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Abstract

Any generic computer vision algorithm must be able to cope with the
variations in appearance of objects due to different illumination conditions.
While these variations in the shading of a surface may seem a nuisance, they
in fact contain information about the world. This thesis tries to provide an
understanding what information can be extracted from the shading in a single
image and how to achieve this. One of the challenges lies in finding accurate
models for the wide variety of conditions that can occur.

Frequency space representations are powerful tools for analyzing shading
theoretically. Surfaces act as low-pass filters on the illumination making the
reflected light band-limited. Hence, it can be represented by a finite number
of components in the Fourier domain, despite having arbitrary illumination.
This thesis derives a basis for shading by representing the illumination in
spherical harmonics and the BRDF in a basis for isotropic reflectance. By
analyzing the contributing variance of this basis it is shown how to create
finite dimensional representations for any surface with isotropic reflectance.

The finite representation is used to analytically derive a principal compo-
nent analysis (PCA) basis of the set of images due to the variations in the
illumination and BRDF. The PCA is performed model-based so that the vari-
ations in the images are described by the variations in the illumination and
the BRDF. This has a number of advantages. The PCA can be performed
over a wide variety of conditions, more than would be practically possible
if the images were captured or rendered. Also, there is an explicit mapping
between the principal components and the illumination and BRDF so that
the PCA basis can be used as a physical model.

By combining a database of captured illumination and a database of cap-
tured BRDFs a general basis for shading is created. This basis is used to
investigate material classification from a single image with known geometry
but arbitrary unknown illumination. An image is classified by estimating the
coefficients in this basis and comparing them to a database. Experiments on
synthetic data show that material classification from reflectance properties
is hard. There are mis-classifications and the materials seem to cluster into
groups. The materials are grouped using a greedy algorithm. Experiments
on real images show promising results.

Keywords: computer vision, shading, illumination, reflectance, image irra-
diance, frequency space representations, spherical harmonics, analytic PCA,
model-based PCA, material classification, illumination estimation
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Sammanfattning

Föremål ser olika ut vid olika ljusförhållanden. För att en datorseendeal-
goritm ska vara generell måste den kunna hantera dessa variationer. Det är
lätt att uppfatta den som ett problem, men faktum är att den s.k. skuggningen
av en yta eller ett föremål innehåller information om omvärlden. Avhandling
innebär ett försök att förstå vilken information som kan utvinnas ur skugg-
ningen från en enskild bild och hur detta kan omsättas i algoritmisk form. En
av svårigheterna ligger i att finna modeller som är tillräckligt noggranna och
också kan hantera alla de förhållanden som kan förkomma.

Representationer i frekvensrymden är kraftfulla verktyg för att analysera
skuggning i teoretisk mening. Ljus som träffar en yta lågpassfiltreras. Det
gör det reflekterade ljuset bandbegränsat och därför möjligt att representeras
i Fourier-domänen med ett begränsat antal parametrar, trots att ljuskällan
kan vara godtyckligt utformad. I avhandlingen härleds en bas för skuggning
genom att representera belysningen med klotytsfunktioner och ytreflektansen
(BRDF:en) i en bas för isotrop reflektans. Genom att analysera variansen av
bidraget från basfunktionerna visas hur en noggrann representation med ett
ändligt antal parametrar kan skapas.

Denna ändliga representation används för att analytiskt härleda en princi-
palkomponentsbas för den mängd av bilder som skapas av variationer i belys-
ningen och ytreflektansen. Principalkomponentsanalysen (PCA) görs modell-
baserat vilket innebär att variationerna i bilderna beskrivs genom variationer-
na i belysningen och BRDF:en. Detta medför många fördelar. Principalkom-
ponentanalysen kan genomföras över en stor mängd förhållanden, många fler
än vad som är praktiskt möjligt om analysen skulle göras med fotograferade
eller genererade bilder. Dessutom finns en explicit avbildning från principal-
komponenterna till belysningen och BRDF:en vilket gör att PCA-basen kan
användas som fysikalisk modell.

Genom att kombinera en databas med insamlad belysing med en databas
av insamlade BRDF:er så skapas en generell bas för skuggning. Denna bas
används för att undersöka hur material i en enskild bild med känd scengeo-
metri men okänd godtycklig belysning kan klassificeras. Klassificeringen sker
genom att skatta bildens koefficienter i basen och jämföra dessa med en data-
bas. Experiment med syntetiska data visar att det är ett svårt problem. Det
förekommer felklassificeringar och materialen tycks bilda grupper inom vilka
ett material ofta felklassificeras som ett annat material i samma grupp. En
s.k. girig algoritm används för att hitta dessa grupper. Experiment på bilder
av verkliga objekt visar lovande resultat.

Sökord: datorseende, skuggning, belysning, reflektans, bildbestrålning, fre-
kvensrymdsrepresentationer, klotytsfunktioner, analytisk PCA, modell-baserad
PCA, materialklassificering, belysningsskattning
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Chapter 1

Introduction

None of our senses provides us with as rich information about the world around
us as the visual system. Using our eyes we can navigate through the world and
interact with our environment. We detect and recognize objects and people. On a
more detailed level our vision system gives us information about the properties of
the surfaces in our environment, such as their shape, the material they are made
of and their relative position.

The goal of computer vision is to make computers “see”. Although it is not
necessary for computers to emulate humans in this task, the human and other
biological visual systems are a great inspiration to the field. They are after all the
only working systems we know of.

Seeing involves acquiring information about the three-dimensional world from
two-dimensional images. Information cues include motion fields, stereo disparity,
edges, texture, color and shading. Motion and stereo are maybe the most important
for our understanding of the structure of the world, but even in the total absence of
these cues, the human visual system can acquire a lot of information from an image.
This becomes obvious when we think of the information we can deduce from a photo,
or a painting such as van Eyck’s The Arnolfini Portrait in Figure 1.1. Apart from
the many objects we detect in the painting, we also get a feeling for the local shape
of many of the surfaces in the scene, e.g. the folds in the textile and the cylindrical
shape of the brass candelabrum. Furthermore, we classify the different materials
the surfaces are made of, such as textile, velvet, fur, brass, etc. We also estimate
the nature of the illumination, which in this case is dim indirect lighting probably
from the window.

A majority of the work in computer vision is based on edges and corners, but
these features cannot explain the perception of local shape or the recognition of
materials. This inference is based on the shading of the surfaces. Shading is the
gradual changes in brightness due to changes in the surface normal relative to the
light source and the image sensor. How the brightness changes depends on the
reflectance properties of the surface and the illumination.

1



2 Chapter 1. Introduction

Figure 1.1: The Arnolfini Portrait by van Eyck exhibiting numerous examples of
shading from a variety of materials.
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To understand what information can be extracted from shading and how to
obtain this, are the motivating factors behind this thesis.

1.1 Physics-Based Vision

Shading is special in that the physics that create the shading is well known. The
brightness of a point in the image depends on three components, the surface normal,
the surface reflectance properties and the illumination. Simply put, the shading is a
product of three factors: the shape of the surface, the surface’ reflectance properties
and the illumination,

Image = f(Shape,Material, Illumination). (1.1)

The work concerned with trying to recover the information about the scene using
the physics of image formation is referred to as physics-based vision, (Wolff, Shafer,
and Healey 1992).

Although the physics that generate the shading is well known, inferring infor-
mation from it is far from easy. The problem is highly under-constrained. In order
to do any inference on the properties of the scene we need to add assumptions. The
brightness of a pixel is determined by equation (1.1). It is a function of the surface
normal, the surface reflectance properties and the illumination at that point. First
we must find several points in the image where the surface reflectance does not
change, i.e. when a surface is made from a homogeneous material such as on one of
the textiles in the van Eyck painting. If the surface reflectance properties change
we cannot in general do inference based on the shading. The most obvious example
is a photo or a painting, where the brightness and color changes in such a way that
it appears like a three dimensional scene, something that Magritte pointed out, see
Figure 1.2.

Another common assumption is that the illumination is distant, relative to the
points in the image, so that the illumination for a number of points in the image
can be assumed constant. This assumption is broken when part of the segment is
shadowed, when there are strong local inter-reflections or when the light source is
near the surface.

To do inference based on the shading in the image, it is necessary to take all
three components of image formation into account. If all three components are
unknown one has to estimate all three. Usually it is assumed that one or more of
the parts are given. In the pioneering work of Horn (1970, 1975) it is assumed that
the surface has Lambertian reflectance and the illumination is a point light source
at a known position. From this the shape of the surface is recovered. This is what
is known as shape-from-shading (SFS). A lot of work has been devoted to SFS and
it is not our intention to review it here since it is not the main topic of the thesis. A
collection of relevant papers can be found in the book by Horn and Brooks (1989).
A more recent survey can be found in (Zhang et al. 1999).
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Figure 1.2: Ceci n’est pas une pipe by Magritte. To be able to do inference from
shading it is necessary that the reflectance properties of the surface do not change.
Even a flat surface can be made to look like a three dimensional object if painted
appropriately.

The goal of this thesis has been to develop methods that can be used in realistic
conditions, i.e. non-Lambertian surface reflectance and complex illumination. The
main contributions are on models and representations of shading that can be used
under such conditions.

1.1.1 Models and Representation

Physics-based vision is inherently model-based. In order to do inference it is nec-
essary to model the components of the image formation process.

1.1.1.1 Surface Reflectance Functions

Given an opaque surface, light that hits the surface is scattered in different di-
rections. How the surface scatters the light is described by the bidirectional re-
flectance distribution function (BRDF) (Nicodemus, Richmond, Hsia, Ginsberg,
and Limperis 1977), which tells how much light is reflected in a direction due to
the incident light from another direction.

There are several models of the BRDF for natural surfaces. The most commonly
used is Lambert’s law. A Lambertian surface is an ideal diffuser. It scatters the light
equally in all directions and hence it appears equally bright from all viewpoints.
The reason it is used is probably due to its simplicity, rather than how well it
represents the world. Very few materials follow Lambert’s law perfectly.

Many materials exhibit a shine, also called specularity. Part of the light does
not penetrate the surface and is instead reflected in the mirrored incident direction.
The specularity can be increasingly diffuse depending on the surface roughness.
Torrance and Sparrow (1967) developed a model for this phenomenon, which can
be combined with a diffuse (Lambertian) part (Cook and Torrance 1981).
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Oren and Nayar (1995) develop a more realistic model for diffuse reflectance
by taking into account self-shadowing and interreflections in the microstructure of
rough surfaces.

1.1.1.2 Modeling the Illumination

One of the hardest factors to model has been the illumination. Most work on
shading have used a simplified model such as a point light source. A point light
source might work well as an approximation to direct sunlight, but it is inadequate
for most other situations.

The illumination in its fullest description is a function on a sphere, returning the
intensity of the incident light from every direction. However, this is not a useful
model for inference since we can never expect to recover this function from the
shading alone. The problem needs to be regularized.

An important notion is that the surface acts as a low-pass filter on the incident
illumination (Cabral, Max, and Springmeyer 1987; D’Zmura 1991). This makes
the reflected light band-limited, hence suitable to represent in the Fourier domain.
D’Zmura expresses the shading equations in spherical harmonics, which are the
sphere’s analog to the Fourier series on a line, and discusses the ambiguities that
arise in the appearance of a surface. There are several illumination-reflectance pairs
that result in to the same shading.

Recent work uses spherical harmonics to analyze the reflected light from a Lam-
bertian surface. Basri and Jacobs (2001a, 2003) and Ramamoorthi and Hanrahan
(2001a) simultaneously published work that analyze the properties of the Lamber-
tian reflectance function in spherical harmonics. They showed that the reflected
light can be approximated as a linear combination of the first nine spherical har-
monic components of the illumination and this under more or less any illumination.
This means that, in the case of Lambertian surfaces we can use the first nine spher-
ical harmonic coefficients as a model for the illumination.

Surfaces with other reflectance properties may also be analyzed in the frequency
domain. The shinier a surface is the more the appearance of that surface depends
on higher frequencies of the illumination. Hence, more harmonic coefficients are
needed to represent the illumination. Ramamoorthi and Hanrahan (2001b) write
the surface reflectance function and illumination in spherical harmonics and exam-
ines the properties of a number of reflectance models used in computer graphics
and vision, such as the Phong model and the Torrance and Sparrow model (1967).

1.1.1.3 Modeling Shading

Given the illumination, the surface reflectance and the shape of the surface, the
shading is given by the image irradiance equation (Horn 1986). One can also
examine shading from an appearance point of view. What is the general appearance
of a surface? What is the space of images of a surface under varying illumination?
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When considering the images of a surface, the variability of the images depends
on the surface’s shape. For example, a planar surface will appear equally bright
everywhere (assuming distant illumination and no cast shadows), hence the images
can be represented using only a single parameter. A spherical surface has all the
visible surface normals represented in the image, making the images of a sphere lie in
a higher dimensional space. In fact Belhumeur and Kriegman (1998) show that the
dimensionality of this space, even in the case of Lambertian surfaces, has the same
dimensionality as the number of unique surface normals in the image. However,
empirically it has been shown that the images due to variation in the illumination lie
in a much lower dimensional sub-space. Hallinan (1994) and Epstein et al. (1995)
perform principal component analysis (PCA) on sets of images of faces and objects
with a varying light source and find that around five components are enough to
capture most of the variance in the images.

The spherical harmonic representation in (Basri and Jacobs 2003; Ramamoorthi
and Hanrahan 2001a) can be used to represent shading. Ramamoorthi (2002) uses
this representation to analytically derive the principal components. He studies the
space of images of a convex Lambertian surface illuminated by a distant point light
source from all directions. The assumption of a convex object is often made to
avoid the problems with cast shadows. He computes the PCA bases for several
shapes including a sphere and a human face and gives a theoretical explanation to
the empirical results that the images can be represented by a low-dimensional basis
with about five basis functions.

The spherical harmonic representations provide a powerful framework to analyze
shading theoretically. Since they allow arbitrary illumination, they are also useful
in practice and have successfully been applied to a number of computer vision
problems, such as photometric stereo (Basri and Jacobs 2001b), object recognition
(Osadchy, Jacobs, and Ramamoorthi 2003), shape from motion (Simakov, Frolova,
and Basri 2003) and face recognition (Zhang and Samaras 2003).

1.2 The Present Work

Motivating this work is an attempt to understand what information can be ex-
tracted from shading and how to do it. I have focused on analyzing single images,
because of the fact that humans have no problems in interpreting such images, but
also because I believe that many of the challenges in analyzing shading are not
substantially helped by using more images.

When analyzing single images it is important to take into account the ambigu-
ities that occur. Some of these ambiguities are easily identified in the frequency
domain. The frequency space based representation also allows modeling of more or
less any illumination situation, which is a major advance from the previous point
light source models.

The thesis is divided in two parts. The first part deals with representations of
shading. It presents a framework on how to compute principal component bases for
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the appearance of surfaces. Using the frequency space representation, the image
irradiance can be written as a finite dimensional linear model, despite having arbi-
trary illumination. This finite dimensional model makes it possible to analytically
derive the principal components of the image irradiance.

By analytically deriving the principal components it is possible to combine the
advantages of appearance based models and the physics based models. There is an
explicit relation between the principal components, capturing the appearance, and
the coefficients of the illumination and surface reflectance.

The principal components are constructed so that they maximize the variance in
the image. The first component has the highest variance. The subsequent compo-
nents variances are maximized while being orthogonal to all previous components.
The property of having high variance is of great importance when estimating the
coefficients of the components. A component with high variance has a high signal-
to-noise ratio (SNR), hence is robust to estimate. In other words, the principal
component representation allows us to analyze how many components that can be
robustly estimated. Furthermore, because the basis is analytically derived and there
is an explicit relation to the illumination and surface reflectance, we can interpret
the estimated principal coefficients with regards to the illumination and surface
reflectance and the different uncertainties and ambiguities that occur.

The second part of the thesis presents algorithms that extract data from shad-
ing in images. The first algorithm is a demonstration of the principal component
framework presented in part I. In this algorithm we investigate the feasibility of
classifying the material of the surface, when the illumination is unknown, but the
shape of the surface is known. Knowing the surface shape may seem as an unre-
alistic assumption, but the algorithm is not intended as a final solution but rather
for use in a probabilistic framework, where in the end, the information is extracted
when none of the properties of the scene are known beforehand. Note that we do
not need to know the shape to use such an algorithm, we only need an estimate of
how likely the different shapes are given an image. This can be seen by looking at
the factorization of the posterior distribution for the illumination L, the material
M and the shape S given the image I.

P (L,M,S|I) = P (L,M |S, I)P (S|I) (1.2)

The classification is done by building a low-dimensional basis for the appearance
of the shape. This basis can now represent the appearance of this shape with a wide
variety of surface reflectance properties and under more or less any illumination.
Given a material of the surface the images form a manifold in the space of the PCA
basis. We learn these manifolds using captured real world illumination and real
world surface reflectance properties. An image is classified by finding the manifold
closest to the point representing the image.

The second algorithm is about illumination estimation. This work was com-
pleted when the frequency space representations of shading were largely unknown
to the computer vision community and therefore the algorithm uses conventional
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models such as a point light source and Lambertian surface reflectance. The goal of
this work is to completely automatically extract information about the light source.
The algorithm uses a model for the shading near occluding contours. The occlud-
ing contour is where an object occludes itself like the earth at the horizon. At
the occluding contour the shape of the object can easily be determined because the
surface normal is perpendicular to the viewing vector and can be determined by the
image edge direction. The algorithm works by extracting a number of candidate
contours using color and edge information. Now, if the light source is distant, the
shading at the occluding contours should have a regularity since they share the
same light source. We exploit this regularity and simultaneously estimate the light
source direction and determine which contours are occluding ones, using Bayesian
network inference.

1.3 Contributions

This section summarizes the contributions of the thesis. The frequency space repre-
sentations of shading provide a powerful framework for analyzing shading theoret-
ically. This thesis derives a new basis for shading by representing the illumination
in spherical harmonics and the BRDF in the basis of Koenderink and van Doorn
(1998) for isotropic surfaces. This basis is analyzed and it is shown how to compute
which frequencies of the illumination that contribute to the shading for any isotropic
material. Furthermore, the analysis leads to a finite dimensional representation of
shading under arbitrary illumination.

Moreover, the thesis presents a novel framework for creating low-dimensional
generative models of shading. The models are created using PCA. The PCA is de-
rived analytically and in a model-based fashion so that an explicit relation between
the principal components and the physical properties of the surfaces can be found.
Some insights regarding how the PCA should be performed in terms of centering
of the dataset is provided and a modification is suggested. A number of PCA bases
are computed and analyzed.

The model-based PCA framework is used to create a basis for a database of
materials. Using this basis the material is classified from a single image when the
shape of the object is known and under arbitrary unknown illumination conditions.
Experiments are performed on real world images taken under varying natural illu-
mination conditions.

Finally a new algorithm that automatically estimates the slant direction to the
light source is presented. By combining simple perceptual grouping, Bayesian net-
work inference and the physics of light scattering, the algorithm classifies contours
as occluding or not and simultaneously estimates the slant direction to the light
source.
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1.4 Thesis Overview

The thesis is divided in two parts. Part one deals with models and representations
of image irradiance. Chapter 2 describes the basics of image formation theory, nec-
essary to understand the following chapters. Chapter 3 presents and analyzes the
frequency space representation for the image irradiance used in the thesis. Chap-
ter 4 describes how to analytically derive principal components in the frequency
space representations when there are variations in both the illumination and the
surface reflectance properties. In Chapter 5 a number of bases for Lambertian sur-
faces are computed and compared. In Chapter 6 a basis for a group of materials is
computed and analyzed.

The second part contains examples of algorithms to extract information from
images using the physics of light scattering. Chapter 7 contains experiments on
material classification of an object of known shape, with unknown natural illumi-
nation. Chapter 8 presents an algorithm that automatically estimates the light
source slant direction using the shading near occluding contours.

