kapravelos. Minin-
ode: Reducing the attack surface of Node.js applications.
In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2020.

[29] Sebastian Lekies, Krzysztof Kotowicz, Samuel Groß,
Eduardo A. Vela Nava, and Martin Johns. Code-reuse
attacks for the web: Breaking cross-site scripting miti-
gations via script gadgets. In Conference on Computer
and Communications Security (CCS), pages 1709–1723,
2017.

[30] Sebastian Lekies, Ben Stock, and Martin Johns. 25
million flows later: large-scale detection of DOM-based
XSS. In Conference on Computer and Communications
Security (CCS), pages 1193–1204, 2013.

[31] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao.
Detecting Node.js prototype pollution vulnerabilities
via object lookup analysis. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2021, page 268–279,
New York, NY, USA, 2021. Association for Computing
Machinery.

https://github.com/nodejs/node/tree/v16.13.1/lib
https://github.com/nodejs/node/tree/v16.13.1/lib
https://github.com/npm/cli
https://github.com/npm/cli
https://snyk.io

[32] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao.
Mining Node.js vulnerabilities via object dependence
graph and query. In USENIX Security Symposium, 2022.

[33] Yinxi Liu, Mingxue Zhang, and Wei Meng. Revealer:
Detecting and exploiting regular expression denial-of-
service vulnerabilities. In Symposium on Security and
Privacy (S&P), 2021.

[34] Magnus Madsen, Frank Tip, and Ondrej Lhoták. Static
analysis of event-driven node.js javascript applications.
In Proceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015,
part of SPLASH 2015, Pittsburgh, PA, USA, October
25-30, 2015, 2015.

[35] Alvaro Muñoz and Oleksandr Mirosh. Friday the 13th
json attacks. Proceedings of the Black Hat USA, 2017.

[36] Alvaro Muñoz and Christian Schneider. Serial killer:
Silently pwning your java endpoints, 2018.

[37] Benjamin Barslev Nielsen, Behnaz Hassanshahi, and
François Gauthier. Nodest: feedback-driven static anal-
ysis of node.js applications. In Joint Meeting on Eu-
ropean Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, (FSE),
2019.

[38] Benjamin Barslev Nielsen, Martin Toldam Torp, and
Anders Møller. Modular call graph construction for se-
curity scanning of node.js applications. In International
Symposium on Software Testing and Analysis (ISSTA),
2021.

[39] Or Peles and Roee Hay. One class to rule them all: 0-day
deserialization vulnerabilities in android. In WOOT’15,
2015.

[40] Sebastian Roth, Michael Backes, and Ben Stock. As-
sessing the impact of script gadgets on CSP at scale.
In Asia Conference on Computer and Communications
Security, (ASIA CCS), 2020.

[41] Mikhail Shcherbakov and Musard Balliu. SerialDe-
tector: Principled and Practical Exploration of Object
Injection Vulnerabilities for the Web. In 28th Annual
Network and Distributed System Security Symposium,
NDSS 2021, virtually, February 21-25, 2021, 2021.

[42] Mikhail Shcherbakov, Musard Balliu, and Cristian-
Alexandru Staicu. Server-Side Prototype Pol-
lution Gadgets. https://github.com/yuske/
server-side-prototype-pollution.

[43] Mikhail Shcherbakov, Musard Balliu, and Cristian-
Alexandru Staicu. Silent Spring: Prototype Pollution
Leads to Remote Code Execution in Node.js - Artifacts.
https://github.com/yuske/silent-spring.

[44] Cristian-Alexandru Staicu and Michael Pradel. Freezing
the web: A study of redos vulnerabilities in JavaScript-
based web servers. In USENIX Security Symposium,
2018.

[45] Cristian-Alexandru Staicu, Michael Pradel, and Ben-
jamin Livshits. SYNODE: understanding and auto-
matically preventing injection attacks on Node.js. In
Network and Distributed System Security Symposium
(NDSS), 2018.

[46] Cristian-Alexandru Staicu, Sazzadur Rahaman, Ágnes
Kiss, and Michael Backes. Bilingual problems: Study-
ing the security risks incurred by native extensions in
scripting languages. arXiv preprint arXiv:2111.11169,
2021.

[47] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Bal-
liu, Michael Pradel, and Andrei Sabelfeld. An empirical
study of information flows in real-world JavaScript. In
14th ACM SIGSAC Workshop on Programming Lan-
guages and Analysis for Security, PLAS, 2019.

[48] Marius Steffens and Ben Stock. PMForce: System-
atically analyzing postmessage handlers at scale. In
Conference on Computer and Communications Security
(CCS), 2020.

