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Abstract The described works deal primarily with Lambertian sur-

faces. For an algorithm to be really useful it must handle
We present a framework for calculating low-dimensional more realistic types of surface reflectance. In this paper we
bases to represent image irradiance from surfaces with consider materials with non-Lambertian reflectance prop-
isotropic reflectance under arbitrary illumination. By rep- erties. Many materials, although not Lambertian, still act
resenting the illumination and the bidirectional reflectance s low-pass filters on the incident illumination. This means
distribution function (BRDF) in frequency space, a model that the reflected light can be represented in frequency space
for the image irradiance is derived. This model is then with a finite number of basis functions. We derive such a
reduced in dimensionality by analytically constructing the basis. Using this basis we analytically construct the princi-
principal component basis for all images given the varia- pal components of the images of an object when both the
tions in both the illumination and the surface material. The jllumination and surface reflectance properties vary. We
principal component basis are constructed in such a way assume an isotropic BRDF. The principal components are
that all the symmetries (Helmholtz reciprocity and isotropy) created in such a way that all the symmetries of the BRDF
of the BRDF are preserved in the basis functions. Using the (isotropy and Helmholtz reciprocity) are preserved in the
framework we calculate a basis using a database of natural principal components. The goal is to obtain bases that can
illumination and the CURET database containing BRDFs be used to represent the image irradiance from a wide range
of real world surface materials. of materials under a wide range of illuminations.

1. Introduction 2. Image Formation

The appearance of a surface depends on its shape, materighe image irradiancet, is proportional to the scene radi-
and the illumination. To effectively do many computer vi- gnce and can be written as (see [7]),
sion tasks, including object recognition we must be able to
cope with all these aspects. _ o o .

One step towards dealing with illumination changes is B, ¢r) = /H L{0s, ¢:) 1 (01, 81, 0rs 6r) cos bsdwoi, (1)
given by Basri and Jacobs [1] and Ramamoorthi and Hanra-
han [12]. They realized that a surface with Lambertian re- WhereL is the incident radiance (or the light field) arfd
flectance acts as a low-pass filter on the incident light. Thisis the BRDF, which gives the ratio of reflected radiance in
makes the image irradiance in practice band-limited and itsdirection (6., ¢,.) and the irradiance due to incident light
representation in frequency space is given by a finite num-from (¢;, ¢;), see Figure 1a.
ber of basis functions. More precisely they suggest that nine  The coordinates in (1) are defined in the local frame set
basis functions is enough to represent the image irradiancdy the surface normal. To use the light field defined in the
from a Lambertian surface under arbitrary illumination. ~ global frame we need to rotaté;, ¢;) to a global frame. We

In an image, 0n|y one hemisphere of the surface nor- define the global frame to have itsaxis along the optical
mals are visible. This reduces the variability of the im- axis, pointing towards the camera and theandy-axes in
ages. In [11] Ramamoorthi derives analytically the prin- the image plane. For a point with surface norrqal 3, )
cipal component basis of all images of a Lambertian sur- in the global frame, see Figure 1b, the incident direction in
face under a varying point light source. His results show the global frame can be written &, ¢) = Ra,5(6:, #:)-
that about five basis functions are enough to represent thigNow, the image irradiance is
space, something that corresponds well with earlier empir-
ical work [6, 5]. In [10] we extended the analytic principal E(e, 8,7, 0, br) =
component analysis to any illumination distribution. Jirga L(Rop (05 00)) [ (6i, 64, Or, 6r) cos Osde; - (2)
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Figure 1:Geometry of reflectance. a) Incident and reflected beam in the local coordinate frame. b) Relative position of global and local
frames. c) Assuming orthographic projection the reflected beam aligns with the optical axis leatlirg toand¢, = 7