Finally, Chapter 9 concludes the thesis.

1.5 List of Publications

Most of the work presented in the thesis has previously appeared in the following
publications:

• Nillius, P. and Eklundh, J.O., “Automatic Estimation of the Projected Light
Source Direction”, In Proc. IEEE Computer Vision and Pattern Recognition,
December 2001, pp. I:1076-1083

• Nillius, P. and Eklundh, J.O., “Low-Dimensional Representations of Shaded
Surfaces under Varying Illumination”, In Proc. IEEE Computer Vision and
Pattern Recognition, June 2003, pp. II:185-192

• Nillius, P. and Eklundh, J.O., “Phenomenological Eigenfunctions for Image
Irradiance”, In Proc. International Conference on Computer Vision, October
2003, pp. 568-575

• Nillius, P. and Eklundh, J.O., “Classifying Materials from their Reflectance
Properties”, In Proc. European Conference on Computer Vision, May 2004

Other articles by the author that are not directly related to the topic of the
thesis are:

• Nillius, P. and Eklundh, J.-O., “Fast Block Matching with Normalized Cross-
Correlation using Walsh Transforms”, Technical Report ISRN KTH/NA/P--
02/11--SE, Sept. 2002.
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• Roobaert, D., Nillius, P. and Eklundh, J.-O., “Comparison of learning ap-
proaches to appearance-based 3D object recognition with and without clut-
tered background”, In Proc. 4th Asian Conference on Computer Vision, Jan-
uary 8-11, 2000, Taipei, Taiwan, pp. 443-448
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Chapter 2

Image Formation

In order to analyze images using the physics of light scattering, we need to know
how the pixel values in the image are related to the physics of the world. This
chapter presents the basics of image formation necessary for the analysis performed
in the following chapters.

There are two fundamental aspects to image formation: a geometric and a
radiometric. The geometry determines where a point in the scene is projected in
the image. The radiometry determines how bright that point will be. This chapter
describes the radiometric aspects of image formation.

2.1 Radiometry

Radiometry is the field of measuring light. There are two important concepts in
radiometry: radiance and irradiance.

Radiance is the power of light emitted from a surface in a particular direction,
per unit foreshortened area and per unit solid angle. It is measured in watts per
square meter per steradian (Wm−2sr−1). This somewhat awkward definition stems
from the fact that radiance is related to how bright a surface appears.

Irradiance is the power of the light falling onto a surface. It is expressed in
watts per square meter (Wm−2). The irradiance is important because it is what
the image sensor measures.

2.2 Image Formation

The brightness of a pixel is determined by the image irradiance on the correspond-
ing element of the image sensor. But what does this correspond to in the scene?
Using a single lens camera model Horn (1986) shows that the image irradiance, E

13
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Figure 2.1: The incident and reflected directions.

is approximately proportional to the scene radiance, L.

E ∝ cos4 α L, (2.1)

where α is the angle between the ray from the scene to the image, and the optical
axis. When the camera-object distance is much greater than the object size the
cos4 α factor is negligible.

Another factor that influences this relationship is vignetting. A camera with
multiple lenses will in effect have multiple apertures which screen off light coming
in from an angle, resulting in darker pixels around the edges of the image.

Vignetting and the cos4 α factor are both deterministic and can be compensated
for. In this thesis we ignore their effects and assume that the image irradiance is
proportional to the scene radiance, a common assumption in most computer vision
algorithms.

2.3 Surface Scattering
The image irradiance is proportional to the scene radiance, but what is the scene
radiance? This leads us to surface scattering.

Light that hits a surface is reflected, scattered or absorbed. How the light is
scattered depends on the incoming angle of the light and the reflectance proper-
ties of the surface. The reflectance properties of the surface are described by its
bidirectional reflectance distribution function (BRDF), (Nicodemus et al. 1977).

The BRDF describes the ratio of radiance, dLr in the reflected direction (θr, φr)
to the irradiance, dEi due to the incident light from direction (θi, φi), see Figure 2.1.
Thus, it is a function of two directions.

fr(θi, φi, θr, φr) =
dLr(θr, φr)
dEi(θi, φi)

(2.2)
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2.3.1 Helmholtz Reciprocity
An important and very general symmetry of the BRDF is Helmholtz’s reciprocity.
Helmholtz’s reciprocity states that the ratio of incident irradiance and reflected
radiance is the same if you swap the incident and reflected directions, i.e.

fr(θi, φi; θr, φr) = fr(θr, φr; θi, φi). (2.3)

This symmetry holds for all materials, except in special cases such as fluores-
cence (Minnaert 1941). Therefore, without loss of generality we can incorporate it
in our representations. The number of parameters now needed is halved, (Westin,
Arvo, and Torrance 1992; Koenderink and van Doorn 1998).

2.3.2 Isotropy
Another important property of the BRDF is isotropy. Surfaces with isotropic re-
flectance have, in a statistical sense, no direction on the surface. The distribution
of the microstructure of the surface constituting the BRDF is independent of the
direction on the surface. In such cases the BRDF’s only azimuthal dependence is
on the absolute difference of the incident and reflected directions,

fr(θi, φi; θr, φr) = fr(θr, θi,∆φir). (2.4)

where ∆φir = |φi − φr|, (Koenderink and van Doorn 1998).
Not all materials have isotropic surface reflectance, but many do and in some

cases the surface reflectance can be approximated as isotropic, (Dana et al. 1999).
Examples of anisotropic materials are surface that have been brushed in a particular
direction or certain textiles such as corduroy.

2.4 Scene Radiance
The scene radiance is the sum of all light emitted in the direction towards the
camera. The incident light, or the illumination at a point is a function on a
sphere returning the incident radiance in each direction, Li(θi, φi). This inci-
dent radiance gives rise to irradiance, dEi(θi, φi), depending on the incident po-
lar angle (due to the foreshortening effects on light coming in from an angle),
dEi(θi, φi) = Li(θi, φi) cos θidωi. This irradiance on the other hand gives rise to
scene radiance according to the BRDF, dLr = fr(θi, φi; θr, φr)Li(θi, φi) cos θidωi.
The total scene radiance is computed by integrating this radiance over the hemi-
sphere of possible incident directions, HS2 ,

Lr(θr, φr) =
∫
HS2

Li(θi, φi)fr(θi, φi; θr, φr) cos θidωi. (2.5)

dωi is the infinitesimal solid angle equal to dωi = sin θidθidφi.
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2.5 Image Irradiance
The image irradiance, which in the end determines the pixel value, is assumed to be
proportional to the scene radiance. Because there always will be an unknown scale
factor in the illumination, we let the illumination take care of the scene radiance-
image irradiance proportionality factor and simply write the image irradiance as

E(θr, φr) =
∫
HS2

Li(θi, φi)f(θi, φi, θr, φr) cos θidωi. (2.6)

2.5.1 Distant Light Source Assumption

When analyzing local parts of the image, so that the distance to the light source(s)
is large relative to the size of the analyzed area, the incident light field Li(θ, φ) can
be assumed constant in that area. This is a common assumption of many computer
vision algorithms.

In (2.6) the light field is in a local coordinate frame, set by the surface normal.
To compare image irradiance from points with different surface normals under the
same illumination we need to define the light field w.r.t. a global coordinate frame.
To achive this, the incident direction in the image irradiance equation (2.6) is
rotated from the local to the global frame.

There are several ways of parameterizing 3D rotations. In this thesis we use the
ZYZ Euler angle parameterization, which corresponds to three consecutive coun-
terclockwise rotations around the z-, y- and z-axis respectively (Craig 1989).

Rα,β,γ = RZ(β)RY (α)RZ(γ) (2.7)

This parameterization has an intuitive interpretation. Consider two coordinate
frames arranged as in Figure 2.2b. (α, β) are the spherical coordinates of z′ in
the non-primed system. γ is the rotation of the {x′, y′, z′} system around the z′.
Spherical coordinates in these two systems are related as follows.

(θ, φ) = Rα,β,γ(θ′, φ′) (2.8)
(θ′, φ′) = R−1

α,β,γ(θ, φ) (2.9)

Now, let the global coordinate frame be positioned with its z-axis along the optical
axis pointing towards the camera and the x- and y-axes in the image plane. For
a point with surface normal located (α, β, γ) relative the global frame the image
irradiance can be written as

E(α, β, γ; θr, φr) =
∫
HS2

L(Rα,β,γ(θi, φi))fr(θi, φi; θr, φr) cos θidωi (2.10)

where L(θ, φ) is the incident light in the global frame. The parameter γ defines the
rotation of the local frame around the surface normal. It should be set so that the
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(a) (b)

(c)

Figure 2.2: Geometry of reflectance. a) The incident and reflected beam in
the local coordinate frame. b) The relative position of the global and local
coordinate frames. c) Assuming orthographic projection, the reflected beam
aligns with the optical axis leading to θr = α and φr = π.
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local frame aligns with the “direction” of the material on the surface (to correspond
with the parameterization of the BRDF). Isotropic materials have no direction. In
that case, γ can be selected arbitrarily. Hence, we can set it to γ = 0.

2.5.2 Orthographic Projection
If the camera projection can be approximated as orthographic, i.e. the perspective
effects are negligible, the viewing geometry has further implications for the param-
eters of (2.10). As can be seen in Figure 2.2c the reflected beam aligns with the
optical axis (the z-axis in the global frame) which means that θr = α. Furthermore,
setting γ = 0 leads to φr = π. So, for isotropic materials we can eliminate θr and φr

from the equation and the image irradiance is uniquely determined by the surface
normal (α, β),

E(α, β) =
∫
HS2

L(Rα,β,0(θi, φi))f(θi, φi, α, π) cos θidωi. (2.11)

This is what Horn calls the reflectance map, (Horn 1977; Horn and Sjoberg 1979).
For Lambertian surfaces, which appear equally bright from all directions, the re-
flectance map always exists. However, for general BRDFs we need to assume ortho-
graphic projection. In perspective projection the image irradiance also depends on
the viewing geometry. Then the five (which reduces to four for isotropic surfaces)
parameter function in (2.10) is needed to describe the image irradiance.



Chapter 3

Frequency Space Representations of
the Image Irradiance

In order to do inference from the image irradiance it is necessary to have a paramet-
ric model of the illumination and surface reflectance. The frequency space represen-
tations look very promising for this purpose. Although, there are a lot variation in
the reflectance functions many of them are smooth and can therefore be represented
in frequency space with a limited number of parameters. Also, since surfaces act
as low-pass filters on the illumination, the reflected light is band-limited and can
be represented in frequency space with a finite number of parameters despite the
infinite variations the can occur in the illumination.

This chapter derives a frequency space basis for the image irradiance. This
is done by expressing the illumination and the BRDF by their frequency space
representations and inserting them into the image irradiance equation (2.11). The
resulting basis can represent the image irradiance from any isotropic surface under
any illumination. Of course, the representation in the general case is an infinite
sum, but because many surfaces act as low-pass filters on the illumination this sum
can be truncated and still be an accurate representation of the image irradiance.

3.1 Illumination in Spherical Harmonics

The illumination in the general case can be represented as a function on the sphere.
This function is sometimes referred to as the light field. The frequency space basis
for functions defined on a sphere are spherical harmonics. Spherical harmonics
on the sphere are the analog to the Fourier series on the line. They form an
orthonormal basis for functions on the sphere.

19
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Figure 3.1: The spherical harmonic basis functions. The radius is equal to the
absolute value of the functions. Green (bright) depicts a positive value and red
(dark) a negative value.

The light field written in spherical harmonics is

L(θ, φ) =
∞∑

l=0

l∑
m=−l

Lm
l Y

m
l (θ, φ), (3.1)

where Lm
l are the spherical harmonic coefficients of the light field and Y m

l (θ, φ) are
the spherical harmonic basis functions, see Figure 3.1. Since the basis functions are
orthonormal the coefficients can be calculated as1

Lm
l =

∫
S2
L(θ, φ)Y m

l (θ, φ)dω =
∫ 2π

0

∫ π

0

L(θ, φ)Y m
l (θ, φ) sin θdθdφ (3.2)

One important property of spherical harmonics is that they behave nicely under
rotation. If a basis function Y m

l is rotated, the rotated version can be described
as a linear combination of the basis function of the same polar order l. The sets
of basis functions with same polar order l form sub-groups under 3D rotations.
How to linearly combine the basis functions to form 3D rotations can be computed

1Note that we are using real valued spherical harmonics and therefore we don’t need complex
conjugate on Y m

l .



3.2. BRDF Representation 21

directly from the ZYZ-Euler angles. In particular the light field in (2.11) can be
written as

L(Rα,β,γ(θi, φi)) =
∞∑

l=0

l∑
m=−l

l∑
n=−l

Dmn
l (α, β, γ)Lm

l Y
n
l (θi, φi), (3.3)

where Dmn
l (α, β, γ) are the rotation reparameterization functions, sometimes re-

ferred to as the Wigner D-functions from quantum mechanics, (Chirikjian and
Kyatkin 2001). Spherical harmonics are usually defined as complex functions. This
thesis uses their real versions. How these are defined and rotated is described in
Appendix A.

3.2 BRDF Representation

The BRDF also has a frequency space representation. In this case the BRDF is
represented as a sum of coefficients and basis functions of increasing frequency. As
the BRDF in many cases is a smoothly varying function it can be well represented
with a finite number of basis functions.

Although, in principle, physical models are preferred when representing the
BRDF, such models are not always available. For instance many of the materials in
the CUReT database (Dana et al. 1996) are not modeled well using a combination
of the Oren-Nayar (1995) model for diffuse reflectance and the Torrance-Sparrow
model (1967) for specular reflectance. While an eighth order frequency space model
of Koenderink and van Doorn (1998) can capture the reflectance properties of most
of the different materials in this database.

Even though the Frequency space bases are not derived from physically moti-
vated constraints, they can be constructed to fulfill the general Helmholtz’s reci-
procity and the quite common isotropy property.

There are several ways of creating frequency space representations for the BRDF.
The BRDF is a function from two hemispheres (incident and reflected direction)
to R. The natural way to construct a representation is to use a basis for the hemi-
sphere. Since such a basis has not been available spherical harmonics (which are
the Fourier basis for the sphere) have been used instead. Westin, Arvo, and Tor-
rance (1992) construct a basis for the hemisphere, using spherical harmonics, by
mirroring the function on the lower hemisphere, thereby reducing the number of
basis functions by a factor of two. Ramamoorthi and Hanrahan (2001b) instead let
the BRDF be a function from two spheres, but fit the model to data so that the
lower hemispheres are zero.

Koenderink and van Doorn (1998) use the Zernike polynomials to create a basis
for the BRDF. The Zernike polynomials can be used to create a basis for the unit
disk, frequently used in optics. By mapping the basis for the unit disc onto the
hemisphere Koenderink and van Doorn (1998) create an orthonormal basis for the
hemisphere, see Figure 3.2a.
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Figure 3.2: Orthogonal bases for the hemisphere based on a) the Zernike polyno-
mials and b) spherical harmonics.
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Given a basis for the hemisphere, a basis for the BRDF can be created by multi-
plying the basis functions of two independent hemispheres. The degrees of freedom
of this basis can then be reduced by enforcing the various symmetries of the classes
of BRDFs you are interested in representing. For instance, enforcing Helmholtz’s
reciprocity reduces the number of basis functions with a factor two. Incorporating
isotropy drastically reduces the number of functions, since the azimuthal order of
the two hemispheres then must be the same. For more on how to create bases for
BRDFs see (Westin, Arvo, and Torrance 1992; Koenderink and van Doorn 1998;
Ramamoorthi and Hanrahan 2001b).

Which of the frequency representations that is superior is too early to say.
Figure 3.2 displays two orthogonal bases for the hemisphere based on the Zernike
polynomials and spherical harmonics. Qualitatively they look very similar, but
which one that best fits the real world data has not yet been shown.

We use the isotropic BRDF representation of Koenderink and Van Doorn (1998)
constructed with the Zernike polynomials. It offers a compact orthonormal repre-
sentation of the BRDF while incorporating Helmholtz reciprocity and isotropy. The
BRDF is represented as

f(θi, θr,∆φir) =
∑
opq

bqopI
q
op(θi, θr,∆φir), (3.4)

where

Iq
op(θi, θr,∆φir) =

1
2π

√
(o+ 1)(p+ 1)

(1 + δop)(1 + δq0)

×
(
Rq

o(
√

2 sin
θi

2
)Rq

p(
√

2 sin
θr

2
) + Rq

p(
√

2 sin
θi

2
)Rq

o(
√

2 sin
θr

2
)
)

× cos q∆φir

(3.5)

Rq
o(ρ) are the Zernike polynomials. The Kronecker delta is used for a more com-

pact notation of the normalization factor, δij = 1 if i = j and 0 otherwise. The
restrictions on the indices are o ≥ p ≥ q ≥ 0 and (o− q) and (p− q) are even.

3.3 Image Irradiance Representation
Inserting the representations (3.3) and (3.4) into the irradiance expression (2.11)
and moving everything not depending on (θi, φi) out of the integral results in

E(α, β) =
∑
lmn
opq

Lm
l b

q
opD

mn
l (α, β, 0)

×
∫
HS2

Y n
l (θi, φi)Iq

op(θi, α, φi − π) cos θidωi. (3.6)
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Now let us study the integral in equation (3.6). Inserting the expressions for the
spherical harmonic (see (A.6) in the appendix) and the BRDF (3.5) basis functions,
we see that it can be separated into an azimuthal integral over φi and a polar integral
over θi. The azimuthal integral is easily solved and eliminates all terms in the sum
(3.6) except when n = q.∫ 2π

0

Φn(φi) cos q(φi − π)dφi = δnqπ(−1)q
√

2(1 + δq0) (3.7)

The polar integral can also be calculated analytically but the expression is rather
complicated and for now we denote it

Cq
lo =

∫ π
2

0

P q
l (cos θi)Rq

o(
√

2 sin
θi

2
) cos θi sin θidθi. (3.8)

The derivation and analytic expression for Cq
lo can be found in Appendix B.

Inserting these results in (3.6) we get an expression for the irradiance

E(α, β) =
∑
lm
opq

Lm
l b

q
op(−1)qNq

l

√
(o+ 1)(p+ 1)

2(1 + δop)
Dmq

l (α, β, 0)

×
(
Cq

loR
q
p(
√

2 sin
α

2
) + Cq

lpR
q
o(
√

2 sin
α

2
)
)
.

(3.9)

Let

Emq
lop (α, β) = (−1)qNq

l

√
(o+ 1)(p+ 1)

2(1 + δop)
Dmq

l (α, β, 0)

×
(
Cq

loR
q
p(
√

2 sin
α

2
) +Cq

lpR
q
o(
√

2 sin
α

2
)
)
.

(3.10)

Then
E(α, β) =

∑
lm
opq

Lm
l b

q
opE

mq
lop (α, β). (3.11)

The restrictions of the indices are o ≥ p ≥ q ≥ 0, (o− q) and (p− q) are even, l ≥ q
and m = −l, . . . , l.

We have derived a basis for the image irradiance from isotropic materials. The
image irradiance is represented as a sum of the basis functions, Emq

lop multiplied
by the coefficients of the light source, Lm

l and the coefficients of the BRDF of the
material, bqop. This basis can represent the image irradiance from any isotropic
surface under any illumination. For the general case an infinite number of basis
functions is needed, but in many cases a finite number is sufficient. For instance,
a perfect mirror under some illumination will require as many components as the
illumination. However, most natural materials are not perfect mirrors. Their BRDF
is band-limited and will in effect low-pass filter the illumination. In that case the
series (3.11) can be truncated to a finite series and still be an accurate representation
of the image irradiance.
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3.3.1 Separability of the basis functions

The basis functions Emq
lop (α, β) can be factored into a product of two functions. One

depending only on the polar angle of the surface normal, α and the other depending
only on the azimuth angle, β.