[49] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan
Dautenhahn, André DeHon, and Jonathan M. Smith.
Breakapp: Automated, flexible application compartmen-
talization. In Network and Distributed System Security
Symposium, (NDSS), 2018.

[50] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris
Ntousakis, Konstantinos Kallas, Ben Karel, André De-
Hon, and Michael Pradel. Preventing dynamic library
compromise on Node.js via RWX-based privilege reduc-
tion. In Conference on Computer and Communications
Security (CCS), 2021.

[51] Feng Xiao, Jianwei Huang, Yichang Xiong, Guangliang
Yang, Hong Hu, Guofei Gu, and Wenke Lee. Abusing
hidden properties to attack the Node.js ecosystem. In
USENIX Security Symposium, 2021.

[52] Markus Zimmermann, Cristian-Alexandru, Cam Tenny,
and Michael Pradel. Small world with high risks: A
study of security threats in the npm ecosystem. In
USENIX Security Symposium, 2019.

https://github.com/yuske/server-side-prototype-pollution
https://github.com/yuske/server-side-prototype-pollution
https://github.com/yuske/silent-spring

Appendix

8.1 Evaluation Results
In Table 3, we present the results of the evaluation of ODGen, the original CodeQL queries (Baseline queries) and our custom
queries (Priority queries and General queries) against our benchmark of 100 vulnerable NPM packages.

Package@Version LoC
Baseline queries Priority queries General queries ODGenPrototype

Polluting
Assignment

Prototype
Polluting
Function

Exported
Functions

Any
Functions

Exported
Functions

Any
Functions

TP FP TP FP TP FP TP FP TP FP TP FP TP FP
101@1.6.3 2,366 0/2 0 0/2 0 2/2 0 2/2 0 2/2 2 2/2 2 0/2 0

arr-flatten-unflatten@1.1.4 104 0/2 0 0/2 0 1/1 0 1/1 0 2/2 0 2/2 0 0/2 0
asciitable.js@1.0.2 173 0/1 0 1/1 1 1/1 0 1/1 1 1/1 0 1/1 1 1/1 0
assign-deep@1.0.0 56 0/1 0 1/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0

bmoor@0.8.11 3,718 4/6 2 1/6 0 4/4 0 4/4 0 6/6 0 6/6 0 3/6 0
bodymen@1.0.0 17,993 1/1 3 0/1 0 1/1 2 1/1 6 1/1 8 1/1 10 0/1 0
changeset@0.1.0 1,427 3/3 1 0/3 0 1/1 0 1/1 0 3/3 0 3/3 0 0/3 0

class-transformer@0.1.1 735 0/2 0 0/2 0 2/2 0 2/2 0 2/2 0 2/2 0 0/2 0
confucious@0.0.12 7,046 7/7 1 0/7 0 4/4 3 4/4 5 7/7 4 7/7 4 1/7 1

connie@0.1.0 13,433 0/3 0 1/3 1 1/1 0 1/1 1 3/3 0 3/3 4 0/3 0
controlled-merge@1.0.0 171 0/3 0 2/3 0 2/2 1 2/2 1 3/3 1 3/3 1 3/3 0

copy-props@2.0.4 348 1/1 1 0/1 0 0/1 0 0/1 0 0/1 0 1/1 1 0/1 0
deap@1.0.0 698 0/2 0 2/2 0 0/2 0 2/2 1 0/2 0 2/2 1 1/2 2

deep-defaults@1.0.5 17,475 0/1 3 1/1 0 1/1 2 1/1 4 1/1 8 1/1 8 0/1 1
deep-override@1.0.0 73 0/1 0 0/1 0 1/1 2 1/1 5 1/1 9 1/1 9 0/1 0

deep-set@1.0.0 41 0/1 0 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0
deephas@1.0.5 351 0/1 0 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0

deeply@3.0.0 238 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0
deepref@1.1.1 136 0/1 0 0/1 0 0/1 0 1/1 0 0/1 0 1/1 0 0/1 0

deeps@1.4.5 231 1/1 1 1/1 0 1/1 0 1/1 0 1/1 2 1/1 2 1/1 0
defaults-deep@0.2.4 89 0/1 0 0/1 0 0/1 0 1/1 0 1/1 0 1/1 0 0/1 0

dot-object@2.1.2 5,500 2/4 5 0/4 0 4/4 2 4/4 6 4/4 10 4/4 20 0/4 0
dot-prop@2.0.0 34 1/1 1 1/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0

dot-notes@3.2.0 223 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0
dotty@0.0.1 475 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0
dset@1.0.0 18 1/1 1 1/1 1 1/1 1 1/1 1 1/1 1 1/1 1 1/1 0

