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Abstract

We present a fully automatic algorithm for estimating
the projected light source direction from a single image.
The requirement is that there exists a segment of an oc-
cluding contour of an object with locally Lambertian sur-
face reflectance in the image. The algorithm consists of
three stages. First a heuristic algorithm picks out poten-
tial occluding contours using color and edge information.
Secondly, for each contour the light source direction is es-
timated using a shading model. In the final stage the re-
sults from the estimations are fused together in a Bayesian
network to arrive at the most likely light source direction.
The probabilistic model takes into account that the contours
from the first stage might not be occluding contours. Using
the same framework the contours are also classified as oc-
cluding or not. Experiments test the second stage, estimat-
ing the light source direction from an occluding contour, as
well as the full algorithm.

1 Introduction

The occluding contour is where an object occludes itself
like the earth at the horizon. At the occluding contour the
shape of the object can easily be determined because the
surface normal is perpendicular to the viewing vector and
can be determined by the image edge direction [3].

Many existing algorithms for estimating the light source
direction use occluding contours. In [7] it is a requirement
that the image is of a convex object bounded by an occlud-
ing contour. [10] uses the same occluding contour assump-
tion to match default shapes to the image and then estimate
the light source direction. Both methods require Lamber-
tian surfaces and a segmented image of the object. [12] also
exploit the occluding boundary and show that it puts strong
constraints on the light source direction.

Recent algorithms use known geometry to derive the il-
lumination direction. E.g. [8, 9] derive the illumination dis-

tribution by studying shadows around an object of known
geometry. In [13] multiple light sources are extracted from
a sphere of known size.

Previous work depends on segmented images or known
geometry. In this article we will not use these assumptions,
but only determine the projected light source direction. We
will present a fully automatic algorithm for recovering this
projected direction. First the estimation of the light source
direction using the shading near the occluding contour is in-
vestigated. Also, the noise distribution is derived. Secondly
an algorithm for picking out potential occluding contours
using edge and color information is presented. The con-
tours produced by this algorithm are then used in a Bayesian
probabilistic framework to estimate the most likely light
source direction. Simultaneously, the contours are classi-
fied as occluding or not.

2 Shading at the Occluding Contour

First we will look at the case of estimating the light
source direction from an occluding contour.

Given that the illumination is a single point light source,
the model for the image intensity I at a point on a Lamber-
tian surface is

I = k(~n �~l) + a (1)

where ~n = (nx; ny; nz)
T is the surface normal at the point,

~l = (lx; ly; lz)
T is the direction to the light source, k is a pa-

rameter containing both the surface albedo and the strength
of the light source, a is a term representing the contribution
of the ambient illumination.

On the occluding contour nz is equal to zero. This will
eliminate lz from the equation, which is why we will not
be able to estimate lz. Due to the bas-relief ambiguity [1]
the z-component of the light source direction cannot be es-
timated using only this model when the surface albedo and
light source strength is unknown. Now, the image intensity
on the occluding contour will be



I = k(~n �~l) + a = k(nxlx + nyly) + a: (2)

From the image we can measure ~n and I . ~l, a and k

are unknown, but are assumed to be constant for each local
computation. Since we only are interested in the direction
to the light source scaling of the ~l vector doesn’t matter.
Therefore let x = klx and y = kly. Now we have
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Equation (3) has three unknowns x, y and a and as many
equations as the number of points on the occluding contour.
Using e.g. least squares we can estimate the light source
direction. Let N be a matrix containing the nx and ny for
the points along the contour and I a vector containing the
intensity values for the same points. Then the least-squares
estimate L̂ = (x̂; ŷ; â)T is calculated by

L̂ = (NT
N)�1NT

I: (4)

In L̂ the estimated angle towards the light source is found
as the direction of the vector l̂ = (x̂; ŷ)T , i.e.

�̂ = arg(l̂): (5)

2.1 Measuring the intensity at the contour

To be able to estimate the light source direction in this
way we need to measure the intensity at the occluding con-
tour. This is of course impossible, the intensity cannot be
measured at the contour. Also, the Lambertian model be-
comes inaccurate very close to the contour [6, 11]. To over-
come this we will look at the intensities some distance away
from the contour and extrapolate to get the intensity at the
contour.