The parameter; defines the rotation of the local frame 2.2. Isotropic BRDF Representation

around the surface normal. It should be set so that the IocalWe use the isotropic BRDF representation of Koenderink

frame aligns with the “direction” of the material on the sur- 54 van Doorn [9]. It offers a compact orthonormal repre-
face (to correspond with the parameterization of the BRDF). santation of the BRDF while incorporating the very general
Isotropic materials have no direction. In that casean be  yaimholtz reciprocity

selected arbitrarily. Hence, we can set itjte= 0.
Assuming orthographic projection the viewing geome- f(0;,0:,00, 0) = f(Or, Dry 0, 0:) (6)
try has further implications for the parameters of (2). As
can be seen in Figure 1c the reflected beam aligns with the The BRDF is represented as
optical axis (thez-axis in the global frame) which means

thatd, = a. Furthermore, setting = 0 leads tog, = . f(0:,0r, Adyr) = Zbgpjgp(eiagT’vAd)iT‘)? (7)
So, for isotropic materials we can eliming@eand, from opgq
the equation. Now the image irradiance is Where
E(a, ) = /H L(Ru5.0(05, 60)) £ (03, by, v, ) cos Oy, (3) L (s DerD

2 14 i O, A ir) = —

s OI)(HHH QS ) 271_ (1+6op)(1+6q0)
2.1. Light Field Representation " (Rg(\/ﬁsing")Rg(stina’”)
As in [1, 12, 11] we represent the light field in spherical 2 2

i . 01’ . 97"
harmonics l + Rg(\/isin 5)RZ(\/§ sin 2))
L0,¢) = > L"V"(6,9) @) x cosqAdi  (8)

=0 m=—1
where L are the spherical harmonic coefficients of the 5(p) are the Zernike polynomials. We have used the Kro-
light field andY;™ (6, ¢) are the spherical harmonic basis necker delta for a more compact notation of the normaliza-

functions. The spherical harmonic basis functions form the tion factor,d;; = 1if i = j and0 otherwise.
Fourier basis on the sphere. The restrictions on the indices ase> p > ¢ > 0 and

One property of the spherical harmonics is that a rotated (¢ — ¢) and(p — ¢) are even.
basis function can be written as a linear combination of the ) )
other basis functions of the same order, see Appendix. The2.3. Image Irradiance Representation

representation of the rotated light field in (3) is therefore  |nserting the representations (5) and (7) into the irradiance

L(Ra,p~(0i,0:)) = expression (3) we get
o] l l o .
S5 S DPt e, B LY (060, (5) E(a,f)= ) L{"0,D" (a,5,0)
=0 m=—Iln=-—1 l:;:;
whereD]""(«, 3, ) are the rotation reparameterization co- / V(6. SN (6 - do (9
efficients for the spherical harmonics. X I (0, @) 12,(0i, v, pi — ) cos O;dw; (9)
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Now consider the integral in equation (9). Inserting the ex-
pressions for the spherical harmonic (see (46) in the ap-
pendix) and BRDF basis functions (8), we see that it can
be separated into an azimuthal integral oygand a polar
integral over;. The azimuthal integral is easily solved and
will eliminate all terms in the sum (9) except when= q.

27
A¢MWW%—W@

= Opgm(—1)74/2(1 4 d40)

The polar integral can also be calculated analytically but
the expression is complicated and for now we denote it

(10)

Cll = /2 P(cos Gi)Rg(\/isin%)cos 0; sin 0;d6;.
0

11)
Inserting these results in (9) we get an expression for the
irradiance

Bla,8)= Y Li't,

Im
“(

Klqole"lq(a7 ﬂ7 O)

opq

CLRI

lo™*p

(V2sin %) + Cf RA(v/2sin %)) (12)

where
¢ _(_paye, /et D+1)

Klop ( 1) Nl 2(1+6op) . (13)
Let
Ef"4(a, 8) = Kf, D}"(a, 3,0) (CﬁoRg(\/ﬁ - %)

e
+Clqug(\/§Sln 5)) . (14)

Then

E"

lop

(a, B). (15)

E(a,8) = Y L"b4,

opq

The restrictions on the indices ave> p > ¢ > 0, (0 — q)
and(p — q) areeven] > gandm = —I,...,1.