expand-hash@1.0.1 36 0/1 0 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0
extend@3.0.1 63 0/1 0 1/1 0 1/1 1 1/1 1 1/1 1 1/1 1 1/1 0

field@1.0.1 76 4/4 0 0/4 0 2/2 0 2/2 0 4/4 0 4/4 0 1/4 0
@firebase/util@0.3.2 4,725 0/4 0 4/4 0 4/4 0 4/4 0 4/4 0 4/4 0 0/4 0

flattenizer@0.0.5 436 0/1 0 0/1 0 1/1 0 1/1 1 1/1 1 1/1 3 0/1 0
gammautils@0.0.81 6,919 1/1 3 0/1 1 1/1 1 1/1 1 1/1 4 1/1 4 1/1 0

gedi@1.6.3 7,160 1/1 6 0/1 2 1/1 2 1/1 3 1/1 7 1/1 8 0/1 0
getobject@0.1.0 126 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0

hoek@5.0.0 764 0/1 0 0/1 2 1/1 3 1/1 4 1/1 5 1/1 5 0/1 0
immer@8.0.0 5,136 0/5 0 0/5 0 0/5 1 5/5 2 0/5 1 5/5 2 0/5 0

ini-parser@0.0.2 32 1/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0
js-data@3.0.8 14,056 0/1 3 1/1 5 1/1 11 1/1 14 1/1 17 1/1 38 0/1 0

js-extend@0.0.1 53 0/1 0 1/1 0 0/1 0 1/1 0 0/1 0 1/1 0 1/1 0
js_ini@1.2.0 537 0/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 0/1 0

json-ptr@1.1.0 1,630 1/1 3 0/1 0 1/1 5 1/1 5 1/1 5 1/1 5 0/1 0
json8-merge-patch@1.0.1 635 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0 0/1 0

just-extend@3.0.0 36 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0 1/1 0
keyd@1.3.4 265 0/1 0 0/1 0 0/1 0 1/1 1 0/1 0 1/1 1 1/1 0

keyget@2.2.0 389 1/4 0 0/4 0 2/2 2 2/2 2 4/4 1 4/4 1 2/4 0
libnested@1.5.0 210 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0

linux-cmdline@1.0.0 42 0/1 0 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0
locutus@2.0.11 14,994 1/1 1 0/1 0 1/1 2 1/1 2 1/1 3 1/1 4 0/1 0
lodash@4.17.11 17,302 1/1 3 0/1 0 1/1 1 1/1 3 1/1 7 1/1 7 1/1 0

madlib-object-utils@0.1.6 81 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0
merge@2.1.0 103 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0 0/1 0

merge-deep@3.0.0 483 0/3 0 0/3 0 0/2 0 0/2 1 3/3 0 3/3 0 2/3 0
merge-recursive@0.0.3 58 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0

mixin-deep@2.0.0 29 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0 0/1 0
mout@2.0.0-alpha.1 9,337 0/2 2 0/2 0 2/2 0 2/2 0 2/2 1 2/2 1 0/2 0

mpath@0.4.1 1,839 1/1 2 0/1 0 1/1 2 1/1 2 1/1 2 1/1 2 1/1 2
nconf_toml@0.0.1 4,743 0/1 0 0/1 0 1/1 0 1/1 1 1/1 2 1/1 2 0/1 0

nested-property@0.0.5 97 0/1 0 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0
nestie@1.0.0 66 0/1 0 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0

nis-utils@0.6.10 35,669 2/2 0 1/2 1 1/1 9 1/1 15 2/2 18 2/2 18 2/2 0
node.extend@2.0.0 958 0/1 0 1/1 0 1/1 1 1/1 1 1/1 1 1/1 1 1/1 0
node-forge@0.9.0 17,978 1/1 5 0/1 0 1/1 2 1/1 4 1/1 7 1/1 7 1/1 0
nodee-utils@1.2.2 22,385 2/2 0 1/2 0 1/1 5 1/1 12 2/2 11 2/2 15 2/2 0

object-collider@1.0.3 143 0/2 0 0/2 0 2/2 1 2/2 1 2/2 1 2/2 1 0/2 0
object-path-set@1.0.0 185 2/2 0 0/2 0 1/1 1 1/1 1 2/2 0 2/2 0 2/2 0

objnest@5.0.0 971 0/1 0 0/1 0 1/1 0 1/1 0 1/1 3 1/1 3 0/1 0
objtools@3.0.0 20,693 0/5 5 2/5 0 4/5 14 5/5 16 4/5 24 5/5 24 0/5 0