The expression for the rotation functions, Dmq
l (α, β, γ) are given in (A.17) in

Appendix A. Because q ≥ 0 and γ = 0 this expression can be simplified to

Dmq
l (α, β, 0) =

Pmq
l (cosα) + (−1)qPm,−q

l (cosα)√
2(1 + δq0)

Φm(β), (3.12)

which leads to a factorization of the basis functions,

Emq
lop (α, β) = Θmq

lop(α)Φm(β), (3.13)

where

Θmq
lop(α) = Nq

l

√
(o+ 1)(p+ 1)

4(1 + δop)(1 + δq0)
(
(−1)qPmq

l (cosα) + Pm,−q
l (cosα)

)
×
(
Cq

loR
q
p(
√

2 sin
α

2
) + Cq

lpR
q
o(
√

2 sin
α

2
)
)
.

(3.14)

Φm(β) is defined in (A.7).

3.4 Approximating the Image Irradiance
A surface acts as a low-pass filter on the illumination. Thus the higher frequencies
of illumination do not affect the appearance of the surface. This means in our case
that the series (3.11) can be truncated at some illumination order l. If the BRDF
can be expressed, or approximated, by a finite sum of BRDF basis functions then
the image irradiance can also be expressed as a finite sum of the basis functions,
Emq

lop .
Basri and Jacobs (2003) and Ramamoorthi and Hanrahan (2001a) showed that

the reflected light from a Lambertian surface can be approximated using only the
first three orders of the illumination. Now follows an equivalent analysis for BRDFs
represented in the basis (3.4) of Koenderink and van Doorn (1998). We consider
the variance of the image irradiance, the variance in the image, which is what the
camera registers and our eyes see. The variance, V , of the image irradiance is
computed over all visible surface normals,

V =
∫
HS2

∑
lm
opq

Lm
l b

q
opE

mq
lop (α, β)


2

dω

=
∫
HS2

∑
lm
opq

∑
l′m′

o′p′q′

Lm
l L

m′

l′ b
q
opb

q′

o′p′E
mq
lop (α, β)Em′q′

l′o′p′(α, β)dω.

(3.15)
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The variance depends both on the BRDF (the bqop’s) and the illumination (the
Lm

l ’s). To be independent of the position of the light source, we consider the average
variance as the light source undergoes all 3D rotations, SO(3). Consider a light
source with coefficients L̃m

l . The coefficients of that light source after a rotation
R ∈ SO(3) are Lm

l =
∑l

n=−lD
nm
l (R)L̃n

l . In (3.15) the only part depending on
this rotation is Lm

l L
m′

l′ so we can compute the average
∫

SO(3)
Lm

l L
m′

l′ dR separately.
Now, the Dmn

l are orthogonal over the rotation group,∫
SO(3)

Dnm
l (R)Dn′m′

l′ (R)dR =
δl,l′δm,m′δn,n′

2l + 1
, (3.16)

so the average simply becomes∫
SO(3)

Lm
l L

m′

l′ dR =
∫

SO(3)

∑
n,n′

L̃n
l L̃

n′

l′ D
nm
l (R)Dn′m′

l′ (R)dR

= δll′δmm′
1

2l + 1

l∑
n=−l

(L̃n
l )2.

(3.17)

Let

VL(l) =
1

2l + 1

l∑
n=−l

(L̃n
l )2. (3.18)

VL is the average signal variance of each mode of the illumination. It is the same
for all modes of the same order, hence only depends on the order l.

The expression for the average variance is obtained by inserting (3.17) into
(3.15),

Vave =
∑

l

VL(l)
∑
opq

o′p′q′

bqopb
q′

o′p′

∑
m

∫
HS2

Emq
lop (α, β)Emq′

lo′p′(α, β)dω.
(3.19)

Let
VB(l) =

∑
opq

o′p′q′

bqopb
q′

o′p′

∑
m

∫
HS2

Emq
lop (α, β)Emq′

lo′p′(α, β)dω. (3.20)

Then
Vave =

∑
l

VL(l)VB(l). (3.21)

By studying the average variance the expression has been greatly simplified.
Since the basis functions Emq

lop are not orthogonal their covariances contribute to the
variance, but in the average variance all covariances between different illumination
orders have vanished. In this way the average variance can be written as a sum over
l where each term is a product of VL, which depends only on the illumination and
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VB , which depends only on the BRDF. The VL’s, again, are the average variances
of the illumination modes. The VB ’s can be seen as the attenuation factors of the
BRDF on the illumination. They determine which frequencies of the illumination
that are let through the BRDF.

We now return to the question: At which l can the series be truncated and still
achieve a desired accuracy. Define the accuracy to be the variance of the truncated
series.

Accuracy =
∑lmax

l=0 VL(l)VB(l)∑∞
l=0 VL(l)VB(l)

(3.22)

3.4.1 Frequency Properties of Natural Illumination

To determine the accuracy we first have to take into account the frequency proper-
ties of the illumination. Consider first a point light source. The spherical harmonic
coefficients of a light source are computed by integrating the light source with each
harmonic basis function. Since a point light source can be described as a delta
function on the sphere, its coefficients are the basis functions sampled at the posi-
tion of the light source. If the light source is positioned at the north pole ((0, 0) in
spherical coordinates) its coefficients are L̃m

l = Y m
l (0, 0), where

Y m
l (0, 0) =

{ √
2l+1
4π m = 0

0 m 6= 0
(3.23)

Consequently

VL,pointlight(l) =
1
4π
. (3.24)

To illustrate the properties of natural illumination we computed VL(l) for a num-
ber of captured real world illuminations. These illumination maps are captured by
photographing a mirror sphere from several directions and at several exposures.
The images are calibrated and merged to form a high dynamic range image of the
full view sphere, (Debevec 1998). See Figure 3.3 for some examples. Figure 3.4
shows the VL(l) for a point light source and some of the illumination maps cre-
ated by Debevec. While the point light source has a constant profile, the natural
illumination rapidly decrease for higher l.

In the coming sections, when we compute the accuracy for a number of different
BRDFs, we use the illumination properties of a point light source. From Figure 3.4
it can be seen that this gives a conservative estimate of the accuracy.
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Figure 3.3: Three of the nine illumination maps created by Debevec (1998). From
left to right: an eucalyptus groove, St Peter’s basilica and a breezeway. The captured
illumination is an image on a sphere and mapped here onto a disc. The radius and
angle of the circular coordinates of the disc correspond respectively to the polar and
azimuthal angle of the spherical coordinates.
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Figure 3.4: Frequency properties of natural illumination. The plot shows the
variance (log scale) of each order l of a point light source and a number of captured
real world illumination maps (Debevec). While the variances over frequency stay
constant for a point light, they rapidly decrease at high frequencies (high order l) for
natural illumination.
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Figure 3.5: VB(l) for each reflectance mode, Iq
op.

3.4.2 Single Reflectance Mode

First, let’s consider the reflected light from a single reflectance mode, Iq
op. For a

single reflectance mode the analytical expression VB(l) becomes extremely simple.

VB,Iq
op

(l) =
∑
m

∫
HS2

(Emq
lop (α, β))2dω

= π(Nq
l )2
(
(o+ 1)(Cq

lo)
2 + (p+ 1)(Cq

lp)
2
) (3.25)

The derivation can be found in Appendix C.
Figure 3.5 shows VB for all the reflectance modes up to order o = 7. The

coefficients have a maximum at around the same illumination order l as the material
order o. For higher l it rapidly tends to zero.

We have not been able to prove this, but it seems as if VB,Iq
op

(l) asymptotically
tends to

lim
l→∞

VB,Iq
op

(l) =

{
k1 l

−4 l − q even
k2 l

−6 l − q odd
(3.26)
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If the series follows the asymptote at l = lasym, we can estimate the variance of the
“tail” of the series by

Vtail =
∞∑

l=lasym+1

VL(l)VB(l) ≤
∞∑

l=lasym+1

k1 l
−4 = k1(

π4

90
−

lasym∑
l=1

k1 l
−4) (3.27)

since
∑∞

l=1 l
−4 = π4/90. k1 is estimated by k1 = VL(lasym)VB(lasym)l4asym. In

all computations below, the series are computed up to lasym = 200. To ensure
accuracy when computing the sums for such high orders we use infinite precision
rational numbers.

Once we have an estimate of the tail variance we can compute the accuracy
of the representation for a given l. Figure 3.6 shows the required lmax for each
reflectance mode up to o = 7 to achieve three different levels of accuracies. Mode
I0
00 corresponds to a Lambertian BRDF. It’s enough to use only the three first

illumination order (up to l = 2) as was shown before by Basri and Jacobs (2003)
and Ramamoorthi and Hanrahan (2001a). For the higher order reflectance modes
more illumination modes are required. For instance, roughly an illumination order
of l = o+ 2 is required to achieve a 98% accuracy in most cases.

3.4.3 Composite BRDFs

Real BRDFs are linear combinations of the reflectance modes Iq
op. To compute the

accuracy we compute VB(l) as in (3.20) which takes into account the covariances
of the reflectance modes. It can also be calculated analytically. The expression can
be found in Appendix C.

The asymptotic behaviour of VB(l) is similar to that of the single mode case.
VB(l) is a linear combination of series that have asymptotes of O(l−4) or O(l−6).
Therefore VB(l) has an asymptote of O(l−n), where n lies somewhere between 4 and
6. Since it is still bounded by the O(l−4) asymptote we compute the tail variance
as in the single mode case.

As an illustration we have performed a variance analysis of the materials in the
CUReT database (Dana et al. 1999). The CUReT database contains captured
reflectance and textures of 61 materials. Examples are felt, leather, velvet, plaster,
concrete and wood. The data have been captured by photographing the materials
at different viewing and lighting angles. There are 205 samples of viewing and
lighting direction combinations per material.

We have only used the reflectance part of the database. The samples of the
BRDF were fitted to a Koenderink and van Doorn model of order omax = 7. This
was the highest order that could be used before overfitting occured. The VB(l)
was computed and the tail variance was estimated and from that the accuracy was
determined. Figure 3.7 shows VB(l) and the accuracy for four of the materials in the
database. For a matte material, such as plaster, most of the variance depends only
on illumination orders up to l = 2 and over 99% accuracy is achieved using only
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Figure 3.6: Required minimum illumination order for each reflectance mode. The
black, dark gray and light gray bars show the required order to achieve 95%, 98%
and 99% accuracy respectively.

those orders. Glossy and shiny materials, such as the leather and brick, depend on
higher frequencies of the illumination which creates the specular reflection. This
is shown as a “bump” in Figure 3.7a around l = 7. Velvet which has unusual
reflectance properties (Lu, Koenderink, and Kappers 1998) passes through higher
frequencies than plaster, but less so than leather and brick.

Graphs for all the materials in the CUReT database can be found in Figures C.1-
C.6 in Appendix C. A summary of these results is shown in Figure 3.8 which shows
the required minimum order, for all the materials, for three different accuracies.
Notably quite a few materials can be accurately represented using only illumination
orders up to l = 2. The specular materials are easily spotted as they require higher
orders, up to l = 10.
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Figure 3.7: Properties of some of the materials in the CUReT database. a) At-
tenuations factors VB . b) Accuracy of image irradiance representation when using
illumination orders up to l. Curves for all the materials in the CUReT database can
be found in Figures C.1-C.6 in Appendix C.

3.5 Summary

BRDFs in the real world are in many cases smooth functions. This property makes
them suitable to model by frequency space representations. Frequency space rep-
resentations can account for BRDFs where other models have failed. Also, since
frequency space models are general a single model can be used for a wide range of
materials.

The smoothness of the BRDFs also accounts for why the BRDF acts as a low-
pass filter on the illumination. This has the effect that only the lower frequencies
of the illumination contribute to the appearance of the surface. Hence, only those
low-frequencies should be taken into account for when analyzing shading. This
suggests that also the illumination should be represented in the Fourier domain.

In this chapter, we have written the illumination in spherical harmonics and the
BRDF in the basis of Koenderink and van Doorn, and derived a basis for the image
irradiance. This basis consists of functions which are the contributions due to an
illumination mode reflected by an reflectance mode.

In this basis the image irradiance from any isotropic BRDF under any illu-
mination can be represented. An infinite number of basis functions is required
in the worst case, but for smooth BRDFs which can be represented with a finite
number of reflectance modes, the series can be truncated and still be an accurate
representation.

By studying the variance of the image irradiance we show how to compute
at which illumination order the series can be truncated. When analyzing the re-
flectance properties of the materials in the CUReT database, we see that matte
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Figure 3.8: Required minimum illumination order for the materials in the CUReT
database. The black, dark gray and light gray bars show the required order to achieve
95%, 98% and 99% accuracy respectively.
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materials require illumination order up to l = 2, while the shinier materials require
order up to around l = 7.

One important result is that we get a general finite dimensional representation
for the image irradiance. In the following chapter we use principal component
analysis to further reduce the dimensionality of the representation. The finite rep-
resentation allows us to analytically derive the principal components, something
which will prove very useful.



Chapter 4

Phenomenological Eigenfunctions
for Image Irradiance

This thesis is primarily concerned with answering the question: What information
can be extracted from the shading in a single image? For this purpose the model
derived in the previous chapter, although finite dimensional, has far more param-
eters than can be estimated from a single image, in practice. Shading has been
shown to lie in a much lower dimensional space.

Hallinan (1994) and Epstein, Hallinan, and Yuille (1995) have shown that im-
ages of faces and other objects lie in a low-dimensional subspace. They captured
images of an object while varying the position of the light source. After performing
principal component analysis on the images they found that the images could be
recreated using only a few (5± 2) principal components.

Recently, Ramamoorthi (2002) analytically derived the principal components of
a convex Lambertian object illuminated by a varying point light source. Since the
principal components are derived analytically every possible position of the light
source can be taken into account. This corresponds to an infinite number of images
if one were to do the experiments empirically. His results confirm the empirical
results, both qualitatively and quantitatively.

When estimating the parameters describing the shading the principal compo-
nents are ideal. They are constructed to maximize the variance of the component
they represent, which means they have a high signal-to-noise ratio (SNR). The
problem is that in general it is hard to relate the principal components to the phys-
ical properties of the underlying model, in our case the illumination and the surface
reflectance.

The solution is to do, what can be called, model-based PCA. In this chapter
we construct the principal components by applying PCA directly on the image
irradiance representation. Instead of capturing a large number of images, the vari-
ations in the images are described through the variations in the illumination and

35
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the BRDF. As in (Ramamoorthi 2002) the rotation of the light source can be done
analytically, which reduces the amount of data that needs to be acquired. But
most importantly, by performing the PCA model-based we obtain an explicit rela-
tion between the principal components and the surface reflectance properties and
the illumination. This enables the basis to be used as a physical model.

Unlike previous work, our derivation also takes into account variations in the
surface reflectance properties. As a result of this analysis we obtain a framework for
creating low-dimensional bases that can represent the images of a surface of a wide
variety of reflectance properties and under practically all illumination conditions.

4.1 Principal Component Analysis

Principal component analysis amounts to finding a coordinate transformation such
that the covariance matrix of the random variable (in our case the image) is diag-
onalized. A geometric interpretation of PCA is that the first principal component,
U0, is the direction which has the highest variability, i.e. U0 maximizes the variance
of the scalar product of itself and the images, or in mathematical terms:

U0 = argmax
||U ||=1

Var{I • U}, (4.1)

where the image, I, is the random variable. The following principal components are
constructed iteratively by maximizing the same variance with the added condition
that they are orthogonal to all the previous ones, (Johnson and Wichern 1998).

4.1.1 Image-Centered PCA

The criteria in (4.1) maximizes the variance over the image distribution. For the
purpose of estimating the components it is important that the variance in the image
is maximized. Components with a high variance in the image have a high SNR.
This changes how the images should be centered.

The objective is to find a basis that decomposes the image into a linear com-
bination of coefficients and orthonormal basis functions, I =

∑
i diUi. Typically

images are analyzed by estimating the coefficients di. The higher the variance of
the component diUi the higher SNR the component will have. Since the basis func-
tions are orthonormal, di is given by di = I •Ui and the variance of the component
is d2

i = (I • Ui)2.
Moreover, the basis should contain the constant function. The illumination

frequently contains an ambient component which can vary. Including the constant
function in the basis makes the remaining functions of the basis independent of the
ambient component. The constant function is included in the basis by subtracting
from each image its mean. This forces the basis functions to be orthogonal to the
constant function. The constant function is then added to the basis at a later stage.
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(a)

Image-Centered PCA
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Figure 4.1: Variants of centering of the dataset. a) In standard PCA the dataset
is centered by subtracting the mean image. b) In image-centered PCA each pixel
in an image is subtracted by the mean of that particular image. This corresponds
to projecting the datapoints, each representing an image, onto the hyperplane with
normal (1, 1, ..., 1)T .

Since the variance in the image depends on the illumination and reflectance
properties, which vary, we maximize the variance on average. Taking this into
account as well as subtracting the image mean, we arrive at the following criterion.

U0 = argmax
||U ||=1

E{((I − µI1) • U)2} (4.2)

where µI is the mean of image I.
To conclude, the standard PCA criterion (4.1) maximizes the variance over

illumination and material changes while criterion (4.2) maximizes the variance in
the image. In more detail, the difference between the two criteria is how the data
is centered. Standard PCA subtracts the mean image from the dataset. Criterion
(4.2) suggests that this should not be done. Instead, each image should be centered
individually by subtracting the individual mean. To distinguish the latter method
from standard PCA we call the method Image-Centered PCA. See Figure 4.1 for an
illustration on how the centering differs in the two methods. Others have noticed
that care should be taken when centering the dataset in PCA. One of the earlier
references is (Noy-Meir, Walker, and Williams 1975).

4.2 The Image Set
The set of images to be analyzed are the images created from the variations in the
illumination and surface reflectance. The surface shape and pose is fixed.
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As in the previous chapter we approximate the projection as orthographic, which
implies that the image irradiance is uniquely determined by the surface normal.
Furthermore, we assume that the light field is the same for all the points on the
surface. This assumptions is true if the light source is distant. It is also necessary
that there are no cast shadows or local inter-reflections, which is true when the sur-
face is convex. For non-convex surface this model is an approximation. The quality
of the approximation depends on the concavities and the material-illumination con-
ditions. For instance, bright objects will have stronger inter-reflections than dark
objects.

Given the surface normal (αi, βi) at every pixel i, the spherical harmonic co-
efficients of the illumination and the coefficients of the BRDF, the image can be
computed from the reflectance map represented in (3.10). This means that the
variations of the images can be described through the variations in the illumination
and the BRDF. Let the illumination distribution be described as a distribution of
the spherical harmonic coefficients, pL(L), where L is the vector containing the co-
efficients Lm

l . Furthermore, let the variations in the surface reflectance properties
be described as a distribution of the coefficients of the BRDF representation (3.4),
pb(b), where b is a vector containing the elements bqop. These two distributions and
the surface normals are enough to characterize the set of images of the surface.

4.2.1 Convexity

Because light is non-negative and light sources can be superposed, the images due
to variations in the illuminations only, can be shown to lie in an convex cone in Rn,
where n is number pixels in the image, (Belhumeur and Kriegman 1998). Belhumeur
and Kriegman call this set of images the Illumination Cone.

When there are variations in the BRDF as well, the set is not necessarily con-
vex anymore. However, BRDFs can often be written as a linear combination of
reflectance modes, e.g. diffuse reflection, specular reflection and backscatter reflec-
tion. If all linear combinations of BRDFs are valid (e.g. non-negative) the set of
images is still convex.

Convexity is important. It ensures that PCA can be used to find a low-
dimensional representation that will characterize the set well.

4.3 Deriving Model-Based PCA

In this section we derive the principal components of the image set by applying the
PCA maximization criteria on the image irradiance expression (3.11). The standard
PCA basis as well as the Image-Center basis is constructed.