We have derived a basis for the image irradiance from
isotropic materials under arbitrary illumination. The image

Variance

Figure 2:Image variance of basis functions.

surface depends though on the surface’s BRDF. A surface
with low-order scattering modeg4,) acts as a low-pass fil-

ter on the incoming illumination making the reflected light
band-limited. Hence it can be represented with a limited
number of basis functions. A surface with higher order
scattering modes passes through higher frequencies of the
illumination and thus more basis functions are needed to
represent the reflected light.

We can illustrate this by calculating the contributing sig-
nal variance of each basis functidff;!. To compute the
signal variance in the image we need to assume a geometry
of the surface, or at least, a surface normal distribution of
the surface in the image. This distribution will due to fore-
shortening be proportional to the cosine of the slant angle,
cos «v in our case. The variance of each basis function can

then be computed qﬁ{sz Ep (e, B)? cos adw.

Figure 2 shows the signal variance of each basis function
plotted with the illumination modes on one horizontal axis
and the surface modes on the other. The variances for each
illumination orderl, m = —I, ..., have been summed to-
gether for a more viewable graph. The first row shows the
variances for the Lambertian case. We can again see that
orders up td = 2 (9 basis functions) suffice to represent
most of the variance. Higher order modes require more ba-
sis functions. For instance a surface having modes up to
ordero = 4 requires basis functions with ordersiafip to

irradiance is represented as a sum of the basis functionsP0Ut 5 (464 basis functions). Aorder surface requires

E,,7 multiplied by the coefficients of the light sourck;®

and the coefficients of the BRDF of the materiéf,. In
Section 3 we derive a low-parameter approximation of this
seemingly complicated representation using principal com-
ponent analysis.

2.4. How many basis functions are required?

Image irradiance from a Lambertian surface has been show
to be well approximated by 9 basis functions [1, 12]. The
number of basis functions required for a non-Lambertian

basis functions up to ordér= 7 (2264 basis functions).

As can be seen, for non-Lambertian surfaces more and
more basis functions are required to represent the image ir-
radiance. But these basis functions are not orthogonal in the
space of images. To orthogonalize them we will construct
the principal component basis.

£-9. Ordering of the basis functions

It is convenient to order the basis functions so that they can
be indexed by a single variable. We order them in decreas-



ing variance using the same variance as in the previous secin the basis by subtracting the image’s mean from each im-
tion. In single index notation the image irradiance can be age. This forces the basis functions to be orthogonal to the

written as constant function. The constant function is then added to
E(a, ) = Z csBs(a, B), (16) the basis at a later stage. The image mean is calculated by
s I ¢ 11, wherel is an image of ones. We arrive at the fol-
wherec, = L"b?, andl,m,o,p andgq are given by s due  lowing criterion.
to the ordering of the functions. U = argmax E{((I — (I ¢ 1)1) e U)?} (18)
[IU]|l=1

3. P”nCIpaI Component AnaIySIS To conclude, the Standard PCA criterion (17) maximizes

Using the basis derived in Section 2.3, we here analytically (€ variance over illumination and material changes while
derive the principal components of the image space whenc'iterion (18) maximizes the variance in the image. In more

both the illumination and surface reflectance vary. detail, the difference between the two criteria is how the
data is centered. Standard PCA subtracts the mean image
3.1. Criteria for Deriving the Principal Com- from the dataset. Criterion (18) suggest that this should not

¢ be done. Instead each image should be centered individu-
ponents ally by subtracting the individual mean. We call the method

Principal component analysis amounts to finding a coordi- mage-Centered PCA

nate transformation such that the covariance matrix of the

random variable (in our case the image) is diagonalized. A3.2, The Image Space

geometric interpretation of PCA is that the first principal

component[Jy, is the direction which has the highest vari-

ability. l.e. Uy maximizes the variance of the scalar product

of itself and the images, or in mathematical terms:

Let the illumination distribution be described as a distribu-
tion of the spherical harmonic coefficients, (L), whereL
is the vector containing the coefficient$®. Furthermore,
let the variation in an objects material be described as a dis-
Uy = argmax Var{I e U}, (17) tribution of the coefficients of the BRDF representation (7),
[1U]|=1 py(b), whereb is a vector containing the elemerts, .

