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Abstract

We present a framework for calculating low-dimensional
bases to represent image irradiance from surfaces with
isotropic reflectance under arbitrary illumination. By rep-
resenting the illumination and the bidirectional reflectance
distribution function (BRDF) in frequency space, a model
for the image irradiance is derived. This model is then
reduced in dimensionality by analytically constructing the
principal component basis for all images given the varia-
tions in both the illumination and the surface material. The
principal component basis are constructed in such a way
that all the symmetries (Helmholtz reciprocity and isotropy)
of the BRDF are preserved in the basis functions. Using the
framework we calculate a basis using a database of natural
illumination and the CURET database containing BRDFs
of real world surface materials.

1. Introduction
The appearance of a surface depends on its shape, material
and the illumination. To effectively do many computer vi-
sion tasks, including object recognition we must be able to
cope with all these aspects.

One step towards dealing with illumination changes is
given by Basri and Jacobs [1] and Ramamoorthi and Hanra-
han [12]. They realized that a surface with Lambertian re-
flectance acts as a low-pass filter on the incident light. This
makes the image irradiance in practice band-limited and its
representation in frequency space is given by a finite num-
ber of basis functions. More precisely they suggest that nine
basis functions is enough to represent the image irradiance
from a Lambertian surface under arbitrary illumination.

In an image, only one hemisphere of the surface nor-
mals are visible. This reduces the variability of the im-
ages. In [11] Ramamoorthi derives analytically the prin-
cipal component basis of all images of a Lambertian sur-
face under a varying point light source. His results show
that about five basis functions are enough to represent this
space, something that corresponds well with earlier empir-
ical work [6, 5]. In [10] we extended the analytic principal
component analysis to any illumination distribution.

The described works deal primarily with Lambertian sur-
faces. For an algorithm to be really useful it must handle
more realistic types of surface reflectance. In this paper we
consider materials with non-Lambertian reflectance prop-
erties. Many materials, although not Lambertian, still act
as low-pass filters on the incident illumination. This means
that the reflected light can be represented in frequency space
with a finite number of basis functions. We derive such a
basis. Using this basis we analytically construct the princi-
pal components of the images of an object when both the
illumination and surface reflectance properties vary. We
assume an isotropic BRDF. The principal components are
created in such a way that all the symmetries of the BRDF
(isotropy and Helmholtz reciprocity) are preserved in the
principal components. The goal is to obtain bases that can
be used to represent the image irradiance from a wide range
of materials under a wide range of illuminations.

2. Image Formation
The image irradiance,E, is proportional to the scene radi-
ance and can be written as (see [7]),

E(θr, φr) =
∫
HS2

L(θi, φi)f(θi, φi, θr, φr) cos θidωi, (1)

whereL is the incident radiance (or the light field) andf
is the BRDF, which gives the ratio of reflected radiance in
direction (θr, φr) and the irradiance due to incident light
from (θi, φi), see Figure 1a.

The coordinates in (1) are defined in the local frame set
by the surface normal. To use the light field defined in the
global frame we need to rotate(θi, φi) to a global frame. We
define the global frame to have itsz-axis along the optical
axis, pointing towards the camera and thex- andy-axes in
the image plane. For a point with surface normal(α, β, γ)
in the global frame, see Figure 1b, the incident direction in
the global frame can be written as(θ, φ) = Rα,β,γ(θi, φi).
Now, the image irradiance is

E(α, β, γ, θr, φr) =∫
HS2

L(Rα,β,γ(θi, φi))f(θi, φi, θr, φr) cos θidωi (2)
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(a) (b) (c)

Figure 1:Geometry of reflectance. a) Incident and reflected beam in the local coordinate frame. b) Relative position of global and local
frames. c) Assuming orthographic projection the reflected beam aligns with the optical axis leading toθr = α andφr = π

The parameterγ defines the rotation of the local frame
around the surface normal. It should be set so that the local
frame aligns with the “direction” of the material on the sur-
face (to correspond with the parameterization of the BRDF).
Isotropic materials have no direction. In that caseγ can be
selected arbitrarily. Hence, we can set it toγ = 0.

Assuming orthographic projection the viewing geome-
try has further implications for the parameters of (2). As
can be seen in Figure 1c the reflected beam aligns with the
optical axis (thez-axis in the global frame) which means
thatθr = α. Furthermore, settingγ = 0 leads toφr = π.
So, for isotropic materials we can eliminateθr andφr from
the equation. Now the image irradiance is

E(α, β) =
∫
HS2

L(Rα,β,0(θi, φi))f(θi, φi, α, π) cos θidωi. (3)

2.1. Light Field Representation
As in [1, 12, 11] we represent the light field in spherical
harmonics.

L(θ, φ) =
∞∑

l=0

l∑
m=−l

Lm
l Y m

l (θ, φ) (4)

whereLm
l are the spherical harmonic coefficients of the

light field andY m
l (θ, φ) are the spherical harmonic basis

functions. The spherical harmonic basis functions form the
Fourier basis on the sphere.