For convenience and clarity we order the basis functions, Emq
lop so that they can

be index with a single variable. In single indexed notation the image irradiance in
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equation (3.11) can be written as

E(α, β) =
∑

s

csEs(α, β), (4.3)

where cs = Lm
l b

q
op and l,m, o, p and q are given by s from the ordering of the

functions.
Begin by writing the eigenfunction as a sum of the basis functions of the image

irradiance. This ensures that the symmetries of the BRDF are preserved in the
eigenfunctions.

U(α, β) =
∑

s

usEs(α, β) (4.4)

It is convenient to define the scalar product as the sum of the products of the
images’ pixels divided by the number of pixels, N . The scalar product of I and U
is

I • U =
1
N

N∑
i=0

∑
s,s′

csus′Es(αi, βi)Es′(αi, βi) =
∑
s,s′

csus′mss′ (4.5)

where mss′ are the scalar products of the irradiance mode images,

mss′ =
1
N

∑
i

Es(αi, βi)Es′(αi, βi) (4.6)

We can rewrite (4.5) in matrix form,

I • U = uT Mc, (4.7)

where u is a vector containing the coefficients for U , M is a matrix that contains
the elements mss′ and c is the vector containing the coefficients cs.

Now, the only random variable in (4.7) is c. Let Covar{c} = Σc. Then

Var{I • U} = Var{uT Mc} = uT MΣcMu. (4.8)

The transpose on M has been dropped since M is symmetric. (4.8) should be
maximized subject to the condition that U is normalized. We obtain the following
constraint on the coefficients of U

U • U =
1
N

∑
i

∑
s,s′

usus′Es(αi, βi)Es′(αi, βi) =
∑
s,s′

usus′mss′ = uT Mu = 1.

(4.9)

The maximization problem can now be written in terms of U ’s coefficients.

u0 = argmax
uT Mu=1

uT MΣcMu (4.10)
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Applying the coordinate transform

v = M1/2u, (4.11)

we obtain

v0 = argmax
vT v=1

vT M1/2ΣcM1/2v. (4.12)

This is a quadratic expression of v which should be maximized under the condition
that v is normalized. It is well known that the maximum occurs when v is eigen-
vector of M1/2ΣcM1/2 with the largest eigenvalue. The subsequent eigenvectors
maximize the expression while being orthogonal to the previous ones. We have in
fact performed the PCA. To be sure we can convince ourselves that orthogonality
of the vectors v corresponds to orthogonality in the image space.

Ui • Uj = ui
T Muj = vi

T vj (4.13)

The coefficients for the eigenimages Ui are computed as

ui = M−1/2vi. (4.14)

4.3.1 Image-Centered PCA
When constructing the basis according to Image-Centered PCA (4.2) the image
mean should be subtracted from the image. The image mean is

µI =
1
N

∑
i

∑
s

csEs(αi, βi) =
∑

s

cses, (4.15)

where es is the mean of Es over the surface normal distribution.

es =
1
N

∑
i

Es(αi, βi) (4.16)

Now,

(I − µI1) • U =
1
N

∑
i

∑
s,s′

csus′(Es(αi, βi)− es)Es′(αi, βi)

=
∑
s,s′

csus′(mss′ − eses′)

= uT (M− eeT )c

(4.17)

Furthermore

E{((I − µI1) • U)2} = uT (M− eeT )Vc(M− eeT )u (4.18)
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where Vc = E{ccT } which corresponds to the covariance matrix Σc calculated
without subtracting the mean (or the second moment matrix).

Applying the same coordinate change as previously we obtain the v vectors as
the eigenvectors of the matrix

M−1/2(M− eeT )Vc(M− eeT )M−1/2 (4.19)

and finally the coefficients of the eigenimages by ui = M−1/2vi as before.

4.3.2 Continuous Images

If the images are continuous the PCA bases can be computed in the same way. The
only thing that changes are the elements of M and e. For continuous images

mss′ =
∫
H2

pn̂(α, β)Es(α, β)Es′(α, β)dω (4.20)

and

es =
∫
H2

pn̂(α, β)Es(α, β)dω (4.21)

where pn̂(α, β) is the surface normal distribution in the image. As an example,
in the image of a sphere the surface normal distribution is proportional to the
foreshortening factor, pn̂(α, β) = 2 cosα.

4.3.3 Calculating the Covariances

It is worth making some comments about calculating the covariance matrices Σc

and Vc. The two matrices are related by

Σc = Vc − µcµc
T (4.22)

where µc is the mean vector of c. Since we can assume that the illumination and
the surface reflectance are independent1 the calculation of the elements of µc and
Vc can be partitioned into

µcs
= E{Lm

l }E{bqop} (4.23)

E{cscs′} = E{Lm
l L

m′

l′ }E{bqopb
q′

o′p′} (4.24)

The indices l,m, o, p and q are given by s from the ordering of the basis functions.

1Though one could argue that e.g. the illumination from an overcast sky correlates with shiny
materials in the form of raincoats.
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4.3.3.1 Rotated Light Sources

The position of a light source has a big impact on the appearance of a surface.
To take into account all possible positions of the light source one can rotate the
light source through all 3D rotations. By doing the rotation of the light source
analytically it is possible to take into account all possible light source configurations.
This corresponds to taking an infinite number of images if one were to do the
experiments empirically.

Consider a light source, defined by its spherical harmonic coefficients L̃m
l . If the

variation in the illumination is characterized by the rotation of this light source,
the second moments of the illumination are the product of two rotated coefficients
integrated over the rotation group, SO(3). The coefficients of the light source after
a 3D rotation R ∈ SO(3) is

Lm
l =

l∑
n=−l

Dnm
l (R)L̃n

l , (4.25)

Since the Dmn
l s are orthogonal,∫

SO(3)

Dnm
l (R)Dn′m′

l′ (R)dR =
δl,l′δm,m′δn,n′

2l + 1
(4.26)

the second moments E{Lm
l L

m′

l′ } will be non-zero only when l = l′ and m = m′.

E{Lm
l L

m′

l′ } =

{
1

2l+1

∑l
n=−l(L̃

n
l )2 l = l′ and m = m′

0 otherwise
(4.27)

As D00
0 (R) = 1 and due to the orthogonality relation, the means are zero for all

Lm
l except L0

0.

E{Lm
l } =

{
L̃0

0 l = 0 and m = 0
0 otherwise

(4.28)

4.4 Relating the Principal Components to the
Image Formation Model

An important feature of model-based PCA is that we can relate the principal com-
ponent coefficients to the parameters of the illumination and the surface reflectance.

Say that we have found the principal component decomposition of image I,

I =
∑

j

djUj . (4.29)

The eigenimages Uj are represented in the image irradiance basis functions Ei.

Uj =
∑

i

uijEi (4.30)
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Inserting (4.30) in (4.29) results in

I =
∑

j

dj

∑
i

uijEi. (4.31)

The image can also be written in the image irradiance representation as

I =
∑

i

ciEi. (4.32)

where ci = Lm
l b

q
op. Now, we can identify the coefficients ci as

ci =
∑

j

uijdj (4.33)

In matrix form, all the illumination-BRDF coefficients are given by

c = Ud (4.34)

where c is a vector containing the elements, ci, U is a matrix containing the co-
efficients of the principal components and d is a vector containing the coefficients
representing the image in the PCA basis.

(4.34) is not a one-to-one mapping. The matrix U is rank deficient, reflecting
the ambiguities that exists when analyzing shading.

For e.g. rendering it is useful to do the reverse transformation

d = UT Mc (4.35)

as U−1 = UT M.

4.5 Conclusions
We have derived the principal components for the set of images from a surface of
a fixed shape under varying illumination and with varying BRDF. The PCA is
performed in a model-based way so that it is not necessary to acquire or render
images. Instead the variations are described by the variations in the illumination
and BRDF.

Using the finite dimensional frequency space representation, the solution of the
PCA is transformed from being the eigensystem of the image covariance matrix
into an eigenvalue problem of the covariances of the frequency space coefficients.
This separates the covariance matrix into a product of a matrix depending only on
the surface shape and another matrix depending only on the variations in the illu-
mination and the BRDF. Furthermore, the illumination-BRDF covariance matrix
is separable on an element level. In effect, using this framework it is possible to
rapidly compute bases for a wide variety of conditions and different surface shapes
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by combining different surface, illumination and BRDF covariances. Since the ro-
tation of the light source can be done analytically, the need for captured data is
reduced dramatically.

Another advantage of model-based PCA is that there is an explicit relation
between the principal components and the coefficients of the illumination and the
BRDF. A PCA basis created from empirical data can capture the appearance of
the images well, but it is very hard to relate the basis to the underlying properties
of the data. With model-based PCA we are able to create a basis that takes into
account the appearance ambiguities and at the same time can be used as a physics
model.

Care has also been taken in forming the principal components. For image anal-
ysis it is important that the components to be estimated have a high signal-to-noise
ratio. The basis should also be invariant to variations in the ambient component
of the illumination. These factors suggest that the image should be centered by
subtracting the individual image mean rather the mean image.

All these things together create a powerful framework for creating low-dimensional
generative models of images of a surface under a wide variety of conditions. In the
subsequent chapters we compute bases for a number of different illumination distri-
butions and surface reflectances. The two variants of PCA will also be compared.
In Chapter 7 the framework will be used for material classification.



Chapter 5

Bases for Lambertian Surfaces

In this chapter we compute PCA bases for Lambertian surfaces. Bases for a number
of different illumination conditions are computed using both standard PCA and
Image-Centered PCA. These are tested and compared on a set of rendered images.

5.1 Computing the Bases

The bases are computed as described in Section 4.3. First, the image irradiance
representation in (3.11) is truncated to a finite sum, a necessary task for the com-
putation of the PCA basis. The Lambertian BRDF is represented in the isotropic
basis by a single basis function. All coefficients bqop are zero except b000. As already
stated only nine basis functions are needed to represent the image irradiance from
a Lambertian surface. They are Em0

l00 , l = 0, 1, 2 and m = −l, ...l. If these functions
are simplified they turn out to be proportional to the nine first spherical harmonic
basis functions (since Dm0

l (α, β, 0) ∝ Y m
l (α, β)). It is the same representation as

in (Basri and Jacobs 2003; Ramamoorthi and Hanrahan 2001a).
These nine functions form the basis for the image irradiance. We order and

rename them as Es, s = 0, ..., 8. Later, in the tables listing the bases, the eigen-
functions are written in the spherical harmonic basis functions to enable comparison
with the results of Ramamoorthi (2002).

To compute the basis we need to compute the matrices M and Σc. For Image-
Centered PCA we also need to compute the e and Vc. M and e are determined
by the shape of the surface. We have chosen the shape of a sphere since it has
all the possible visible surface normals represented in the image. Also we analyze
continuous images to consider all surface normals.

The matrix M contains the covariance of the basis functions over the surface
normals. For continuous images of a sphere the percentage of points with surface
normal (α, β) is proportional to the foreshortening factor cosα, so the elements of

45
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M are

mss′ =
1
π

∫ 2π

0

∫ π/2

0

Es(α, β)Es′(α, β) cosα sinαdαdβ (5.1)

and the elements of e are

es =
1
π

∫ 2π

0

∫ π/2

0

Es(α, β) cosα sinαdαdβ (5.2)

Σc and Vc are related, see equation (4.22), so we only need to compute Vc and
µc, the second moment matrix and the mean vector of the coefficients c. There
are no variations in the surface reflectance as b000 is constant. This implies that
Vc and µc are determined by means and covariances of the illumination. In the
next section we compute the means and covariances for a number of illumination
configurations of interest.

5.2 Illumination Distributions
The illumination distributions we consider always include all possible 3D rotations
of the light source. This means we can use the formulas derived in Section 4.3.3.1
for rotated light sources. In such cases the covariances are all zero and only the
variances E{(Lm

l )2} need to be calculated. Moreover, the means are all zero except
E{L0

0}.

5.2.1 Point Light Source
Now, consider a single point light source rotated to illuminate the surface from
all possible directions. To compute the covariance matrix for this illumination
distribution we simply find the spherical harmonic coefficients of one position of
the light source and use formulas (4.27) and (4.28) to compute the necessary values
for the light source when it undergoes all 3D rotations.

To find the spherical harmonic coefficients for a light source we integrate the
product of the light source and each spherical harmonic function. A point light
source is a delta function on the sphere which means that its coefficients are samples
of the spherical harmonic basis functions at the position of the light source. With
the point light at (0, 0), L̃m

l = Y m
l (0, 0) and

Y m
l (0, 0) =

{ √
2l+1
4π m = 0

0 m 6= 0
(5.3)

Hence

E{(Lm
l )2} =

2l + 1
4π(2l + 1)

=
1
4π

(5.4)

E{L0
0} =

1
2
√
π

(5.5)
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Figure 5.1: The first five eigenimages of a Lambertian sphere under a point light
source. The first row shows images created with Standard PCA and the second row
eigenimages from Image-Centered PCA. The Image-Centered basis is orthogonal to
the constant function and needs the constant function to be complete. The Standard
PCA basis is complete, but before an image is fitted to the basis, the mean image
needs to be subtracted from the image.

From the above computations we can compute all necessary matrices needed
to compute the basis. Table 5.1 lists the eigenfunctions with their eigenvalues and
the cumulative sum of eigenvalues, corresponding to the percentage of the variance
accounted for (VAF). Figure 5.1 shows the first five eigenimages generated from
these vectors.

The differences between the bases are discussed later.

5.2.2 Point Light and Ambient Source
A more interesting case is the when there is a point light source and an ambient
component. As before we position the point light at (0, 0) and use equation (4.27)
to take all rotations into account. The ambient component only contributes to L̃0

0.
The other L̃m

l ’s remain the same. This means that the top left element of the
covariance matrix differs from the previous section. We also allow the level of the
ambiance, a to vary from zero to amax.

E{(L0
0)

2} =
1

amax

∫ amax

0

(
1

2
√
π

+ a)2da (5.6)

and

E{(Lm
l )2} =

{
1
4π + amax

2
√

π
+ a2

max

3 l = m = 0
1
4π otherwise

(5.7)

E{L0
0} =

1
2
√
π

+
amax

2
(5.8)

The eigenfunctions, for amax = 1, are shown in Table 5.2.
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5.2.3 Two Point Light Sources
We can construct the distribution of all configurations of two point light sources.
Position the first light source at (0, 0) and the second at (ψ, 0). Let ψ vary between
0 and π and let equation (4.27) take care of the rotations. The coefficients before
rotation are L̃m

l = Y m
l (0, 0) + Y m

l (ψ, 0) and

E{(Lm
l )2} =

l∑
n=−l

∫ π

0
(Y n

l (0, 0) + Y n
l (ψ, 0))2dψ

π(2l + 1)
(5.9)

E{L0
0} =

1
π

∫ π

0

(Y 0
0 (0, 0) + Y 0

0 (ψ, 0))dψ (5.10)

Table 5.3 lists the eigenfunctions.

5.2.4 Set of Captured Illumination Maps
Of greater interest is to perform PCA over more realistic illuminations. In this
section we derive the variances for a set of captured illumination maps, each which
is rotated with all possible rotations. To compute the actual basis we use the nine
illumination maps of Debevec (1998).

Consider nL light sources. Each light source k = 1, . . . , nL has spherical har-
monic coefficients L̃m

l,k and a probability of P (k). Again, starting at (4.27) and
summing over all light sources results in

E{(Lm
l )2} =

nL∑
k=1

l∑
n=−l

(L̃m
l,k)2P (k)
(2l + 1)

(5.11)

E{L0
0} =

nL∑
k=1

L̃m
l,kP (k) (5.12)

With each illumination map being equally probable P (k) = 1
nL

. The eigenfunctions
are in Table 5.4.

5.3 Discussion
The main difference between the PCA variants is how they behave under variations
in the ambient component of the illumination. When the ambient component varies,
such as in Table 5.2 and 5.4, this gets encoded in the standard basis. The Image-
Centered basis on the other hand is not affected at all by this. For instance, the
Image-Centered bases created from a point light and a point plus ambient light,
are identical.

The Image-Centered bases are not affected by variations in the ambient com-
ponent. The changes in the Image-Centered bases for different illumination distri-
butions are small in general. The basis functions remain in the same order. Some
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Table 5.1: Eigenfunctions of Sphere under Point Light Source

Standard PCA Image-Centered PCA
eigenfunction λ VAF eigenfunction λ VAF

0.99Y 0
1 + 0.1Y 0

2 0.43 0.43 0.99Y −1
1 + 0.17Y −1

2 0.39 0.39

0.99Y −1
1 + 0.17Y −1

2 0.24 0.68 0.99Y 1
1 + 0.17Y 1

2 0.39 0.78
0.99Y 1

1 + 0.17Y 1
2 0.24 0.92 −0.79Y 0

0 + 0.59Y 0
1 + 0.2Y 0

2 0.13 0.9
Y 2
2 0.024 0.95 Y 2

2 0.038 0.94

Y −2
2 0.024 0.97 Y −2

2 0.038 0.98
−0.59Y 0

1 + 0.81Y 0
2 0.019 0.99 −0.78Y 1

1 + 0.63Y 1
2 0.009 0.99

−0.78Y 1
1 + 0.63Y 1

2 0.005 0.99 0.78Y −1
1 − 0.63Y −1

2 0.009 1

−0.78Y −1
1 + 0.63Y −1

2 0.005 1 0.65Y 0
0 − 0.7Y 0

1 + 0.3Y 0
2 0.001 1

0.65Y 0
0 − 0.7Y 0

1 + 0.29Y 0
2 0 1 Y 0

0 0 1

Table 5.2: Eigenfunctions of Sphere under Point and Ambient Light Source

Standard PCA Image-Centered PCA
eigenfunction λ VAF eigenfunction λ VAF

0.89Y 0
0 + 0.46Y 0

1 + 0.037Y 0
2 0.63 0.63 0.99Y −1

1 + 0.17Y −1
2 0.39 0.39

0.99Y −1
1 + 0.17Y −1

2 0.15 0.78 0.99Y 1
1 + 0.17Y 1

2 0.39 0.78
0.99Y 1

1 + 0.17Y 1
2 0.15 0.93 −0.79Y 0

0 + 0.59Y 0
1 + 0.2Y 0

2 0.13 0.9
−0.82Y 0

0 + 0.51Y 0
1 + 0.28Y 0

2 0.035 0.96 Y 2
2 0.038 0.94

Y 2
2 0.015 0.98 Y −2

2 0.038 0.98

Y −2
2 0.015 0.99 0.78Y 1

1 − 0.63Y 1
2 0.009 0.99

−0.78Y 1
1 + 0.63Y 1

2 0.003 1 0.78Y −1
1 − 0.63Y −1

2 0.009 1

0.78Y −1
1 − 0.63Y −1

2 0.003 1 0.65Y 0
0 − 0.7Y 0

1 + 0.3Y 0
2 0.001 1

0.65Y 0
0 − 0.7Y 0

1 + 0.3Y 0
2 0.000 1 Y 0

0 0 1

Table 5.3: Eigenfunctions of Sphere under Two Point Light Sources

Standard PCA Image-Centered PCA
eigenfunction λ VAF eigenfunction λ VAF

0.99Y 0
1 + 0.13Y 0

2 0.42 0.42 0.98Y −1
1 + 0.21Y −1

2 0.38 0.38

0.98Y −1
1 + 0.21Y −1

2 0.24 0.66 0.98Y 1
1 + 0.21Y 1

2 0.38 0.76
0.98Y 1

1 + 0.21Y 1
2 0.24 0.91 −0.79Y 0

0 + 0.57Y 0
1 + 0.24Y 0

2 0.13 0.89
Y 2
2 0.028 0.94 Y 2

2 0.044 0.93

Y −2
2 0.028 0.96 Y −2

2 0.044 0.98
−0.59Y 0

1 + 0.81Y 0
2 0.022 0.99 0.78Y 1

1 − 0.63Y 1
2 0.01 0.99

−0.78Y 1
1 + 0.63Y 1

2 0.006 0.99 −0.78Y −1
1 + 0.63Y −1

2 0.01 1

−0.78Y −1
1 + 0.63Y −1

2 0.006 1 0.65Y 0
0 − 0.7Y 0

1 + 0.3Y 0
2 0.001 1

0.65Y 0
0 − 0.7Y 0

1 + 0.29Y 0
2 0 1 Y 0

0 0 1

Table 5.4: Eigenfunctions of Sphere under Set of Illumination Maps

Standard PCA Image-Centered PCA
eigenfunction λ VAF eigenfunction λ VAF

0.86Y 0
0 + 0.51Y 0

1 + 0.024Y 0
2 0.64 0.64 1Y 1

1 + 0.097Y 1
2 0.41 0.41

1Y −1
1 + 0.097Y −1

2 0.15 0.79 1Y −1
1 + 0.097Y −1

2 0.41 0.82
1Y 1

1 + 0.097Y 1
2 0.15 0.95 −0.78Y 0

0 + 0.62Y 0
1 + 0.12Y 0

2 0.12 0.94
−0.81Y 0

0 + 0.56Y 0
1 + 0.17Y 0

2 0.029 0.98 Y 2
2 0.024 0.96

Y 2
2 0.009 0.99 Y −2

2 0.024 0.99

Y −2
2 0.009 0.99 −0.77Y 1

1 + 0.64Y 1
2 0.006 0.99

0.77Y −1
1 − 0.64Y −1

2 0.002 1 0.77Y −1
1 − 0.64Y −1

2 0.006 1
−0.77Y 1

1 + 0.64Y 1
2 0.002 1 0.65Y 0

0 − 0.7Y 0
1 + 0.3Y 0

2 0.001 1
0.65Y 0

0 − 0.7Y 0
1 + 0.3Y 0

2 0.000 1 Y 0
0 0 1
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Figure 5.2: Spheres rendered with groove, beach and St Peter’s illumination maps
of Debevec. The background is actually the visible part of the illumination map.

basis functions have minor changes. It seems that when changes in the ambient
component is accounted for, the illumination distribution has little effect on the
basis. This indicates that the Image-Centered basis could be an adequate basis
under a wide range of illumination distributions.