) , ) , If we assume convex objects there are no cast shadows
where the imagé is the randqm vquable. The fol!oyvmg or interreflections. This means that the image irradiance is
elgenvect_ors are ponstructed |terat|ve_>l_y by maximizing the uniquely determined by the surface normal. Given that we
same variance with thg added condition _that t_hey aré orpave the surface normal of an object at each point in the im-
thogqnal t‘.) all the Previous ones, [8]. Using this criterion age we can generate all possible images of that object under
we wil dgrlve the pnncpal components. L the illumination and material distribution we have defined.

. We V_V'” als'o use a S,“ghtly different criterion. 'The 0*?' However, the criteria we use for deriving PCA depend only
]ec.tlve Is 10 fmd a basis that .d.ecomposes thg image N6 scalar product of images. Therefore it is not necessary
a linear comblnatl_on of_ coefficients and basis func_tlons, to generate the images as long as the scalar product between
_I =2 diUZj' _Typ|cally Images are analyzed_by estimat- images can be calculated. For this purpose only the distri-
ing the coefficients;. There are a number of things we can bution of surface normals is needed. Given the object’s sur-

do to make this estimation as robust as possible. First, ther, .o ormal distributionps (a, 5), (o, 8) € Hgz, we can
basis should be orthogonal. This ensures that it is as effi- - 1ate the scalar prodSct (’)f ir,nag:bandJ az ’

cient as possible when truncated. Moreover, it allows the
coefficientsd; to be estimated individually using the scalar TeJ= / i(o, B)j (e, B)pa(e, B)dw, — (19)
product,d; = I e U;, as opposed to estimating them all H

simultaneously using e.g. least squares.

Secondly, the componentsU; should on average (over
the image distribution) have as high variarnieghe image
as possible. Components with a high variance have a highth
signal-to-noise ratio and are therefore more robustly esti-
mated. The variance of each compondfi/; is simply
di = (e Uy)*. 3.3. Deriving the Basis

Thirdly, the basis should contain the constant function. ="

The illumination frequently contains an ambient component We begin by writing the eigenfunction as a sum of the ba-
which can vary. Including the constant function in the basis Sis functions of the image irradiance. This ensures that the
makes the remaining functions of the basis independent of  1pye to our definition of the scalar product we need not to divide with
the ambient component. The constant function is included the number of pixels

s2
wherei(a, 8) andj(a, 3) are functions returning the irra-
diance for a particular surface normal for imagand.J.
So, for our purposes the distribution of the illumination,
e material and the surface normals are enough to define
the image space.




symmetries of the BRDF are preserved in the eigenfunc-we can convince ourselves that orthogonality of the vectors

tions. v corresponds to orthogonality in the image space.
= E 2
ﬁ) ; Us S(av ﬁ) ( O) U’L ° UJ _ UiTMU.j — ViTVj (29)

The scalar product af andU becomes The coefficients for the eigenimagés are computed by
u; = M_1/2Vi

Tell — Z Cotly: / pila, B)Es(a, B)Ey (o, f)dw (21) When constructing the basis according to the second cri-

o ’ terion (18) we should subtract the image mean. The image

mean is

We can rewrite this in matrix form.