The extrapolation is done by modeling the image inten-
sities along a line, the u-axis in Figure 1a, perpendicular to
the edge. By measuring the intensities along the line and
using the model, the intensity at the edge can be estimated
by extrapolation.

To model the intensities, a model of the shape along the
line is needed. We have chosen an ellipse to model the
cross-section of the object, see Figure 1b. Because of the
bas-relief ambiguity the z-axis can be scaled arbitrarily and
the shape model can be simplified as a circle, with radiusR,
without any loss of generality in this case. We have

(u�R)2 + z2 = R2 (6)
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Figure 1. a) An image I of an object. To be able to do
extrapolation a model of the shape of the object along the u-
axis is needed. This is done by modeling the cross-section
b) of the object in the plane P with an ellipse.

from which we can express z as function of u and the nor-
mal of the surface as a function of u and z.

z =
p
2uR� u2 (7)

N(u) =
1

R

0
@ u�R

z

0

1
A (8)

Inserting the expression for the normal into the intensity
equation (1) gives us the intensity as a function of u.

I(u) =
k

R

�
lu(u�R) + lz

p
2uR� u2

�
+ a (9)

This model is too elaborate to use for extrapolation. The
parameters in fact include the direction towards the light
source, which is what we want to estimate. A power se-
ries expansion of the model can however be derived. With
the power series we can select the models level of detail by
including more or less terms from the series.

The power series of the model (9) is of the form:

I(u) = c0 + c1u
1=2 + c2u+ c3u

3=2 + c4u
5=2

+c5u
7=2 +O(u9=2): (10)



The extrapolation is done by fitting the power series
polynomial to the measured intensities using least-squares
estimation and then calculating the intensity at u = 0 using
the estimated polynomial, i.e. I(0) = c0.

2.2 The Probability Distribution of the Estimates

The estimated vector L̂ is a linear combination of image
intensities. The extrapolation operation and the estimation
of the direction are both linear operations. In general each
estimate will be a linear combination of hundreds of image
intensities 1, which means that the estimated vector is ap-
proximately normally distributed. Since least-squares is a
non-biased estimator, the mean will be (x; y; a)T .

L̂ � N
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The covariance matrix � of a least-squares estimate is

Cov(L̂) = (NT
N)�1�2: (12)

The noise variance �2 can be estimated with

�̂2 =
1

n� 1

nX
i=0

(Ii � (nxx̂+ ny l̂u + â))2: (13)

3 An Automatic Algorithm

The automatic algorithm has three stages. First a heuris-
tic algorithm picks out candidate occluding contours using
color and edge information. Secondly, for each of the con-
tours, the light source direction is estimated according to the
method presented in the previous section. In the final stage
the estimates are fused in a Bayesian network to arrive at
the most likely light source direction.

3.1 Finding Potential Occluding Contours

The goal of this stage is to, in a heuristic way, pick out
contours of which as many as possible are occluding con-
tours. The simple rules used here will naturally not be able
to pick out occluding contours perfectly, but they will pro-
vide the later stages with good enough candidates.

The estimation of the light source direction described in
Section 2 only works on occluding contours of uni-colored
objects. The algorithm should pick out edge chains that
have an uni-colored area perpendicular to the chain direc-
tion. Also, for the extrapolation not to be disturbed there

1In the experiments the extrapolation uses 7 pixels per edge point and
the average contours length is about 60 which means that each estimate is
a linear combination of over 400 pixel values.

should be no edges in that same area. The surface of the
object needs to be smoothly curved so a sharp turn of the
contour is a strong indication that the contour is not from a
useful occluding boundary.

The algorithm works in the following way. First the
edges are extracted, using the Canny edge detector, and
linked into chains. By following the chains the potential oc-
cluding contours are picked out by grouping together con-
secutive edges if

� The area next to the edge is uni-colored

� The color is the same as previous edges in the chain

� The area next to the edge contains no other edges

� The chains does not make a sharp turn

This is done on both sides of the edges. Very straight con-
tours contain no information for our algorithm and are sifted
out in a post-processing stage.