5.4 Testing the Bases

In order to compare the different bases, we rendered images of spheres using the
illumination maps of Debevec. Naturally, it is more desirable to use real images.
However, by using synthetic images we rule out many potential sources of errors.
More importantly it gives us access to the geometry of the scene, needed for the
experiments. The rendering was implemented in a manner similar to (Ramamoorthi
and Hanrahan 2002) although we use the Koenderink, van Doorn basis for the
BRDF. The rendering involves summing the contributions from each illumination
and material mode. By calculating the variance of each component we get an
estimate of the error and can render to a very high degree of accuracy. By using real
world illumination maps we get images with the full complexity of natural lighting.
Four views from each of the nine illumination maps were rendered resulting in 36
images. Figure 5.2 shows three of the rendered images.

Each basis was tested by calculating how well it represents the rendered images.
The image was fitted to the basis and the variance of the residual was used as a
measure. For each basis the residual was calculated using from one to all of the
basis functions. Figure 5.3a shows the residual errors for bases of the two PCA
variants constructed from the illumination map distribution. The Standard PCA
basis is slightly worse for low numbers of basis function but quickly catches up with
the Image-Centered basis.

When comparing bases constructed from different illumination distributions the
differences are smaller. Figure 5.3b shows the relative residual errors. The basis
constructed with a point light plus ambient source was not included since it is
identical to the basis constructed with only a point light. The illumination map



5.5. Light Field Estimation from a Single Image and Known Geometry 51

1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 # Basis Functions

 R
es

id
ua

l E
rr

or

PCA, Illumination Maps
ICPCA, Illumination Maps

(a)

1 2 3 4 5 6 7 8 9
0.9

1

1.1

1.2

1.3

1.4

1.5

 # Basis Functions

 R
el

at
iv

e 
R

es
id

ua
l E

rr
or

ICPCA, Single Point Light
ICPCA, Two Point Lights
ICPCA, Illumination Maps

(b)

Figure 5.3: Residual error of images reconstructed with PCA bases with an increas-
ing number of basis functions. a) PCA bases constructed from the illumination map
distribution. b) Relative error of Image-Centered bases from different illumination
distributions.

basis was constructed in a cross-validation sense so that the map used to render
the image never was in the “training” set. Still it shows the best representability
for the most part.

5.5 Light Field Estimation from a Single Image
and Known Geometry

As a demonstration of the potential applications of the PCA bases, the light field
is estimated from a single (rendered) image.

Light field estimation from several view points and known geometry has already
been demonstrated using the spherical harmonic representation, (Ramamoorthi and
Hanrahan 2001a). When estimating the light field from a single image we need to
take into account that the image lies in a subspace of lower dimensionality than the
9D space required by the spherical harmonic representation. The problem should
be regularized. The natural way to do this is to estimate only the components with
the highest variance in the image. Components with a low variance will “drown” in
the noise, making the estimates error prone. The principal components are created
to have as high variance as possible and are therefore ideal in this situation.

The procedure is as follows. Using least squares the principal component coef-
ficients are estimated so that the image is written as a linear combination of the
principal components.

I =
N∑

i=0

diUi (5.13)
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Figure 5.4: Low-pass filtered version of the groove light field (left) and the estimated
light field (right). It was estimated using an Image-Centered PCA basis with six basis
functions, including the constant function.

Now, let d be a vector containing the estimated coefficients and U the matrix
containing the column vectors of spherical harmonics coefficients of Ui, i = 0, ..., N .
Then the light field coefficients are given by L = Ud, according to equation (4.34).

Since the surface acts as low-pass filter on the illumination, only the lower
frequencies of the light field are recoverable. Figure 5.4 shows the low-pass filtered
light field of the groove illumination map and its estimated counterpart. The light
field was estimated using an Image-Centered basis of five principal components plus
the constant function (Y 0

0 ).



Chapter 6

A Basis for a Group of Materials

The apperance of a surface depends on the material of the surface. It would be
very useful if we could have a single basis to represent the images from a set of
materials. In this chapter we construct a basis using a database of real world
surface reflectances, the CURET database (Dana et al. 1999), and a database
of captured illumination, (Debevec 1998). The goal is to create a basis that can
represent the images of a surface for a wide variety of surface reflectance properties
and under most illumination conditions.

6.1 Computing the Basis

The difference from the bases for Lambertian surfaces is that we are now considering
variations in the surface reflectance properties. Hence, it is necessary to compute
the covariances of the coefficients of the surface reflectance functions.

Also, since many of the BRDFs in the databases are non-Lambertian we need to
find a new finite approximation of the frequency space image irradiance representa-
tion. Nine basis functions are no longer sufficient. To represent the BRDFs in the
CUReT database we use material modes up to o = 7. Now, according to Chapter 3
illumination orders up to l = 12 are enough to obtain a decent approximation of
the image irradiance. This limits the number of image irradiance functions to 3704.
Still many of those functions contribute little to the image irradiance. To reduce
the number of functions further we choose only the 1000 basis functions that have
the highest variance in the image on average (over the illumination and BRDF
changes).

As in the case of the Lambertian surfaces we compute the basis for continuous
images of a sphere. The matrix M and e are computed in the same way, with the
difference that we have to compute the covariances of the 1000 functions in the
selected image irradiance representation. The actual computation of the elements
of M and e was achieved by solving the integrals in (5.1) and (5.2) analytically.
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λ = 0.37 λ = 0.37 λ = 0.14 λ = 0.028 λ = 0.028

λ = 0.013 λ = 0.013 λ = 0.0079 λ = 0.0026 λ = 0.0026 λ = 0.0015

Figure 6.1: The first 12 basis functions for a sphere created from set of real world
materials and illuminations using Image-Centered PCA. The top left image is the
constant basis function added to the basis after the PCA is performed.

The result is a quadruple sum of various factorials. To ensure accurate computation
of this sum, it was computed using infinite precision rational numbers.

The illumination distribution is the nine illumination maps undergoing all ro-
tations and the illumination covariances are computed as in Section 5.2.4.

The variations in the surface reflectance are described by the set of nb = 61
materials in the database. With each material k having BRDF coefficients bqop,k,
the covariances and means are computed as

E{bqopb
q′

o′p′} =
1
nb

nb∑
k=1

bqop,kb
q′

o′p′,k (6.1)

E{bqop} =
1
nb

nb∑
k=1

bqop,k (6.2)

From the means and covariances of the illumination and the BRDFs and the
matrix M, the basis is computed as described in Section 4.3. Figure 6.1 shows the
12 first basis functions of the Image-Centered basis.

6.2 Required number of components

When determining how many principal component that are needed to achieve a
given accuracy, the normal procedure is to sum up the eigenvalues to see at which
principal component the required percentage of the variance is accounted for. In
this case this is not possible since the variance of the constant function is not
included in the eigenvalues.

However, model-based PCA allows the variance of the constant function to be
computed analytically. It also allows for the computation of the variances for the
images of a single material and not only for the whole set.
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The images are decomposed in the principal component basis, including the
constant function, as I =

∑
i diUi. The coefficients di can be computed from the

illumination and BRDF by d = Ac, where A = UT M and c is the vector with the
products of the illumination and BRDF coefficients (as described in Section 4.4).
The variance of each component is d2

i . For a single material the expected variance
of each component can be computed by

E{d2
i } =

∑
j,k

aijaikb
q(j)
o(j),p(j)b

q(k)
o(k),p(k) E{Lm(j)

l(j) L
m(k)
l(k) }, (6.3)

where aji are the elements of A.
Using the above formula we can compute the required number of basis functions

to achieve a given accuracy. Figure 6.2 shows the required number of basis functions
for the materials in the CUReT database under a point light source. As can be seen,
many of the materials require only around five basis functions to capture most of
the variance in the images. These are the matte materials. Materials with specular
reflectance, such as Leather, Rough Tile and Slate a and b, require up to 40 basis
functions.

6.3 Testing the Basis
To test the basis we rendered images of a sphere of each material under each illumi-
nation map. For each illumination map four views of each materials were rendered,
resulting in a total of 2196 images. The rendering was performed in the same
manner as in the previous chapter. Figure 6.3 shows three of the rendered images.

The testing was done by fitting the basis to the images and computing the
average error of the dataset. Both the Standard PCA and the Image-Centered
PCA basis were tested. The number of basis function used varied between 1 and
16. The error was chosen to be the variance of the residual divided by the total
variance of the image. Figure 6.4 shows the results obtained. The Standard PCA
and Image-Centered PCA bases show similar results. Note that fitting the Standard
PCA basis requires subtracting the mean image before fitting the basis. This is not
required for the Image-Centered basis.

As in the previous section we can compute a theoretical value of the error of
the dataset. This predicted error is also plotted in Figure 6.4. The predicted
error follows the same trend as the empirical error, but underestimates the error.
There are a number of possible reasons for this. For instance, the images are
rendered with perspective projection while the model approximates the projection
as orthographic. Also the dataset only contains four rotations of each illumination
map, while the theoretical value takes into account every possible rotation.

The number of components required to represent an image depends on the
material. This is illustrated by Figure 6.5 which shows the errors for each individual
material. Many materials require only a small (around five) number of components,
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# Principal Components

Figure 6.2: Required number of principal components for the materials in the
CUReT database. The black, dark gray and light gray bars show the required num-
ber of basis functions to achieve 95%, 98% and 99% accuracy respectively. The
illumination is a point light source.
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Figure 6.3: Three of the rendered images. From left to right, velvet in a eucalyptus
grove, leather on campus and an orange on the beach. Notice the characteristic bright
rim of the velvet sphere and the specularity on the leather.
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Figure 6.4: Average error for the whole data-set as the number of principal compo-
nents increases for the basis created with Standard PCA and Image-Centered PCA.
The error is normalized so that Accuracy = 1− Error.

such as the matte materials, but also highly non-Lambertian materials like velvet,
see Figure 6.6a.

More specular materials, such as the leather in the database, require more com-
ponents. The diffuse shading is recreated with a few components but to recreate
the specularity 30-50 components are required in this case, see Figure 6.6b.

Figure 6.6 also shows that the accuracy, as computed here, does not always
correspond to what our visual system is sensitive to. For example, the leather
sphere only requires five basis functions to reconstruct 99.1% of its variance, but to
achieve a visually realistic leather sphere requires more than 30 basis functions. The
velvet sphere on the other hand is more or less indistinguishable from the original
image at 4 basis functions giving 99.1% accuracy.
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1 Felt 11 Plaster_b 21 Sponge 35 Painted Spheres 50 Concrete_c
2 Polyester 12 Rough Paper 22 Lambswool 36 Limestone 52 White Bread
3 Terrycloth 13 Artificial Grass 23 Lettuce Leaf 37 Brick_a 53 Soleirolia Plant
4 Rough Plastic 14 Roof Shingle 24 Rabbit Fur 39 Human Skin 55 Orange Peel
5 Leather 15 Aluminium Foil 25 Quarry Tile 41 Brick_b 59 Cracker_a
6 Sandpaper 16 Cork 26 Loofa 43 Salt Crystals 60 Cracker_b
7 Velvet 17 Rough Tile 27 Insulation 45 Concrete_a 61 Moss
8 Pebbles 18 Rug_a 28 Crumpled Paper 47 Stones
9 Frosted Glass 19 Rug_b 33 Slate_a 48 Brown Bread
10 Plaster_a 20 Styrofoam 34 Slate_b 49 Concrete_b

Figure 6.5: Error as the number of principal components increases for each material
in the CURET database.

Number of principal components (Accuracy)
3 (93.2%) 4 (99.1%) 5 (99.2%) 6 (99.4%) Original

(a)

Number of principal components (Accuracy)
5 (99.1%) 10 (99.6%) 20 (99.9%) 30 (99.9%) Original

(b)

Figure 6.6: Reconstructed and residual images of a) velvet and b) leather.
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6.4 Conclusions
Using databases of captured BRDFs and captured illumination maps it is possible
to create a basis that can represent the images of a wide variety of materials under
a wide variety of illuminations.

In a basis created from the CUReT databases and the illumination maps of
Debevec the images are accurately represented using between 5 and 40 basis func-
tion depending on the surface material. Matte materials, including highly non-
Lambertian materials such as velvet, are well represented using around five basis
functions, while materials with specular reflectance require up to 40 basis functions.

The accuracy of the basis is measured by the percentage of variance the basis
accounts for. However, this measure does not always correspond to the sensitivity
of the human visual system. The reconstructed image of a matte surface can look
indistinguishable from the original image at 99.1% accuracy, while a specular ma-
terial may require up to 99.9% accuracy to be indistinguishable from the original
image. The same observation was made by Epstein, Hallinan, and Yuille (1995).
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Chapter 7

Classifying Materials from their
Reflectance Properties

7.1 Introduction
The appearance of a surface depends on its shape, the illumination and the material
of the surface. In a normal vision task none of these properties are known a priori.
Despite that, human observers are very good at determining the material of an
object, even in the absence of texture. The estimation is based purely on the
reflectance properties of the surface. We explore if this can be done computationally
when there is no knowledge about the illumination, but the shape of the object is
known.

The framework in Chapter 4 allows us to create, for a given shape, a single basis
that can represent the images of a surface with varying reflectance properties and
under arbitrary illumination.

Assuming knowledge of the surface shape may seem unrealistic. However, the
proposed algorithm is not intended as a final solution but rather for use in a proba-
bilistic framework, where in the end, the information is extracted when none of the
properties of the scene is known beforehand. Note that knowledge of the object’s
shape is not required to use such an algorithm. We only need an estimate of how
likely the different shapes are, given an image. This can be seen by examining the
factorization of the posterior distribution for the illumination L, the material M ,
the shape S given the image I.

P (L,M,S|I) = P (L,M |S, I)P (S|I) (7.1)

This chapter only deals with the first term, P (L,M |S, I), but the low-dimensional
basis could be used to estimate P (S|I) as well. Because the basis is a generative
model we can compute a goodness of fit of the model, giving an indication of how
likely the shape is given the image. It does not however reveal the full answer since
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Fig. 1. Rendered images of materials from the CUReT database. Judging materials
from their reflectance properties can be very hard, as is in this case. If you disregard
the color many materials look very similar.

Figure 7.1: Rendered images using BRDFs from the CUReT database. Classifying
materials from their reflectance properties can frequently be very hard, especially If
you disregard the color information.

there could be several shape-material-illumination combinations that give rise to
the same shading pattern.

In this chapter we classify the material of an object of known shape from a single
image, when the illumination is unknown. Dror et al. (2001) recognize materials
under similar assumptions. They use histograms of filter responses and rely on
the structure of the specular reflections to classify the material. Our approach is
different in that we represent the images using a generative model, allowing us to
discriminate between materials without specular reflections such as felt and velvet.

7.2 Material Recognition
Our approach to material recognition is to represent the images in an Image-
Centered PCA basis constructed as in Chapter 4. The image’s coefficients in the
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×

Figure 7.2: Sample density of the 3D rotation group SO(3). SO(3) is sampled by
combining a sphere and a circle. The sphere is sampled by subdividing an icosahedron.
The circle is sampled in the same density as the sphere. The sampling above is the
result of two recursive subdivisions and is what is used to build the appearance
manifolds.

basis are estimated and compared to a database of known materials.
Since the illumination is not known we cannot calculate what the corresponding

coefficients should be for the materials in the database. We need to take into account
all possible illuminations and find the illumination-material pair that best matches
the image. For this to be possible it is necessary that the variations in the coefficient
space are much smaller than the variations in the illumination (which are infinite).
If this is true we can learn the variations in the coefficient space with only a limited
amount of training illuminations.

Smooth variations in the illumination result in a manifold of points in the co-
efficient space. To learn these manifolds we take a set of illumination maps and
perform all 3D rotations on them. To store the manifolds we sample the rotation
group, SO(3), and calculate the coefficients for each rotation, for every illumination
map and material.

The image is classified by finding the manifold which is closest to the point
representing the image. The procedure is very much the same as in (Murase and
Nayar 1995).

7.2.1 Learning the Manifolds

The manifold for each material is learned from a set of illumination maps that are
rotated over the full rotation group. The rotation group is sampled and for each
rotation (α, β, γ) the spherical harmonic coefficients of the rotated illumination map
are calculated. The point on the manifold is given by equation (4.35).

To sample the rotation group we sample the surface of a sphere and combine it
with a circle. The sphere is sampled by starting from an icosahedron inscribed in
the sphere. The icosahedron is recursively subdivided by projecting the mid-point
of each edge onto the surface of the sphere forming four new triangles for each old
triangle, (Ballard and Brown 1982). The circle is sampled at a density as close as
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Felt
Velvet

Figure 7.3: Sampled manifolds in the coefficient space of materials 1-Felt (blue
rings) and 7-Velvet (red crosses) under one of the illumination maps subject to all
3D rotations, SO(3).

possible to the sampling of the sphere. Figure 7.2 shows the sample density used
in the learning of the manifolds.

7.2.2 Finding the Closest Manifold
To find the closest manifold to a point we simply go through all points on each
manifold and calculate the distance to the point to be classified. The distance
measure is the sum of squared differences in coefficient space.

To aid our algorithm in being illumination invariant we take a number of steps.
The first element of the point is discarded. It corresponds to the constant function
of the basis and captures the variations in the ambient component of the illumina-
tion. By discarding it the algorithm becomes independent of such variations. The
remaining elements are normalized to achieve brightness independence. This last
step comes at the cost that we will not be able to differentiate between bright and
dark materials. Although this could ambiguity could be addressed at a later stage
by comparing the signal variances of the images.

7.3 Discrimination of Materials in the CUReT
database

Before we move on to real images we need to assess what can be done. How well
can materials be discriminated from their reflectance properties alone? Figure 7.1
demonstrates that frequently many materials look similar to the human eye.