Iol—ch/ E( pnaﬁdw—ches, (30)

wheree, is the mean off; over the surface normal distri-

IeU =u’Mc, (22)

wherec is the vector containing the products of the coeffi-

bution.
cients of the light source and the materigtsg,, M con- Now,
tains the elements
(I-—(Iel)l)eU = chus/
mar = [ pala BB 0)Eu(a, B @3)
Hg>
| N Ny <[ (Bud) - e)Bula,Bpa(a, 0)d
andu is a vector containing the coefficients far Hg2
Now, the only random variable in (22) ie. Let — chus’(mss’ ~egey) = ul (M — eel)c (31)
Covar{c} = .. Then
Var{u”Mc} = u/ MX Mu. (24) Furthermore

2\ T _ T _ T
The expression should be maximized under the conditionE1(( —(/#1)1)eU)"} = u’(M—ee’ )V(M—ee 3);
thatU is normalized. We obtain the following constraint on T : ( . )
whereV,. = E{cc" } which corresponds to the covariance

the coefficients ot/ . . .
matrix 3. calculated without subtracting the mean.

- A Applying the same coordinate change as previously we
UeU = Z UsUst /HS2 pales B)Es(e B)Ey (e, fdw  gpain they vectors as the eigenvectors of the matrix
—1/2 T T —1/2
= Zusus/mss, =u'Mu=1. (25) M / (M —ee )VC(M —ee )M / (33)
88’ and finally the coefficients of the eigenimages by =

S . . —1/2y.
The maximization problem can now be written in terms of M vi as before.

U’s coefficients. . .
3.4. Calculating the Covariances

Uop = argmax u"MZ:.Mu (26) It is worth making some comments about calculating the co-
uf Mu=1 variance matriceX. andV.. The two matrices are related
Applying the coordinate transform by
Ye = Ve — prepte” (34)
1/2
v=M"?u, (27) where . is the mean vector of. Since we can assume
btai that the illumination and the surface reflectance are inde-
we obtain pendert the calculation of the elements pf and V. can
vo = argmax vIM'/25 M2y, (28) be partitioned into
viv= m
' pe. = E{L]'}E{bS,} (35)
This is a quadratic expression ofwhich should be maxi- myrm’
g P E{csest = E{L"Lp }E{bgpbgp} (36)

mized under the condition that is normalized. It is well
known that the solution is the eigenvectoidf' /23 . M!/2 The indiced, m, o, p andq are given bys due to the order-
with the largest eigenvalue. The subsequent eigenvectorsng of the basis functions.

maximize the expression while being orthogonal to the pre-  21n6ugh one could argue that e.g. the illumination from an overcast
vious ones. We have in fact performed the PCA. To be suresky correlates with shiny materials in the form of raincoats.




4. Creating a General Purpose Basis A0z o _ooas

14
Can we create a basis that can be used to represent the ima .] . S I

irradiance from a wide variety of materials under a wide va-
13 A = 0.013 A = 0.0079 >\700026 A = 0.0026 X\ = 0.0015

riety of illuminations? Well, at least we can try. In this sec- r 1
tion we construct a basis using a database of real world sur
face reflectances, the CURET database [3], and a databas

of captured illumination, Debevec [4].
To create the basis we need to compute the covariancegigure 3: The first 12 basis functions for a sphere created from
of the illumination and material coefficients. set of real world materials and illuminations using Image-Centered
PCA. The top leftimage is the constant basis function added to the
4.1. Calculating the lllumination Covariances  basis after the PCAis performed.

Let the illumination distribution be each of the, illumi-
nation maps, from the database, rotated over all 3D rota- ‘£
tions, SO(3). Let aj}, be the spherical harmonic coeffi-
cients for illumination mag. The coefficients after rotation
arezln:_l D" (a, B,7)ai',,- Because of the orthogonality
relation
0110

o1 /5 ’
| pprampp (mar = ot (@)
S0O(3) 2041 Figure 4:Three of the rendered images. From left to right, vel-

) L vet in the grove, leather on campus and an orange on the beach.
the covarianceB{L;" L} } will be non-zero only wheh = Notice the characteristic bright rim of the velvet sphere and the
I andm = m' and specularity on the leather.

nr I(s) )2
(L")} = Z Z np(2(s) + 1) (38) We chose basis functiong;;}!, up to orderl = 9 and
h=ln=—i(s) " o = 7. From those we selected the0o with the highest
variance. A basis was then calculated using the standard
Furthermore, due taDy® = 1 and (37) the means 9

m tor all el ts biif) and PCA criterion and the Image-Centered criterion. Figure 3
E{L{"} are zero for all elements an shows the first eigenimages for the Image-Centered PCA.