The test whether a surface is uni-colored is done in a
similar way as in [5]. For each piece of a contour segment
the pixels next to it are analyzed by a singular value de-
composition of the pixel cluster in RGB-space. If the two
eigenvectors with the lowest eigenvalues are small enough
then the pixels follow the model ~ci = ki~c and are assumed
to be on a uni-colored object.

The algorithm is very simple and does an acceptable job
for our purposes at this stage, but there are some problems.
The main problem is that contours get split up due to edges
in the background. What happens is that, in the edge-linking
process, the object contour gets linked together with an edge
in the background instead of continuing along the contour.
This could in the future be solved by using a more clever
grouping algorithm incorporating e.g. good continuation.
See Figure 10 a and d for examples.

For each of the contours picked out by the algorithm, the
light source direction is estimated as described in Section 2.

3.2 Fusing the Estimates

At this stage we have a set of estimates and variances
from n edge chains that might or might not be from occlud-
ing contours. To separate the correct contours from the in-
correct ones it is necessary that the correct contours in gen-
eral have a smaller variance , i.e. fit the model better, than
the incorrect ones. Also, if we have several estimates point-
ing towards the same light source direction one can draw
the conclusion that this is the correct direction even though
their variances aren’t substantially smaller than those of the
the other contours. The final stage of the algorithm fuses
the estimates incorporating these conditions.
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3.2.1 The Probabilistic Model

An estimated vector L̂i = (x̂i; ŷi; âi)
T from contour i de-

pends on the true values Li = (xi; yi; ai)
T and whether or

not the contour is an occluding contour or not, captured in
the discrete variable Oi.

Because only the direction of the light source vector is
the same for all the contours (the magnitude depends on
surface albedo which may be different for different objects),
the variables xi and yi are represented by their magnitude
ri and direction �. Figure 2 shows the causal dependencies
between the different variables.

3.2.2 The Inference Process

What we would like to find is the set of values to
the variables that maximizes the probability. Especially
we would like to find the � in that set. I.e. if
U = f�; r1; : : : ; rn; a1; : : : ; an; O1; : : : ; On; L̂1; : : : ; L̂ng
we would like to estimate � with

�̂ = argmax
�

max
Un�

P (U) (14)

Using message propagation this �̂ can be found with
only local computations [2, 4].

By moralizing the graph, i.e. connecting parents
with a common observed child, cliques can be iden-
tified. The cliques are the smallest sets of variables
on which local computations can be done. Figure 3
shows the resulting junction tree with cliques Ci =
f�; ai; ri; Oi; x̂i; ŷi; âig; i = 1; : : : ; n one for each contour
and sepsets Sj = f�g; j = 1; : : : ; n � 1 containing the
common variables of the neighboring cliques.

The initial distribution for each clique will be

P0(Ci) = P0(ri; �; ai; Oi; x̂i; ŷi; âi) =

= P (ri)P (�)P (ai)P (Oi)P (x̂i; ŷi; âijri; �; ai; Oi); (15)

where P (ri), P (�), P (ai) and P (Oi) are prior distribu-
tions. P (x̂i; ŷi; âijri; �; a; Oi) is the distribution of the es-
timates. How these will be assigned will be discussed Sec-
tion 3.2.4.

Because the junction tree here has a simple structure, the
clique probability distribution after the message propaga-
tion has a closed form solution, namely

P (Ci) = P0(Ci)
Y
j 6=i

Mj(�): (16)

where Mj is the max-margin of the initial distribution of
clique j, defined as

Mj(�) = max
Cin�

P0(Ci): (17)

To find the most likely light source direction we can se-
lect an arbitrary clique and find the � giving the maximum
probability.

�̂ = argmax
�

max
Cin�

P (Ci) (18)

3.2.3 Classifying the Contours

From the clique potentials we can also estimate Oi i.e. clas-
sify whether the contour is an occluding contour or not.
From the clique potential after the message propagation we
classify contour i by

Ôi = argmax
Oi

max
CinOi

P (Ci): (19)

3.2.4 Priors and Distributions

The prior distributions are selected as follows.

P (�) =
1

2�
;�� < � � � (20)

P (ri) =
1

rmax � rmin
; rmin � ri � rmax (21)

P (ai) =
1

amax � amin
; amin � ai � amax (22)

P (Oi) = (1� poc; poc)
T (23)

poc is the prior probability that a a contour is an occluding
contour.