To investigate the feasibility of this task we analyze how well the materials in
the CUReT database can be discriminated in synthetic images, i.e. when there is
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no noise. The illumination is considered to be unknown. The algorithm is tested on
images generated from one of the illumination maps, while the other illumination
maps are used to build the manifolds for classification. This is repeated for all nine
illumination maps (the leave-one-out principle).

There is no actual need to generate any images. Using the low-dimensional
basis framework we can directly from the illumination and material coefficients
compute the coefficients in the low-dimensional basis of the image. This fact allows
for extensive testing. Each of the 47 materials used is tested with nine illumination
maps, each under 462 different rotations, summing up to a total of almost 200 000
images used for testing. The 20 first basis functions were used in the classification.

Figure 7.4 shows the classification rates for the different materials. The correct
classification rates, which can be seen in the diagonal, range between 5 and 80
percent. Materials with a high classification rate are 7-velvet and 61-moss which
have particular reflectance properties. Glossy materials have in general a higher
recognition rate than matte materials.

Of particular interest is that the materials seem to cluster into groups. Often
a material in a group is systematically mis-classified as one of the other materials
in that same group. This becomes apparent when we order the materials in a
particular way. Figure 7.5 shows the exact same classification rates as Figure 7.4,
but with the materials ordered using a hierarchical grouping algorithm, described
in the next section. Blocks become apparent in the diagonal of the matrix. There
is a large block of matte materials in the top left corner, formed by the materials
1-Felt, 20-Styrofoam, ..., 24-Rabbit Fur. Following the matte materials is a group
of glossy materials, 4-Rough Plastic , ..., 15-Foil. Last comes 7-Velvet and a group
of velvet-like appearance (asperity scattering), 13-Artificial Grass, 19-Rug_b and
61-Moss. Finally we have 35-Painted Spheres which forms a group of its own.

7.3.1 Visual Grouping of the Materials

It is clear that we cannot expect to distinguish between some of the materials in
the CUReT database. Instead we can try to find groups in which to classify the
materials.

Using the matrix containing the classification rates we group the materials.
The grouping is done in a greedy fashion. We start with groups of single materials.
Then the two groups that maximize the average recognition rate are joined. This
is repeated until the desired number of groups is reached. To select the number
of groups one can look at the ratio between the recognition rates and the rate of
selecting the correct material by chance.

Dividing the CUReT database into 9 groups results in the grouping in Figure 7.6.
We have labeled the groups according to the characteristics of their members. All
matte materials end up in one group. Materials having specular reflectance are
split up into three groups. The last five groups are materials that did not fit into
any group. These materials have a high recognition rate on their own.
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1 Felt 11 Plaster_b 21 Sponge 35 Painted Spheres 50 Concrete_c
2 Polyester 12 Rough Paper 22 Lambswool 36 Limestone 52 White Bread
3 Terrycloth 13 Artificial Grass 23 Lettuce Leaf 37 Brick_a 53 Soleirolia Plant
4 Rough Plastic 14 Roof Shingle 24 Rabbit Fur 39 Human Skin 55 Orange Peel
5 Leather 15 Aluminium Foil 25 Quarry Tile 41 Brick_b 59 Cracker_a
6 Sandpaper 16 Cork 26 Loofa 43 Salt Crystals 60 Cracker_b
7 Velvet 17 Rough Tile 27 Insulation 45 Concrete_a 61 Moss
8 Pebbles 18 Rug_a 28 Crumpled Paper 47 Stones
9 Frosted Glass 19 Rug_b 33 Slate_a 48 Brown Bread
10 Plaster_a 20 Styrofoam 34 Slate_b 49 Concrete_b

Figure 7.4: Recognition rates for the CUReT materials. Each row shows the
classification rates for a particular material, e.g. the leftmost element in the first row
is the rate that material no. 1 is classified as material no. 1, the second element is
the rate the material no. 1 is classified as material no. 2. The diagonal is the correct
classification rate. These results are discussed in more detail in the text.
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1 Felt 11 Plaster_b 21 Sponge 35 Painted Spheres 50 Concrete_c
2 Polyester 12 Rough Paper 22 Lambswool 36 Limestone 52 White Bread
3 Terrycloth 13 Artificial Grass 23 Lettuce Leaf 37 Brick_a 53 Soleirolia Plant
4 Rough Plastic 14 Roof Shingle 24 Rabbit Fur 39 Human Skin 55 Orange Peel
5 Leather 15 Aluminium Foil 25 Quarry Tile 41 Brick_b 59 Cracker_a
6 Sandpaper 16 Cork 26 Loofa 43 Salt Crystals 60 Cracker_b
7 Velvet 17 Rough Tile 27 Insulation 45 Concrete_a 61 Moss
8 Pebbles 18 Rug_a 28 Crumpled Paper 47 Stones
9 Frosted Glass 19 Rug_b 33 Slate_a 48 Brown Bread
10 Plaster_a 20 Styrofoam 34 Slate_b 49 Concrete_b

Figure 7.5: When the classification rates from Figure 7.4 are sorted in a particular
way a pattern emerges. The materials form groups. Materials within a group are
often classified as one of the other materials in the same group. The largest group
can be seen as a grey block in the top left corner of the matrix. These are the matte
materials, 1-Felt, 20-Styrofoam, ..., 24-Rabbit Fur. After the matte materials comes
a group of more glossy materials, 12-Rough Plastic, ..., 36-Limestone. Next comes a
group of shiny materials 9-Frosted Glass to 33-Slate_a. Last is a group of materials
with asperity type scattering, 7-Velvet, 13-Artificial Grass, 19-Rug_b and 61-Moss.
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Group Members Label
1 1, 2, 3, 6, 8, 10, ... Matte
2 4, 5, 12, 17, 36, 55 Glossy
3 9, 23, 25, 27, 34, 41 Shiny
4 15, 33 Shinier
5 7 Velvet
6 13 Art. Grass
7 19 Rug
8 61 Moss
9 35 Spheres

Figure 7.6: Classification rates when the materials are grouped into nine groups.
Not all members were listed in the matte group due to space limitations, but this
group contains all materials that are not in the other groups.

Most of the groups are sometimes mis-classified as matte materials. This makes
sense. In the testing we take all rotations of the illumination into account. This
means that sometimes the dominant light source in the scene will be behind the
object. Hence, there will be no specularity on the object to differentiate it from a
matte material.

7.4 Classifying the Material in Real Images

To test the algorithm we glued five different real materials onto cylinders, see Fig-
ure 7.7. Cylinders were chosen due to the difficulty of gluing non-stretchable ma-
terials onto a sphere. The cylinders where photographed using a digital camera in
different illumination conditions, including outdoor sunny, outdoor cloudy and in-
door conditions with indirect light from a window. Before classification the images
were radiometricly calibrated, using the method in (Mitsunaga and Nayar 1999).
The geometry of the cylinders were estimated by manually marking where in the
image the cylinders were.

Using the framework from Chapter 4 we computed a basis for the cylinder. A
total of six basis functions were used in the experiments. The coefficients for the
image were estimated by projecting the image onto the basis. The image was then
classified by finding the closest manifold as described in Section 7.2. The manifolds
were this time learned using all nine illumination maps.

Figure 7.8 shows some of the images being classified. Note how well the basis
is able to represent the image irradiance in all cases.

A total of 84 images were used in the experiment. Table 7.1 summarizes the
results. As predicted by the synthetic experiments only a few of the images where
correctly classified on an individual basis. Felt and the two velvets have a recog-
nition rate of 5% to 7.7%, which is still several times greater than chance, which
is 1/47 ≈ 2.1%. When using the grouping in Figure 7.6 the recognition rates are
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Figure 7.7: The algorithm was tested on images of cylinders with the pieces of five
different real materials glued onto them. Top row from left to right: felt, velvet 1,
velvet 2, leather and imitation leather. Bottom row: leather in five of the different
illumination conditions.

higher. Felt is to a large extent classified as matte. The leather here is classified as
Shiny or Shinier, while the leather in the database is categorized as Glossy. This
could be because our leather is shiner than the leather in the database. Visually,
at least, it appears so. The imitation leather is also mostly classified as Shiny or
Shinier.

So far the results match the synthetic results fairly well. The velvet however does
not. The synthetic results indicate that velvet should be fairly easy to recognize,
but in our experiments the two velvet cylinders are mostly classified as matte. On
the other hand, they are also often classified as either one of the groups Grass, Rug
or Moss, which have the same type of surface reflectance as Velvet.

7.5 Conclusions

This chapter has demonstrated the use of the low-dimensional basis framework
described in Chapter 4. Using this framework a basis to represent the images of the
materials in the CUReT database is constructed. The variations in the appearance
of the surface of a particular material form manifolds in the space of the low-
dimensional basis. These manifolds are learned from the captured illumination
maps of Debevec. The material in an image is classified by finding the manifold
which is closest the image.

Recognizing the material is hard. Analysis of the recognition rates on synthetic
data shows that many materials often are incorrectly classified. The materials seem
to form groups where a material in a group often is mis-classified as one of the other
materials in the same group. A simple greedy grouping algorithm is able to find
sensible groups from a human visual system standpoint.

The results of the experiments on real images of materials to a large extent
follow those predicted by the synthetic experiments. They indicate that the method
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Figure 7.8: Examples of classified images: (a)-(d) images for Felt. (a) calibrated
gray image, (b) reconstructed gray image (this is what the algorithm “sees”), (c)
image and reconstructed intensity profiles. (d) distances to the ten closest materials.
Here the material is correctly classified as felt. (e)-(h) show the same images for
Velvet 1. The material is here incorrectly classified as 24-Rabbit Fur, 7-Velvet comes
third place. (i)-(l) images for leather which in this case is classified as 41-Brick_b,
5-Leather is the third closest material. (m)-(p) imitation leather: classified as 55-
Orange, 5-Leather on seventh place. Notice how well the basis represent the irradiance
for the different cases.
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Material Correct Matte Glossy Shiny Shinier Velvet Grass Rug Moss Spheres
Felt 7.7 77 7.7 0 15 0 0 0 0 0
Leather 0 25 6.2 44 19 6.2 0 0 0 0
Im. Leather 0 10 0 40 35 10 0 0 0 5
Velvet 1 5 55 0 5 5 5 10 10 10 0
Velvet 2 6.7 40 0 33 0 6.7 0 13 6.7 0

Table 7.1: Classification Rates for the Cylinder Images.

generalizes to images of new samples of the materials, taken under varying and
different illumination conditions.





Chapter 8

Projected Light Source Direction
From Occluding Contours

This chapter presents an algorithm that automatically estimates the projected di-
rection (the slant direction) to the light source using shading near occluding con-
tours in the image.

The work was completed when the frequency space representations of shading
was largely unknown to the computer vision community and therefore the algorithm
uses conventional models such as a point light source and Lambertian surface re-
flectance.

8.1 Introduction

The occluding contour is where an object occludes itself like the earth at the horizon.
At the occluding contour the shape of the object can easily be determined because
the surface normal is perpendicular to the viewing vector and can be determined
by the image edge direction (Horn 1986).

Many existing algorithms for estimating the light source direction use occluding
contours. In (Pentland 1982) it is a requirement that the image is of a convex object
bounded by an occluding contour. Vega and Yang (1994) use the same occluding
contour assumption to match default shapes to the image and then estimate the
light source direction. Both methods require Lambertian surfaces and a segmented
image of the object. Yang and Yuille (1991) also exploit the occluding boundary
and show that it puts strong constraints on the light source direction.

Other algorithms use known geometry to derive the illumination direction. (Sato
et al. 1999a; Sato et al. 1999b) derive the illumination distribution by studying
shadows around an object of known geometry. In (Zhang and Yang 2000) multiple
light sources are extracted from a sphere of known size.

75
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Previous work depends on segmented images or known geometry. In this chapter
we do not make these assumptions, but only determine the projected light source
direction. We will present a fully automatic algorithm for recovering this projected
direction. First the estimation of the light source direction using the shading near
the occluding contour is investigated. Also, the noise distribution is derived. Sec-
ondly an algorithm for picking out potential occluding contours using edge and
color information is presented. The contours produced by this algorithm are then
used in a Bayesian probabilistic framework to estimate the most likely light source
direction. Simultaneously, the contours are classified as occluding or not.

8.2 Shading at the Occluding Contour
First we will look at the case of estimating the light source direction from an
occluding contour.

Given that the illumination is a single point light source, the model for the
image intensity I at a point on a Lambertian surface is

I = k(~n •~l) + a (8.1)

where ~n = (nx, ny, nz)T is the surface normal at the point, ~l = (lx, ly, lz)T is the
direction to the light source, k is a parameter containing both the surface albedo
and the strength of the light source, a is a term representing the contribution of
the ambient illumination.

On the occluding contour nz is equal to zero. This will eliminate lz from the
equation, which is why we will not be able to estimate lz. Due to the bas-relief
ambiguity (Belhumeur, Kriegman, and Yuille 1997) the z-component of the light
source direction cannot be estimated using only this model when the surface albedo
and light source strength is unknown. Now, the image intensity on the occluding
contour will be

I = k(~n •~l) + a = k(nxlx + nyly) + a. (8.2)

From the image we can measure ~n and I. ~l, a and k are unknown, but are
assumed to be constant for each local computation. Since we only are interested in
the direction to the light source scaling of the ~l vector doesn’t matter. Therefore
let x = klx and y = kly. Now we have

I = nxx+ nyy + a =
(
nx ny 1

) x
y
a

 (8.3)

Equation (8.3) has three unknowns x, y and a and as many equations as the
number of points on the occluding contour. Using e.g. least squares we can estimate
the light source direction. Let N be a matrix containing the nx and ny for the points
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along the contour and I a vector containing the intensity values for the same points.
Then the least-squares estimate L̂ = (x̂, ŷ, â)T is calculated by

L̂ = (NT N)−1NT I. (8.4)

In L̂ the estimated angle towards the light source is found as the direction of
the vector l̂ = (x̂, ŷ)T , i.e.

φ̂ = arg(l̂). (8.5)

8.2.1 Measuring the intensity at the contour
To be able to estimate the light source direction in this way we need to measure the
intensity at the occluding contour. This is of course impossible, the intensity cannot
be measured at the contour. Also, the Lambertian model becomes inaccurate very
close to the contour (Oren and Nayar 1995; Wolff 1994). To overcome this we will
look at the intensities some distance away from the contour and extrapolate to get
the intensity at the contour.

The extrapolation is done by modeling the image intensities along a line, the
u-axis in Figure 8.1a, perpendicular to the edge. By measuring the intensities
along the line and using the model, the intensity at the edge can be estimated by
extrapolation.

To model the intensities, a model of the shape along the line is needed. We have
chosen an ellipse to model the cross-section of the object, see Figure 8.1b. Because
of the bas-relief ambiguity the z-axis can be scaled arbitrarily and the shape model
can be simplified as a circle, with radius R, without any loss of generality in this
case. We have

(u−R)2 + z2 = R2 (8.6)

from which we can express z as function of u and the normal of the surface as a
function of u and z

z =
√

2uR− u2 (8.7)

N(u) =
1
R

 u−R
z
0

 . (8.8)

Inserting the expression for the normal into the intensity equation (8.1) gives
us the intensity as a function of u,

I(u) =
k

R

(
lu(u−R) + lz

√
2uR− u2

)
+ a. (8.9)

This model is too elaborate to use for extrapolation. The parameters in fact
include the direction towards the light source, which is what we want to estimate.
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Figure 8.1: a) An image I of an object. To be able to do extrapolation a model
of the shape of the object along the u-axis is needed. This is done by modeling the
cross-section b) of the object in the plane P with an ellipse.

A power series expansion of the model can however be derived. With the power
series we can select the models level of detail by including more or less terms from
the series.

The power series of the model (8.9) is of the form:

I(u) = c0 + c1u
1/2 + c2u+ c3u

3/2 + c4u
5/2

+c5u7/2 +O(u9/2). (8.10)

The extrapolation is done by fitting the power series polynomial to the measured
intensities using least-squares estimation and then calculating the intensity at u = 0
using the estimated polynomial, i.e. I(0) = c0.

8.2.2 The Probability Distribution of the Estimates

The estimated vector L̂ is a linear combination of image intensities. The extrap-
olation operation and the estimation of the direction are both linear operations.
In general each estimate will be a linear combination of hundreds of image intensi-
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ties1, which means that the estimated vector is approximately normally distributed.
Since least-squares is a non-biased estimator, the mean will be (x, y, a)T .

L̂ ∼ N

 x
y
a

 ,Σ

 (8.11)

The covariance matrix Σ of a least-squares estimate is

Cov(L̂) = (NT N)−1σ2. (8.12)

The noise variance σ2 can be estimated with

σ̂2 =
1

n− 1

n∑
i=0

(Ii − (nxx̂+ ny ŷ + â))2. (8.13)

8.3 An Automatic Algorithm
The automatic algorithm has three stages. First a heuristic algorithm picks out
candidate occluding contours using color and edge information. Secondly, for each
of the contours, the light source direction is estimated according to the method
presented in the previous section. In the final stage the estimates are fused in a
Bayesian network to arrive at the most likely light source direction.

8.3.1 Finding Potential Occluding Contours
The goal of this stage is to, in a heuristic way, pick out contours of which as many
as possible are occluding contours. The simple rules used here will naturally not be
able to pick out occluding contours perfectly, but they will provide the later stages
with good enough candidates.

The estimation of the light source direction described in Section 8.2 only works
on occluding contours of uni-colored objects. The algorithm should pick out edge
chains that have an uni-colored area perpendicular to the chain direction. Also,
for the extrapolation not to be disturbed there should be no edges in that same
area. The surface of the object needs to be smoothly curved so a sharp turn of
the contour is a strong indication that the contour is not from a useful occluding
boundary.

The algorithm works in the following way. First the edges are extracted, using
the Canny edge detector, and linked into chains. By following the chains the po-
tential occluding contours are picked out by grouping together consecutive edges
if

• The area next to the edge is uni-colored
1In the experiments the extrapolation uses 7 pixels per edge point and the average contours

length is about 60 which means that each estimate is a linear combination of over 400 pixel values.
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• The color is the same as previous edges in the chain

• The area next to the edge contains no other edges

• The chains does not make a sharp turn

This is done on both sides of the edges. Very straight contours contain no informa-
tion for our algorithm and are sifted out in a post-processing stage.

The test whether a surface is uni-colored is done in a similar way as in (Klinker,
Shafer, and Kanade 1990). For each piece of a contour segment the pixels next to it
are analyzed by a singular value decomposition of the pixel cluster in RGB-space.
If the two eigenvectors with the lowest eigenvalues are small enough then the pixels
follow the model ~ci = ki~c and are assumed to be on a uni-colored object.

The algorithm is very simple and does an acceptable job for our purposes at this
stage, but there are some problems. The main problem is that contours get split up
due to edges in the background. What happens is that, in the edge-linking process,
the object contour gets linked together with an edge in the background instead of
continuing along the contour. This could in the future be solved by using a more
clever grouping algorithm incorporating e.g. good continuation. See Figure 8.9 a
and d for examples.

For each of the contours picked out by the algorithm, the light source direction
is estimated as described in Section 8.2.

8.3.2 Fusing the Estimates

At this stage we have a set of estimates and variances from n edge chains that
might or might not be from occluding contours. To separate the correct contours
from the incorrect ones it is necessary that the correct contours in general have a
smaller variance , i.e. fit the model better, than the incorrect ones. Also, if we have
several estimates pointing towards the same light source direction one can draw
the conclusion that this is the correct direction even though their variances aren’t
substantially smaller than those of the the other contours. The final stage of the
algorithm fuses the estimates incorporating these conditions.

8.3.2.1 The Probabilistic Model

An estimated vector L̂i = (x̂i, ŷi, âi)T from contour i depends on the true values
Li = (xi, yi, ai)T and whether or not the contour is an occluding contour or not,
captured in the discrete variable Oi.