1 &
oy _ _~ 0 . -
E{Lo} = > b @9 44 Testing Representability
L=
To test the basis we rendered images of a sphere of all mate-
. . . rials under all illuminations. The rendering was done sim-
4.2. Calculating the Material Covariances ilarly to [13] although we use the Koenderink, van Doorn
Calculating the covariances of the material coefficients in- basis for the BRDF. The rendering involves summing the
volves no rotations. Let each of the, materials in the  contributions from each basis function. By calculating the
database have coefficientxgp «- The covariances and variance of each component we get a bound for the error

means are calculated as ’ and can render to a very high accuracy. Figure 4 shows a
L few of the rendered images.
{prbo i o= = Z bgp,kbg . (40) . The testln_g was done by f|tt|ﬂ_g the basis to each pf the
o i — images varying the number of principal components in the
ny basis. The error was chosen to be the variance of the resid-
E{bl,} = B Zbgpk (41) ual divided by the total variance of the image. Figure 5
o= shows the results. The Standard PCA and Image-Centered

PCA bases show similar results. Note that fitting the Stan-
. . dard PCA basis requires subtracting the mean image before
4.3. Calculating the Basis fitting the basis. This is not required for the Image-Centered
In calculating the basis we need to assume a geometry inbasis.
the form of a surface normal distribution. We have chosen = The number of components required to represent an im-
it to be proportional to the foreshortened area of the tangentage depends on the material. This is illustrated by Figure 6
plane, a factotos a. which shows the errors for each material. Many materi-
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Figure 6:Error as the number of principal components increases for each material in the CURET database.
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Figure 5: Average error for the whole data-set as the number of
principal components increases for the basis created with Standard
PCA and Image-Centered PCA.

rlilnal
als require only a small (around five) number of compo-
nents, e.g. many of the matte materials, but also highly
non-Lambertian materials like velvet, see Figure 7a.
More specular materials, such as the leather in theFigure 7:Reconstructed and residual images of a) velvet and b)
database require more components. The diffuse shading ideather.
recreated with a few components but to recreate the specu-

Iljirg“;s 0-50 components are required in this case, see Fig- Then the illumination and surface reflectance coefficients
cs = Lj"bl, can be computed as

5. The Benefits of Analytic PCA c=Ud (42)

There are many benefits of doing the PCA analytically. For por e g. rendering it is useful to do the reverse transforma-
one thing many sources of error are eliminated. Also, by tiond = U7 Me (asU~! = UTM).

doing the rotation of the illumination analytically we can

compute bases for a wide variety of conditions with very lit- 6. Conclusions

tle effort. Instead of capturing thousands and thousands of

images with varying illumination and material conditions, We have derived a basis for the image irradiance with the

it is enough to capture a small number of real world illumi- illumination in spherical harmonic representation and the

nations and surface reflectances. Moreover, the shape of thBRDF represented by the Koenderink, van Doorn basis

object is easily changed by recomputing the malvix for isotropic surface reflectance. Using this basis we have
Another important feature is that we can relate the prin- shown how to analytically construct the principal compo-

cipal component coefficients back to the parameters of thenent basis of the image space of an object when there

illumination and the surface reflectance. E.g. difare are variations in both the illumination and the surface re-

the estimated coefficients of an image addis the ma- flectance properties. The variation is expressed as covari-

trix containing the coefficients of the principal components. ances and means of the coefficients of the illumination and
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®,,(3) is the same as (47).