patchmerge@1.0.0 138 0/1 0 1/1 0 1/1 2 1/1 2 1/1 6 1/1 6 0/1 0
paypal-adaptive@0.4.1 203 0/1 0 1/1 1 1/1 1 1/1 2 1/1 2 1/1 2 0/1 0

phpjs@1.3.2 48,116 1/1 4 0/1 0 1/1 3 1/1 7 1/1 8 1/1 18 0/1 0
predefine@0.1.2 488 0/1 0 0/1 0 1/1 1 1/1 1 1/1 1 1/1 1 0/1 0

promisehelpers@0.0.5 132 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0
properties-reader@2.0.0 1,293 0/1 0 0/1 0 1/1 2 1/1 2 1/1 7 1/1 7 0/1 0

property-expr@2.0.2 196 1/1 0 0/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0
prototyped.js@2.0.0 7,911 0/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0

putil-merge@3.0.0 68 0/2 0 0/2 0 2/2 0 2/2 0 2/2 2 2/2 2 0/2 0
querymen@2.1.3 18,205 1/1 3 0/1 0 1/1 2 1/1 6 1/1 8 1/1 10 0/1 1

safe-flat@2.0.0 298 0/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 0/1 0
safe-object2@1.0.3 104 0/1 0 0/1 0 1/1 0 1/1 1 1/1 0 1/1 1 0/1 0

safe-obj@1.0.0 242 0/1 0 0/1 0 1/1 1 1/1 1 1/1 2 1/1 2 0/1 0
safetydance@2.0.1 570 0/1 0 0/1 0 0/1 0 1/1 0 0/1 0 1/1 1 1/1 0

set-deep-prop@1.0.0 11 1/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0
set-getter@0.1.0 179 0/1 0 0/1 0 0/1 0 0/1 0 1/1 1 1/1 1 0/1 0

set-in@2.0.0 172 1/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0
set-object-value@0.0.5 113 0/2 0 0/2 0 2/2 4 2/2 4 2/2 6 2/2 6 1/2 0

set-or-get@1.2.10 115 1/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0
set-value@3.0.0 123 2/2 1 1/2 0 1/1 0 1/1 0 2/2 1 2/2 1 2/2 0

shvl@2.0.1 18 0/1 0 0/1 0 1/1 0 1/1 3 1/1 1 1/1 4 0/1 0
smart-extend@1.7.3 8,949 0/1 0 1/1 1 1/1 2 1/1 3 1/1 2 1/1 3 0/1 0

@strikeentco/set@1.0.0 27 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0
supermixer@1.0.3 9,843 0/1 2 0/1 0 0/1 5 0/1 9 0/1 8 0/1 12 0/1 0

Templ8@0.7.0 785 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0
tiny-conf@1.1.0 255 4/4 0 0/4 0 2/2 0 2/2 1 4/4 0 4/4 1 1/4 0

total.js@3.4.6 40,699 0/1 3 0/1 1 0/1 1 0/1 2 0/1 4 0/1 7 0/1 0
undefsafe@2.0.2 544 0/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 0/1 0
upmerge@0.1.7 124 0/4 0 3/4 0 3/3 1 3/3 1 4/4 0 4/4 0 2/4 0

utils-extend@1.0.8 239 0/1 0 1/1 0 1/1 0 1/1 0 1/1 2 1/1 2 0/1 0
worksmith@1.0.0 91,294 0/1 4 0/1 0 0/1 7 1/1 13 0/1 19 1/1 33 0/1 1

y18n@3.2.1 129 3/3 0 0/3 0 1/1 0 1/1 1 3/3 0 3/3 0 2/3 0
yargs-parser@6.0.0 677 6/6 2 0/6 0 2/2 4 2/2 5 6/6 3 6/6 3 0/6 0

Total: 42.1 46.6 21.3 67.3 82.2 49.6 93.3 40.1 88.4 35.3 97 30.9 32.9 87.1
Table 3: Evaluation results of our benchmark analysis. The TP columns contain the number of detected cases / the total number of true positives for the package.
The FP columns contain the number of false positive cases for the package. The Total row summarizes the data and presents the recall metric (in %) in the TP
columns and the precision (in %) for the FP columns.

	Introduction
	Context and Technical Background
	Prototype-based OIV
	Threat Model

	Overview
	Methodology
	Prototype Pollution Detection
	Gadget Detection
	Exploit Generation

	Implementation
	Evaluation
	Evaluation of Prototype Pollution
	Gadget Detection
	Dynamic Analysis
	Static Analysis
	Universal Gadgets

	End-to-End Exploitation
	Parse Server RCEs
	NPM CLI RCEs

	Related Work
	Conclusion
	Evaluation Results