Because only the direction of the light source vector is the same for all the
contours (the magnitude depends on surface albedo which may be different for
different objects), the variables xi and yi are represented by their magnitude ri
and direction φ. Figure 8.2 shows the causal dependencies between the different
variables.
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Figure 8.2: Bayesian network model
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Figure 8.3: Junction tree

8.3.2.2 The Inference Process

What we would like to find is the set of values to the variables that maximizes
the probability. Especially we would like to find the φ in that set. I.e. if U =
{φ, r1, . . . , rn, a1, . . . , an, O1, . . . , On, L̂1, . . . , L̂n} we would like to estimate φ with

φ̂ = argmax
φ

max
U\φ

P (U) (8.14)

Using message propagation this φ̂ can be found with only local computations
(Cowell, Dawid, Lauritzen, and Spiegelhalter 1999; Jensen 1996).

By moralizing the graph, i.e. connecting parents with a common observed child,
cliques can be identified. The cliques are the smallest sets of variables on which
local computations can be done. Figure 8.3 shows the resulting junction tree with
cliques Ci = {φ, ai, ri, Oi, x̂i, ŷi, âi}, i = 1, . . . , n one for each contour and sepsets
Sj = {φ}, j = 1, . . . , n − 1 containing the common variables of the neighboring
cliques.

The initial distribution for each clique will be

P0(Ci) = P0(ri, φ, ai, Oi, x̂i, ŷi, âi) =
= P (ri)P (φ)P (ai)P (Oi)P (x̂i, ŷi, âi|ri, φ, ai, Oi), (8.15)
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where P (ri), P (φ), P (ai) and P (Oi) are prior distributions. P (x̂i, ŷi, âi|ri, φ, a,Oi)
is the distribution of the estimates. How these will be assigned will be discussed
Section 8.3.2.4.

Because the junction tree here has a simple structure, the clique probability
distribution after the message propagation has a closed form solution, namely

P (Ci) = P0(Ci)
∏
j 6=i

Mj(φ). (8.16)

where Mj is the max-margin of the initial distribution of clique j, defined as

Mj(φ) = max
Ci\φ

P0(Ci). (8.17)

To find the most likely light source direction we can select an arbitrary clique
and find the φ giving the maximum probability.

φ̂ = argmax
φ

max
Ci\φ

P (Ci) (8.18)

8.3.2.3 Classifying the Contours

From the clique potentials we can also estimate Oi i.e. classify whether the con-
tour is an occluding contour or not. From the clique potential after the message
propagation we classify contour i by

Ôi = argmax
Oi

max
Ci\Oi

P (Ci). (8.19)

8.3.2.4 Priors and Distributions

The prior distributions are selected as follows.

P (φ) =
1
2π
,−π < φ ≤ π (8.20)

P (ri) =
1

rmax − rmin
, rmin ≤ ri ≤ rmax (8.21)

P (ai) =
1

amax − amin
, amin ≤ ai ≤ amax (8.22)

P (Oi) = (1− poc, poc)T (8.23)

poc is the prior probability that a a contour is an occluding contour.
Especially the prior for ri plays an important role, since it will help to sift out

a certain class of contours that fit the shading model well but are not occluding
contours. This class are contours which have a flat intensity curve. They come
typically from shadows or the outsides of object boundaries on planar surfaces.
Because of the flat intensity curve their estimated ri will be close to zero and can
then be easily sifted out by setting rmin to a value over zero.
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The estimates, as derived in Section 8.2.2, are normally distributed around the
true values, provided that the contours are occluding contours. The estimates from
other contours are also normally distributed, for the same reason as the occluding
contours, but around which mean ~m is unknown. The estimates certainly doesn’t
tell us anything about the variables we are estimating. From (8.4) it can be shown
that the mean is

~m = E
[
(NT N)−1NT I

]
= µI

 0
0
1

 , (8.24)

where µI is the expected value of the image intensities. By calculating a mean over
a number of images µI was estimated to 0.35. A suitable covariance matrix was
roughly estimated to S = ((0.5, 0, 0)T (0, 0.5, 0)T (0, 0, 0.5)T )

Hence, the distribution of the estimates is modeled by

P (L̂|ri, φ, ai, Oi) =
{
g(L̂, (ri cosφ, ri sinφ, ai)T , Σ̂i) Oi = oc

g(L̂, ~m, S) Oi = ōc
(8.25)

The function g(~x, ~µ,Σ) is the three-dimensional gaussian p.d.f. with mean ~µ and
covariance Σ.

8.3.2.5 Implementation Issues

The Bayesian network in Figure 8.2 is a hybrid network, meaning it has both con-
tinuous and discrete variables. Although we have normal distributions we can not
use the developed techniques in e.g. (Cowell, Dawid, Lauritzen, and Spiegelhalter
1999). This is because the argument φ is a common variable in the cliques which
messes up the marginalizations. Fortunately many of the marginalizations can be
solved analytically. Maximizing over ri and ai is done by minimizing the quadratic
expression in the exponential of the gaussian. With limits on ri and ai we need to
check the boundaries of the limit region as well.

When maximizing over Oi we need to calculated the probability distributions
numerically and therefore it is necessary to discretize φ.

8.4 Experiments

All the experiments are done on images captured on an Olympus 3030-Z digital
camera. The correct light source direction was measured using the shadow of a
small sphere on a piece of wire placed in the scene.

8.4.1 Light Source from a single Occluding Contour

To test the estimation of light source direction from a single occluding contour we
used in total 41 contours from three different objects illuminated from six different
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Figure 8.4: Error of light source direction estimated from occluding contours.
plotted versus the maximum of the probability density.

directions. The contours where extracted by manually selecting parts of contours
extracted by the Canny edge detector followed by edge linking.

In Figure 8.4 the errors of the estimated light source direction is plotted versus
the maximum probability density of the estimated vector. The maximum probabil-
ity is relevant because it plays an important role in the message propagation in the
Bayesian network. Some of the estimates contain non-negligible errors, but it can
be seen that the computed variance reflect the errors, which is of great importance
when fusing them.

8.4.1.1 The Benefits of Extrapolation

What are the benefits of using extrapolation? The alternative is to use the intensity
value closest to the contour. For many objects this would be fine. It can be seen in
the shading model (8.1) that we can include contour points having a normal with
non-zero z-component, as long as the z-component is constant along the contour
for which the points are measured. Since the term knzlz is constant it can be fit
into the simpler model (8.2) where the term a actually is a+ knzlz.

Contours on objects which have more or less a constant cross-section radius
will therefore not benefit from the extrapolation. Instead the extrapolation will
just amplify the noise. The more complex extrapolation model that is used the
more the noise will be amplified. In our experiments using an object shaped as
an egg or an ellipsoid we will typically not benefit from the extrapolation. The
cross-section will be more or less constant along the occluding contours of these
object. A chair however have a more varied contour and should therefore benefit
from the extrapolation.
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Figure 8.5: The number of estimated angles within the 5% circle sector around the
correct angle for different number of terms in the extrapolation model.

This can be seen in Figure 8.5, which is a graph of the percentage of the es-
timated angles that are within 5% sector around the correct angle, for different
extrapolation models. When using I(u) = co + c1u

1/2 as opposed to doing no ex-
trapolation2 we see no increase in the performance of the egg and the ellipsoid. The
chair on the other hand has an increase from 43% to about 64%. As more terms are
added to the extrapolation model the amplification of the noise affects the results
and reduces the performance, see Figure 8.6.

8.4.2 Automatic Light Source Estimation

To test3 the automatic algorithm two sets of images were used. The first set of
images was designed to be easier by having a number of objects with occluding
contours in the image. Also, the objects where placed apart so that the grouping
algorithm would have less problems finding candidate contours. The set contains 14
images of two scenes illuminated from different directions. For each image the light
source direction was estimated using the automatic algorithm. Also a probability
measure telling how much the estimate can be trusted was calculated. This was
done by summing up the probabilities for all φ within ±5◦ of the estimated angle φ̂,
thereby making it invariant to the number of discretization levels of φ. Note that
the message propagation produces the whole distribution for φ. Figure 8.7a shows
the error of the estimated angles plotted versus the probability measure. As many
as half of the estimated angles have less than 5◦ error. There are also outliers, such
as one with 33◦ error and a very high probability.

In the second set of images the objects sometime occlude each other. The set
contains 17 images. Figure 8.7b shows the results. The algorithm is able to estimate
light source direction well, with some outliers.

2When no extrapolation has been used, the image intensity is just measured two pixels from
the contour.

3The parameters in the priors were in all experiments set to: amin = 0, amax = 0.6, rmin =
0.1, rmax = 1 and poc = 0.1.
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Figure 8.6: The image intensities along one of the occluding contours in the
dataset. The solid lines show the extrapolated intensities and the dashed lines the
reconstructed intensities from the estimation, when using extrapolation models a) no
extrapolation, b) I(u) = c0 + c1u1/2 and c) I(u) = c0 + c1u1/2 + c2u. The inlined
circles show the estimated and correct (dotted line) light source directions.

The outliers occur for different reasons. Sometimes a non-occluding contour fits
the shading model well. In other cases there are many non-occluding contours ac-
cidentally giving similar estimates and thereby reinforcing each other. This mainly
happens in the absence of a correct occluding contour giving a good estimate. When
the grouping algorithm successfully picks out a good occluding contour, this contour
will usually give a better estimate than non-occluding contours.

Note that the probabilities in this case should be compared relatively and not be
considered as good estimates of the true probabilities. With better modeling, using
e.g. learning, the algorithm should in the future be able to produce probabilities
that better reflect the true values.

Figure 8.9 shows two examples of the algorithm estimating the light source
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Figure 8.7: Error of estimated light source direction plotted versus probability for
a) the first image set and b) the second image set.

direction and classifying the contours. In the first example the direction is correctly
estimated, but some of the contours are incorrectly classified as occluding. This
can happen when a contour accidentally gives the same estimate as the “winning”
light source direction. In the second example the algorithm fails to estimate the
correct light source direction and thereby fails to classify the contours.

8.5 Conclusion

We have presented a way to estimate the projected light source direction. The
algorithm exploits the occluding boundary. Combined with a heuristic grouping
algorithm and Bayesian network inference this is done in a fully automatic way.
Contours picked out by the grouping algorithm are also classified as occluding or
not.

Our approach to estimate the light source direction from a single occluding
contour has been tested on real images with good results. The experiments show
that the calculated variance reflects the errors of the estimates, which is crucial
when fusing the estimates.

The automatic algorithm shows promising results. A first set of images test the
inference stage on scenes suitable for the grouping algorithm. A second image set
of more challenging scenes causes the grouping algorithm to fail more often. The
algorithm as a whole still works with reasonable robustness.

Future improvements can be achieved in the following respects. The grouping
algorithm should incorporate some sort of good continuation to better be able to
cope with edges in the background. Moreover, one could model the distribution of
estimates from non-occluding contours better, e.g. by learning the distributions.
Another improvement would be to use the frequency space representation of shad-
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Figure 8.8: Some of the images used in the experiments.
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Figure 8.9: Two examples: a, d) Candidate contours from the grouping algorithm.
b, e) probability distribution of estimated angle after message propagation. c, f)
Contours classified as occluding. The inlined circle shows the estimated angle. Dotted
lines show the correct angles.
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ing. This could lead to that the algorithm can cope with arbitrary illumination and
taking into account attached shadows.





Chapter 9

Discussion

9.1 Representation of Image Irradiance

Accurate models of the image irradiance with a low number of parameters are
essential to the practical implementation of physics-based image analysis. To model
the image irradiance one needs to model the surface reflectance functions (BRDF)
and the illumination.

BRDFs form the macroscale summary of a number of properties on the surface
microscale, such as surface roughness and dielectric properties. The variations are
substantial and a single physical model has not been able to capture all of them.
However, a general phenomenon is that many BRDFs are smooth. This makes
them suitable to represent in the Fourier domain. Although these frequency space
models are not directly based on the physical properties of surface scattering, they
can be constructed to incorporate symmetries in the BRDF, such as Helmholtz’s
reciprocity and isotropy, reducing the number of parameters tremendously. One
such model is created by Koenderink and van Doorn (1998).

The general smoothness of BRDFs has further implications. The light reflected
by the surface is low-pass filtered. This suggest that also the illumination should be
represented in the Fourier domain. The incident light to a point is a function on a
sphere, hence the frequency space representation is in terms of spherical harmonics.
Since the reflected light is low-pass filtered the high frequency components of the
illumination do not contribute to the reflected light. Consequently, when analyzing
image only the low-frequency components of the illumination need to be accounted
for. Thus, any illumination can be modeled with a finite number of parameters.
In the case of Lambertian surfaces, nine parameters is sufficient to model any
illumination (Basri and Jacobs 2003; Ramamoorthi and Hanrahan 2001a). This is
a huge step forward. Previously, the majority of the work has used one or more
point light sources to model the illumination, something which is inadequate in
most natural settings.

91
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Non-Lambertian surfaces may require higher frequencies of the illumination to
be modeled. In general, the shinier a surface is the more high frequency components
of the illumination are needed. In this thesis we have combined the spherical har-
monic representation of the illumination with the frequency space basis for isotropic
surface of Koenderink and van Doorn (1998) and derived a basis for the resulting
image irradiance. By analyzing the variance in the image we have shown how to
compute the number of components of the illumination required to achieve a certain
accuracy. Since the BRDF of any isotropic material can be represented in this basis
we can compute the exact number of parameters needed to model the illumination
for any isotropic material.

When analyzing the materials in the CUReT database we see that many ma-
terials, although not Lambertian, still only require up to illumination order l = 2
(9 parameters). These are the matte materials. The shinier materials require an
illumination order of up to l = 13 (196 parameters) to achieve an accuracy greater
that 98%.

In the frequency basis the image irradiance is represented as a sum of the prod-
uct of the illumination coefficients, the coefficients of the BRDF and the image
irradiance basis functions, Emq

lop . This basis can represent the image irradiance
from any isotropic material under any illumination. In the general case an infinite
number of basis functions are needed. But for many materials which act as low-
pass filters on the illumination, this sum can be truncated and still be an accurate
representation.

The BRDF describes how a surface reflects light in all directions. In an image
only a fraction of the reflected light is registered. This makes the dimensionality
of the signal in the image much lower than that of the reflected light as a whole.
This has been discovered empirically by performing principal component analysis
(PCA) on a set images of a scene taken with varying illumination (Hallinan 1994;
Epstein, Hallinan, and Yuille 1995). Only around five components are sufficient to
capture most of the variations in the images. More components are needed for shiny
objects. Theoretical work gives the same result. Ramamoorthi (2002) analytically
derives the principal components of the images of a Lambertian object under a
varying point light source. His results show that six components are enough to
capture 98% of the variance.

The dimensionality of the information that can be extracted from the images
is the same as the dimensionality of the images. To analyze shading robustly it
is necessary to have a model that reflects that. In fact the principal component
basis functions are ideal for that purpose. They are constructed by maximizing the
variance of the component they represent, hence giving a high signal-to-noise ratio
(SNR) when estimating the coefficients of the components.

A general problem with a PCA basis is that it is hard to relate the principal
components to the properties of the illumination and the surface reflectance. More-
over, the creating of a basis for a wide variety of conditions requires a very large
number of captured training images. For instance, if there are variations in both the
illumination and the BRDF then an image is needed for every illumination-BRDF
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combination.
A solution to this problem is Model-Based PCA. Instead of performing PCA

on a set of images, PCA is applied directly to the image irradiance representation.
Using the finite dimensional frequency space representation, the solution of the
PCA is transformed from being the eigensystem of the image covariance matrix to
an eigenvalue problem of the covariances of the frequency space coefficients. This
separates the covariance matrix into a product of a matrix depending only on the
surface shape and another matrix depending only on the variations in the illumi-
nation and the BRDF. Furthermore, the illumination-BRDF covariance matrix is
separable on an element level. In effect, using this framework, it is possible to
rapidly compute bases for a wide variety of conditions and different surface shapes
by combining different surface, illumination and BRDF covariances.

Model-Based PCA allows the variation in the position of the light source to be
performed analytically. This is done by rotating the light field representing the
illumination. The relative position of the light source plays a major part in the
appearance of the surface. By rotating the light source analytically we are able
to take into account every possible position of the light source. In contrast, if the
PCA is performed empirically the manifold of possible light source positions needs
to be sampled.

Another advantage of Model-Based PCA is that there is an explicit relation
between the principal components and the coefficients of the illumination and the
BRDF. A PCA basis created from empirical data can capture the appearance of
the images well, but it is very hard to relate the basis to the underlying properties
of the data. With Model-Based PCA we are able to create a basis that takes into
account the appearance ambiguities and at the same time can be used as a physics
model.

Care has also been taken in forming the principal components. For image anal-
ysis it is important that the components to be estimated have a high signal-to-noise
ratio. It is also important to make the basis invariant to variations in the ambient
component of the illumination. These two factors suggest that the image should be
centered by subtracting the individual image mean rather the mean image. There-
fore we call the modification Image-Centered PCA.

The incorporation of all these ideas result in a powerful framework for creating
low-dimensional generative models of images of a surface under a wide variety of
conditions. Robust analysis of shading is achieved by estimating only the compo-
nents with a high signal variance.

9.1.1 Bases for Lambertian Surfaces
The Model-Based PCA framework is demonstrated by computing bases for a spheri-
cal Lambertian object under varying illumination. Bases are computed for a number
of theoretical illumination distributions such as all configurations of a point light
source, a point plus ambient light source and two point light sources. Furthermore,
a basis is constructed from a database of captured real world illumination.
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For comparison, both standard and Image-Center PCA bases are computed.
The main difference between the PCA variants is how they behave under variations
in the ambient component of the illumination. When the ambient component varies
this is encoded in the standard PCA basis. The Image-Centered basis on the other
hand is not affected by these variations.

The changes in the Image-Centered bases for different illumination distributions
are small in general. It seems that when changes in the ambient component and
all rotations of the light source are accounted for, the illumination distribution has
little effect on the basis.

9.1.2 A Basis for the CUReT Database

A basis is also constructed from a database of real world surface reflectances, the
CUReT database (Dana et al. 1999), and the same database of captured illumi-
nation as before. The goal was to create a basis that can represent the images of
a surface of a wide variety of reflectance properties and under more or less any
illumination.

In this basis the images are accurately represented using between 5 and 40 basis
functions depending on the surface material. Matte materials, including highly
non-Lambertian materials such as velvet, are well represented using around five
basis functions, while materials with specular reflectance require up to 40 basis
functions.

The accuracy of the basis is measured by the percentage of variance the basis
accounts for. However, this measure does not always correspond to the sensitivity
of the human visual system. The reconstructed image of a matte surface can look
indistinguishable from the original image at 99, 1% accuracy, while a specular ma-
terial may require up to 99.9% accuracy to be indistinguishable from the original
image. The same observations were made by Epstein et al. (1995).

9.2 Analysis of Shading

An example of analysis of images in this thesis is an algorithm for material classifi-
cation. Using the model-based PCA framework we constructed a basis to represent
the images of the materials in the CUReT database. The variations in the appear-
ance of a surface of a particular material form manifolds in the low-dimensional
space of this basis. These manifolds are learned from the captured illumination
maps of Debevec. The material in an image is classified by finding the manifold
which is closest to the image.

Recognizing the material is hard. Analysis of the recognition rates on synthetic
data shows that many materials often are incorrectly classified. The materials seem
to cluster into groups in which a material often is mis-classified as one of the other
materials in the same group. A simple greedy grouping algorithm is able to find
groups which makes intuitive sense from a human visual system standpoint. The
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experiments on real images of materials are to a large extent predicted by the
synthetic experiments. They indicate that the method generalizes to images of new
samples of the materials, taken under varying and different illumination conditions.