Especially the prior for ri plays an important role, since
it will help to sift out a certain class of contours that fit
the shading model well but are not occluding contours.
This class are contours which have a flat intensity curve.
They come typically from shadows or the outsides of object



boundaries on planar surfaces. Because of the flat intensity
curve their estimated ri will be close to zero and can then
be easily sifted out by setting rmin to a value over zero.

The estimates, as derived in Section 2.2, are normally
distributed around the true values, provided that the con-
tours are occluding contours. The estimates from other con-
tours are also normally distributed, for the same reason as
the occluding contours, but around which mean ~m is un-
known. The estimates certainly doesn’t tell us anything
about the variables we are estimating. From (4) it can be
shown that the mean is

~m = E
�
(NT

N)�1NT
I
�
= �I

0
@ 0

0
1

1
A ; (24)

where �I is the expected value of the image intensities. By
calculating a mean over a number of images �I was esti-
mated to 0:35. A suitable covariance matrix was roughly
estimated to S = ((0:5; 0; 0)T (0; 0:5; 0)T (0; 0; 0:5)T )

Hence, the distribution of the estimates is modeled by

P (L̂jri; �; ai; Oi) =

=

�
g(L̂; (ri cos�; ri sin�; ai)

T ; �̂i) Oi = oc

g(L̂; ~m; S) Oi = �oc
(25)

The function g(~x; ~�;�) is the three-dimensional gaussian
p.d.f. with mean ~� and covariance �.

3.2.5 Implementation Issues

The Bayesian network in Figure 2 is a hybrid network,
meaning it has both continuous and discrete variables. Al-
though we have normal distributions we can not use the de-
veloped techniques in e.g. [2]. This is because the argument
� is a common variable in the cliques which messes up the
marginalizations. Fortunately many of the marginalizations
can be solved analytically. Maximizing over ri and ai is
done by minimizing the quadratic expression in the expo-
nential of the gaussian. With limits on ri and ai we need to
check the boundaries of the limit region as well.

When maximizing over Oi we need to calculated the
probability distributions numerically and therefore it is nec-
essary to discretize �.

4 Experiments

All the experiments are done on images captured on an
Olympus 3030-Z digital camera. The correct light source
direction was measured using the shadow of a small sphere
on a piece of wire placed in the scene.
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Figure 4. Error of light source direction estimated from
occluding contours. plotted versus the maximum of the
probability density.

4.1 Light Source from a single Occluding Contour

To test the estimation of light source direction from a
single occluding contour we used in total 41 contours from
three different objects illuminated from six different direc-
tions. The contours where extracted by manually selecting
parts of contours extracted by the Canny edge detector fol-
lowed by edge linking.

In Figure 4 the errors of the estimated light source direc-
tion is plotted versus the maximum probability density of
the estimated vector. The maximum probability is relevant
because it plays an important role in the message propaga-
tion in the Bayesian network. Some of the estimates con-
tain non-negligible errors, but it can be seen that the com-
puted variance reflect the errors, which is of great impor-
tance when fusing them.

4.1.1 The Benefits of Extrapolation

What are the benefits of using extrapolation? The alter-
native is to use the intensity value closest to the contour.
For many objects this would be fine. It can be seen in the
shading model (1) that we can include contour points hav-
ing a normal with non-zero z-component, as long as the
z-component is constant along the contour for which the
points are measured. Since the term knzlz is constant it can
be fit into the simpler model (2) where the term a actually
is a+ knzlz.

Contours on objects which have more or less a constant
cross-section radius will therefore not benefit from the ex-
trapolation. Instead the extrapolation will just amplify the
noise. The more complex extrapolation model that is used
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Figure 5. The number of estimated angles within the 5%
circle sector around the correct angle for different number
of terms in the extrapolation model.

the more the noise will be amplified. In our experiments us-
ing an object shaped as an egg or an ellipsoid we will typ-
ically not benefit from the extrapolation. The cross-section
will be more or less constant along the occluding contours
of these object. A chair however have a more varied contour
and should therefore benefit from the extrapolation.