9.3 Conclusions
The driving force behind the work in this thesis has been a wish understand what
information that can be extracted from shading in images. The focus has been on
creating methods and representations that can be used in realistic conditions with
complex unknown illumination and non-Lambertian surfaces. In such conditions
there are a multitude of ambiguities that need to be taken into account. These
ambiguities are easily identified using the Model-Based PCA framework presented.
With this framework one can construct low-dimensional models that have parame-
ters that can be robustly estimated, take the appearance ambiguities into account
and at the same time function as a physical model.

It is my hope that this framework will make it possible to use shading infor-
mation in many computer vision applications. The variations in appearance due
to changes in the illumination or surface reflectance are actually one of the few
things that are relatively simple to model. These regularities should not be seen as
a nuisance, but rather be used to our advantage.
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Appendix A

Rotating Real Spherical Harmonics

This chapter defines the real valued spherical harmonics used in the thesis. Also
the rotation reparameterization functions for the real functions are derived.

A.1 Complex Spherical Harmonics

The spherical harmonics basis functions are defined as

ym
l (θ, φ) = Nm

l P
m
l (cos θ)eimφ, (A.1)

where

Nm
l =

√
(2l + 1)(l −m)!

4π(l +m)!
(A.2)

is a normalization factor and Pm
l (z) are the associated Legendre polynomials. The

spherical harmonics form a complete and orthonormal basis for functions on the
sphere. ∫

S2
ym

l (θ, φ)ym′
l′ (θ, φ)dω = δll′δmm′ (A.3)

A rotated spherical harmonic basis function can be described as a linear com-
bination of the spherical harmonic basis functions of the same azimuthal order
m. When the arguments of the function are rotated using the ZYZ Euler angle
parameterization in (2.7) then

ym
l (Rα,β,γ(θ, φ)) =

l∑
n=−l

dmn
l (α, β, γ)yn

l (θ, φ), (A.4)

where
dmn

l (α, β, γ) = Pmn
l (cosα)eimβ+inγ (A.5)
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and Pmn
l are the generalized associated Legendre polynomials. For their explicit

form and more details on rotating spherical harmonics see (Chirikjian and Kyatkin
2001; Vilenkin and Klimyk 1991).

A.2 Real Spherical Harmonics

Real spherical harmonics can be defined as follows.

Y m
l (θ, φ) = Nm

l P
m
l Φm(φ), (A.6)

where

Φm(β) =


√

2 cosmβ m > 0
1 m = 0√

2 sinmβ m < 0
(A.7)

The functions Φm are orthogonal,∫ 2π

0

Φm(β)Φm′(β)dβ = 2πδmm′ . (A.8)

From this it is easy to see that the real spherical harmonics also are orthogonal,∫
S2
Y m

l (θ, φ)Y m′

l′ (θ, φ)dω = δll′δmm′ . (A.9)

In order to convert between complex and real spherical harmonics it is conve-
nient to express the real harmonics as a combination of complex harmonics. The
complex conjugate of a complex basis functions is ym

l = (−1)my−m
l so

Y m
l (θ, φ) =


1√
2

(
ym

l (θ, φ) + (−1)my−m
l (θ, φ)

)
m > 0

ym
l (θ, φ) m = 0
1

i
√

2

(
ym

l (θ, φ)− (−1)my−m
l (θ, φ)

)
m < 0

. (A.10)

A.3 Conversion Between Complex and Real
Spherical Harmonics

There is a one-to-one correspondence between representations in real and complex
spherical harmonics. A function f(θ, φ) can be expressed in either representations

f(θ, φ) =
∞∑

l=0

l∑
m=−l

am
l y

m
l (θ, φ) =

∞∑
l=0

l∑
m=−l

bml Y
m
l (θ, φ). (A.11)
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Using (A.10) a function represented in real harmonics can be written as a sum of
complex basis functions.

l∑
m=−l

bml Y
m
l (θ, φ) =

1∑
m=−l

bml
1
i
√

2
(ym

l − (−1)my−m
l )

+ b0l y
0
l +

l∑
m=1

bml
1√
2
(ym

l + (−1)my−m
l )

(A.12)

In the above expression the complex coefficients am
l can be identified.

am
l =


1√
2
(bml − 1

i (−1)mb−m
l ) m > 0

b0l m = 0
1√
2
( 1

i b
m
l + (−1)mb−m

l ) m < 0
(A.13)

and from this the inverse conversion from the complex to the real representation
can be found.

bml =


1√
2
(am

l + (−1)ma−m
l ) m > 0

a0
l m = 0
i√
2
(am

l − (−1)ma−m
l ) m < 0

(A.14)

A.4 Rotating Real Spherical Harmonics

Similarly to their complex counterparts the real spherical harmonics rotated can
be written as a linear combinations of the non-rotated real functions.

Y m
l (Rα,β,γ(θ, φ)) =

l∑
n=−l

Dmn
l (α, β, γ)Y n

l (θ, φ), (A.15)

The rotation reparameterization functions, Dmn
l can be found by writing the real

functions as a sum of the complex functions using (A.10). These are then rotated
using (A.4). The rotated complex functions are then converted back to real func-
tions according to (A.14) and the reparameterization functions can be identified as
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Dmn
l (α, β, γ) =



cos(mβ + nγ)Pmn
l (cosα)

+(−1)n cos(mβ − nγ)Pm,−n
l (cosα)

m > 0 and n > 0
√

2 cosmβPm0
l (cosα) m > 0 and n = 0

− sin(mβ + nγ)Pmn
l (cosα)

+(−1)n sin(mβ − nγ)Pm,−n
l (cosα)

m > 0 and n < 0

√
2 cosnγP 0n

l (cosα) m = 0 and n > 0
P 00

l (cosα) m = 0 and n = 0
−
√

2 sinnγP 0n
l (cosα) m = 0 and n < 0

sin(mβ + nγ)Pmn
l (cosα)

+(−1)n sin(mβ − nγ)Pm,−n
l (cosα)

m < 0 and n > 0
√

2 sinmβPm0
l (cosα) m < 0 and n = 0

cos(mβ + nγ)Pmn
l (cosα)

−(−1)n cos(mβ − nγ)Pm,−n
l (cosα)

m < 0 and n < 0

(A.16)
or in a more compact form

Dmn
l (α, β, γ) =

sgn(n)
2

[(Φm(β)Φn(γ)− Φ−m(β)Φ−n(γ))Pmn
l (cosα)

+ (Φm(β)Φn(γ) + Φ−m(β)Φ−n(γ)) (−1)nPm,−n
l (cosα)

] (A.17)

where Φm(β) is the same as (A.7) and

sgn(n) =

{
1 n ≥ 0
−1 n < 0

. (A.18)

A similar derivation of the real rotation reparameterization functions can be found
in (Blanco, Florez, and Bermejo 1997).

The functions Dmn
l are orthogonal according to∫
SO(3)

Dmn
l (R)Dm′n′

l′ (R)dR =
δll′δmm′δnn′

2l + 1
. (A.19)

Note that dR = 1
8π2 sinαdαdβdγ.



Appendix B

Analytic Derivation of C
q
lo

This part of the appendix derives the analytic expression of the constants Cq
lo used

in the image irradiance basis functions in Chapter 3.

B.1 Cq
lo

Cq
lo is the solution to the integral

Cq
lo =

∫ π
2

0

P q
l (cos θi)Rq

o(
√

2 sin
θi

2
) cos θi sin θidθi. (B.1)

The Zernike polynomials in explicit form:

Rq
o(
√

2 sin
θ

2
) = Rq

o(
√

1− cos θ)

=

o−q
2∑

s=0

(o− s)!(−1)s

s!( o+q
2 − s)!( o−q

2 − s)!
(1− cos θ)

o
2−s

(B.2)

The associated Legendre functions in explicit form, (Mulder 2000):

Pm
l (cos θ) =

(l +m)!
2ll!

sinm θ

[ l−m
2 ]∑

k=0

(−1)m+k
(

l
k

)(
2l−2k
l+m

)
cosl−m−2k θ (B.3)

Inserting the explicit forms of the polynomials and doing the variable substitu-
tion t = cos θ in the integral results in

Cq
lo =

(l + q)!
2ll!

o−q
2∑

s=0

[ l−q
2 ]∑

k=0

(o− s)!(−1)s+q+k

s!( o+q
2 − s)!( o−q

2 − s)!

(
l
k

)(
2l−2k
l+q

)
× I(

o+ q

2
− s, l − q − 2k + 1,

q

2
)

(B.4)
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lo

where

I(a, b, c) =
∫ 1

0

(1− t)atb(1 + t)cdt. (B.5)

Although (B.5) looks simple it’s general solution can only be expressed in terms
of the hypergeometric function, 2F1. However, in all our cases both a and b are
positive integers, which enables ut to find a closed form solution. First we expand
(1− t)a into a binomial sum,

(1− t)a =
a∑

i=0

(
a

i

)
(−1)iti. (B.6)

This leaves us with an integral that can be solved using integration by parts.∫ 1

0

td(1 + t)cdt =
[
(1 + t)c+1

c+ 1
td
]1
0

−
∫ 1

0

d

c+ 1
td−1(1 + t)c+1dt

=
2c+1

c+ 1
−
[
d(1 + t)c+2td−1

(c+ 1)(c+ 2)

]1
0

+
∫ 1

0

d(d− 1)
(c+ 1)(c+ 2)

td−2(1 + t)c+2dt

=
2c+1

c+ 1
− d 2c+2

(c+ 1)(c+ 2)
+

d(d− 1)2c+3

(c+ 1)(c+ 2)(c+ 3)

−
∫ 1

0

d(d− 1)(d− 2)
(c+ 1)(c+ 2)(c+ 3)

td−2(1 + t)c+3dt

= · · · =
d−1∑
j=0

(−1)j2c+1+j(d− j + 1)j

(c+ 1)j+1
+ (−1)d

∫ 1

0

d!
(c+ 1)d

(1 + t)c+ddt

=
d−1∑
j=0

(−1)j2c+1+j(d− j + 1)j

(c+ 1)j+1
+ (−1)d d!(2

c+d+1 − 1)
(c+ 1)d+1

=
d∑

j=0

(−1)j2c+1+j(d− j + 1)j

(c+ 1)j+1
− (−1)dd!

(c+ 1)d+1

(B.7)

where
(a)n =

Γ(a+ n)
Γ(a)

= a(a+ 1)(a+ 2) · · · (a+ n− 1) (B.8)

Putting it all together we obtain∫ 1

0

(1− t)atb(1 + t)cdt

=
a∑

i=0

(
a

i

)
(−1)i

2c+1
b+i∑
j=0

(−1)j2j(b+ i− j + 1)j

(c+ 1)j+1
− (−1)b+i(b+ i)!

(c+ 1)b+i+1


(B.9)



Appendix C

Variance of Image Irradiance Modes

In this part of the appendix we derive the analytical expression for the average
variance of the image irradiance modes, Emq

lop .
First a theorem. I have not found this or an equivalent theorem in any text

book, but it is easy to proove and necessary for the calculations in this chapter.

Theorem 1. The Pmn
l functions obey the following relations.

l∑
n=−l

Pmn
l (z)Pm′n

l (z) = δmm′ (C.1)

l∑
m=−l

Pmn
l (z)Pmn′

l (z) = δnn′ (C.2)

Proof. Two complex spherical harmonic basis function of the same polar are or-
thogonal according to ∫

S2
ym

l (θ, φ)ym′
l (θ, φ) = δmm′ . (C.3)

This orthogonality still holds if the two functions are rotated with the same arbi-
trary rotation R = (α, β, γ) ∈ SO(3). A rotated basis function can be written as
a linear combination of the basis functions of the same polar order l according to
(A.4). The integral over the rotated functions results in

∫
S2

l∑
n=−l

l∑
n′=l

dmn
l (R)yn

l (θ, φ)dm′n′
l (R)yn′

l (θ, φ) sin θdθ

=
l∑

n=−l

l∑
n′=l

dmn
l (R)dm′n′

l (R)δnn′ =
l∑

n=−l

dmn
l (R)dm′n

l (R).

(C.4)
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Since (C.3) still holds, we have

l∑
n=−l

dmn
l (R)dm′n

l (R) = δmm′ . (C.5)

Expanding dmn
l from (A.5) results in

l∑
n=−l

dmn
l (R)dm′n

l (R) =
l∑

n=−l

e(m−m′)β+(n−n)γPmn
l (cosα)Pm′n

l (cosα)

= e(m−m′)β
l∑

n=−l

Pmn
l (cosα)Pm′n

l (cosα).

(C.6)

Since (C.6) holds for any rotation R it also holds when β = 0. Hence,

l∑
n=−l

Pmn
l (cosα)Pm′n

l (cosα) = δmm′ (C.7)

(C.2) follows from that Pmn
l (z) = (−1)m+nPnm

l (z).

C.1 Variance of a single reflectance mode

In this section we derive the attenuation factors,

VB,Iq
op

(l) =
∑
m

∫
HS2

(Emq
lop (α, β))2dω (C.8)

for a single material mode Iq
op. Emq

lop can be separated into a product of a polar
function Θmq

lop(α) and an azimuthal function Φm(β) as described in Section 3.3.1.
The functions Φm(β) are orthogonal (A.8) so solving the azimuthal integral in (C.8)
results in

VB,Iq
op

(l) =
∑
m

∫
HS2

(Emq
lop (α, β))2dω = 2π

∑
m

∫ π/2

0

(Θmq
lop(α))2sinαdα

= 2π
∑
m

∫ π/2

0

(Nq
l )2

(o+ 1)(p+ 1)
4(1 + δop)(1 + δq0)

(
(−1)qPmq

l (cosα) + Pm,−q
l (cosα)

)2
×
(
Cq

loR
q
p(
√

2 sin
α

2
) +Cq

lpR
q
o(
√

2 sin
α

2
)
)2

sinαdα

(C.9)
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If the sum in the above expression is moved into the integral it will eliminate
the Pmq

l according to Theorem 1.

l∑
m=−l

((−1)qPmq
l (z) + Pm,−q

l (z))2 = 1 + 2(−1)qδq0 + 1

= 2(1 + δq0).

(C.10)

Furthermore, the Zernike polynomials are orthogonal (Koenderink and van
Doorn 1998) according to∫ π/2

0

Rq
o(
√

2 sin
α

2
)Rq

p(
√

2 sin
α

2
) sinαdα =

δop

o+ 1
(C.11)

so the integral ∫ π/2

0

(
Cq

loR
q
p(
√

2 sin
α

2
) + Cq

lpR
q
o(
√

2 sin
α

2
)
)2

sinαdα

=

(
(Cq

lo)
2

p+ 1
+

(Cq
lp)

2

o+ 1

)
(1 + δop).

(C.12)

Inserting the results (C.10) and (C.12) in (C.9) results in

VB,Iq
op

(l) =
2π(Nq

l )2(o+ 1)(p+ 1)
4(1 + δop)(1 + δq0)

2(1 + δq0)

(
(Cq

lo)
2

p+ 1
+

(Cq
lp)

2

o+ 1

)
(1 + δop)

= π(Nq
l )2
(
(o+ 1)(Cq

lo)
2 + (p+ 1)(Cq

lp)
2
) (C.13)

C.2 Variance of a composite BRDF

For a BRDF represented as a linear combination of the reflectance modes as in
(3.4) the attenuation factors VB(l) are calculated in the same way as for the single
mode.

We now derive the expression for the attenuation factors

VB(l) =
∑
opq

o′p′q′

bqopb
q′

o′p′

∑
m

∫
HS2

Emq
lop (α, β)Emq′

lo′p′(α, β)dω (C.14)

Solving the azimuthal integral results in

VB(l) =
∑
opq

o′p′q′

bqopb
q′

o′p′

∑
m

2π
∫ π/2

0

Θmq
lop(α)Θmq′

lo′p′(α) sinαdα. (C.15)
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The sum over m is moved into the integral. This sum expands to

l∑
m=−l

Θmq
lop(α)Θmq′

lo′p′(α)

=
l∑

m=−l

Nq
l N

q′

l

√
(o+ 1)(p+ 1)(o′ + 1)(p′ + 1)

16(1 + δop)(1 + δq0)(1 + δo′p′)(1 + δq′0)

×
(
(−1)qPmq

l (cosα) + Pm,−q
l (cosα)

) (
(−1)q′Pmq′

l (cosα) + Pm,−q′

l (cosα)
)

×
(
Cq

loR
q
p(
√

2 sin
α

2
) + Cq

lpR
q
o(
√

2 sin
α

2
)
)

×
(
Cq′

lo′R
q′

p′(
√

2 sin
α

2
) + Cq′

lp′R
q′

o′(
√

2 sin
α

2
)
)

(C.16)

Due to (C.2) this sum is greatly simplifyed, since

l∑
m=−l

((−1)qPmq
l (z) + Pm,−q

l (z))((−1)q′Pmq′

l (z) + Pm,−q′

l (z))

= (−1)q+q′δqq′ + (−1)qδqq′δq0 + (−1)q′δqq′δq0 + δqq′

= δqq′2(1 + δq0).

(C.17)

Inserting (C.17) in (C.16) results in

l∑
m=−l

Θmq
lop(α)Θmq′

lo′p′(α)

= (Nq
l )2
√

(o+ 1)(p+ 1)(o′ + 1)(p′ + 1)
4(1 + δop)(1 + δo′p′)

×
(
Cq

loR
q
p(
√

2 sin
α

2
) + Cq

lpR
q
o(
√

2 sin
α

2
)
)

×
(
Cq

lo′R
q
p′(
√

2 sin
α

2
) + Cq

lp′R
q
o′(
√

2 sin
α

2
)
)
δqq′

(C.18)

Due to the orthogonality of the Zernike polynomials

∫ π/2

0

(
Cq

loR
q
p(
√

2 sin
α

2
) + Cq

lpR
q
o(
√

2 sin
α

2
)
)

×
(
Cq

lo′R
q
p′(
√

2 sin
α

2
) + Cq

lp′R
q
o′(
√

2 sin
α

2
)
)

sinαdα

=
Cq

loC
q
lo′

p+ 1
δpp′ +

Cq
loC

q
lp′

p+ 1
δpo′ +

Cq
lpC

q
lo′

o+ 1
δop′ +

Cq
lpC

q
lp′

o+ 1
δoo′ .

(C.19)
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Finally, combining (C.15) (C.18) and (C.19) results in

VB(l) =
∑
opq

o′p′q′

bqopb
q′

o′p′π(Nq
l )2
√

(o+ 1)(p+ 1)(o′ + 1)(p′ + 1)
(1 + δop)(1 + δo′p′)

×

(
Cq

loC
q
lo′

p+ 1
δpp′ +

Cq
loC

q
lp′

p+ 1
δpo′ +

Cq
lpC

q
lo′

o+ 1
δop′ +

Cq
lpC

q
lp′

o+ 1
δoo′

)
δqq′

(C.20)

VB(l) for all the materials in the CUReT database are plotted in Figures C.1-
C.6.
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Figure C.1: Left column: Attenuation factors on each iilumination order l for the
materials in the CUReT database. Right column: Accuracy of image irradiance
representation when using illumination orders up to l.
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Figure C.2: Left column: Attenuation factors on each iilumination order l for the
materials in the CUReT database. Right column: Accuracy of image irradiance
representation when using illumination orders up to l.
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Figure C.3: Left column: Attenuation factors on each iilumination order l for the
materials in the CUReT database. Right column: Accuracy of image irradiance
representation when using illumination orders up to l.
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Figure C.4: Left column: Attenuation factors on each iilumination order l for the
materials in the CUReT database. Right column: Accuracy of image irradiance
representation when using illumination orders up to l.
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Figure C.5: Left column: Attenuation factors on each iilumination order l for the
materials in the CUReT database. Right column: Accuracy of image irradiance
representation when using illumination orders up to l.
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Figure C.6: Left column: Attenuation factors on each iilumination order l for the
materials in the CUReT database. Right column: Accuracy of image irradiance
representation when using illumination orders up to l.
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