This can be seen in Figure 5, which is a graph of the per-
centage of the estimated angles that are within 5% sector
around the correct angle, for different extrapolation mod-
els. When using I(u) = co + c1u

1=2 as opposed to doing
no extrapolation2 we see no increase in the performance of
the egg and the ellipsoid. The chair on the other hand has an
increase from 43% to about 64%. As more terms are added
to the extrapolation model the amplification of the noise af-
fects the results and reduces the performance, see Figure 6.

4.2 Automatic Light Source Estimation

To test3 the automatic algorithm two sets of images were
used. The first set of images was designed to be easier by
having a number of objects with occluding contours in the
image. Also, the objects where placed apart so that the
grouping algorithm would have less problems finding can-
didate contours. The set contains 14 images of two scenes
illuminated from different directions. For each image the
light source direction was estimated using the automatic al-
gorithm. Also a probability measure telling how much the
estimate can be trusted was calculated. This was done by
summing up the probabilities for all � within �5Æ of the es-
timated angle �̂, thereby making it invariant to the number
of discretization levels of �. Note that the message propaga-
tion produces the whole distribution for �. Figure 7 shows

2When no extrapolation has been used, the image intensity is just mea-
sured two pixels from the contour.

3The parameters in the priors were in all experiments set to: amin = 0,
amax = 0:6, rmin = 0:1, rmax = 1 and poc = 0:1.
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Figure 6. The image intensities along one of the occlud-
ing contours in the dataset. The solid lines show the ex-
trapolated intensities and the dashed lines the reconstructed
intensities from the estimation, when using extrapolation
models a) no extrapolation, b) I(u) = c0 + c1u

1=2 and
c) I(u) = c0 + c1u

1=2 + c2u. The inlined circles show the
estimated and correct (dotted line) light source directions.

the error of the estimated angles plotted versus the probabil-
ity measure. As many as half of the estimated angles have
less than 5Æ error. There are also outliers, such as one with
33Æ error and a very high probability. In the second set of
images the objects sometime occlude each other. The set
contains 17 images. Figure 8 shows the results. The algo-
rithm is able to estimate light source direction well, with
some outliers.

The outliers occur for different reasons. Sometimes a
non-occluding contour fits the shading model well. In other
cases there are many non-occluding contours accidentally
giving similar estimates and thereby reinforcing each other.
This mainly happens in the absence of a correct occluding
contour giving a good estimate. When the grouping al-
gorithm successfully picks out a good occluding contour,
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probability for second image set.

this contour will usually give a better estimate than non-
occluding contours.

Note that the probabilities in this case should be com-
pared relatively and not be considered as good estimates
of the true probabilities. With better modeling, using e.g.
learning, the algorithm should in the future be able to pro-
duce probabilities that better reflect the true values.

Figure 10 shows two examples of the algorithm estimat-
ing the light source direction and classifying the contours.
In the first example the direction is correctly estimated, but
some of the contours are incorrectly classified as occluding.
This can happen when a contour accidentally gives the same
estimate as the “winning” light source direction. In the sec-
ond example the algorithm fails to estimate the correct light
source direction and thereby fails to classify the contours.

5 Conclusion

We have presented a way to estimate the projected light
source direction. The algorithm exploits the occluding
boundary. Combined with a heuristic grouping algorithm
and Bayesian network inference this is done in a fully auto-
matic way. Contours picked out by the grouping algorithm
are also classified as occluding or not.

Our approach to estimate the light source direction from
a single occluding contour has been tested on real images
with good results. The experiments show that the calculated
variance reflects the errors of the estimates, which is crucial
when fusing the estimates.

The automatic algorithm shows promising results. A first
set of images test the inference stage on scenes suitable for
the grouping algorithm. A second image set of more chal-
lenging scenes causes the grouping algorithm to fail more
often. The algorithm as a whole still works with reasonable
robustness.

Future improvements can be achieved in two main re-
spects. The grouping algorithm should incorporate some
sort of good continuation to better be able to cope with
edges in the background. Moreover, one could model the
distribution of estimates from non-occluding contours bet-
ter, e.g. by learning the distributions.
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Figure 9. Some of the images used in the experiments.
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Figure 10. Two examples: a, d) Candidate contours from the grouping algorithm. b, c) probability
distribution of estimated angle after message propagation. c, f) Contours classified as occluding.
The inlined circle shows the estimated angle. Dotted lines show the correct angles.