One property of the spherical harmonics is that a rotated
basis function can be written as a linear combination of the
other basis functions of the same order, see Appendix. The
representation of the rotated light field in (3) is therefore

L(Rα,β,γ(θi, φi)) =
∞∑

l=0

l∑
m=−l

l∑
n=−l

Dmn
l (α, β, γ)Lm

l Y n
l (θi, φi), (5)

whereDmn
l (α, β, γ) are the rotation reparameterization co-

efficients for the spherical harmonics.

2.2. Isotropic BRDF Representation
We use the isotropic BRDF representation of Koenderink
and Van Doorn [9]. It offers a compact orthonormal repre-
sentation of the BRDF while incorporating the very general
Helmholtz reciprocity

f(θi, φi, θr, φr) = f(θr, φr, θi, φi) (6)

The BRDF is represented as

f(θi, θr,∆φir) =
∑
opq

bq
opI

q
op(θi, θr,∆φir), (7)

where

Iq
op(θi, θr,∆φir) =

1
2π

√
(o + 1)(p + 1)

(1 + δop)(1 + δq0)

×
(

Rq
o(
√

2 sin
θi

2
)Rq

p(
√

2 sin
θr

2
)

+ Rq
p(
√

2 sin
θi

2
)Rq

o(
√

2 sin
θr

2
)
)

× cos q∆φir (8)

Rq
o(ρ) are the Zernike polynomials. We have used the Kro-

necker delta for a more compact notation of the normaliza-
tion factor,δij = 1 if i = j and0 otherwise.

The restrictions on the indices areo ≥ p ≥ q ≥ 0 and
(o− q) and(p− q) are even.

2.3. Image Irradiance Representation
Inserting the representations (5) and (7) into the irradiance
expression (3) we get

E(α, β) =
∑
lmn
opq

Lm
l bq

opD
mn
l (α, β, 0)

×
∫
HS2

Y n
l (θi, φi)Iq

op(θi, α, φi − π) cos θidωi (9)
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Now consider the integral in equation (9). Inserting the ex-
pressions for the spherical harmonic (see (46) in the ap-
pendix) and BRDF basis functions (8), we see that it can
be separated into an azimuthal integral overφi and a polar
integral overθi. The azimuthal integral is easily solved and
will eliminate all terms in the sum (9) except whenn = q.∫ 2π

0

Φn(φi) cos q(φi − π)dφi

= δnqπ(−1)q
√

2(1 + δq0) (10)

The polar integral can also be calculated analytically but
the expression is complicated and for now we denote it

Cq
lo =

∫ π
2

0

P q
l (cos θi)Rq

o(
√

2 sin
θi

2
) cos θi sin θidθi.

(11)
Inserting these results in (9) we get an expression for the

irradiance

E(α, β) =
∑
lm
opq

Lm
l bq

opK
q
lopD

mq
l (α, β, 0)

×
(
Cq

loR
q
p(
√

2 sin
α

2
) + Cq

lpR
q
o(
√

2 sin
α

2
)
)

,(12)

where

Kq
lop = (−1)qNq

l

√
(o + 1)(p + 1)

2(1 + δop)
. (13)

Let

Emq
lop (α, β) = Kq

lopD
mq
l (α, β, 0)

(
Cq

loR
q
p(
√

2 sin
α

2
)

+Cq
lpR

q
o(
√

2 sin
α

2
)
)

. (14)

Then
E(α, β) =

∑
lm
opq

Lm
l bq

opE
mq
lop (α, β). (15)

The restrictions on the indices areo ≥ p ≥ q ≥ 0, (o − q)
and(p− q) are even,l ≥ q andm = −l, . . . , l.

We have derived a basis for the image irradiance from
isotropic materials under arbitrary illumination. The image
irradiance is represented as a sum of the basis functions,
Emq

lop multiplied by the coefficients of the light source,Lm
l

and the coefficients of the BRDF of the material,bq
op. In

Section 3 we derive a low-parameter approximation of this
seemingly complicated representation using principal com-
ponent analysis.

2.4. How many basis functions are required?
Image irradiance from a Lambertian surface has been shown
to be well approximated by 9 basis functions [1, 12]. The
number of basis functions required for a non-Lambertian
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Figure 2:Image variance of basis functions.

surface depends though on the surface’s BRDF. A surface
with low-order scattering modes (Iq

op) acts as a low-pass fil-
ter on the incoming illumination making the reflected light
band-limited. Hence it can be represented with a limited
number of basis functions. A surface with higher order
scattering modes passes through higher frequencies of the
illumination and thus more basis functions are needed to
represent the reflected light.

We can illustrate this by calculating the contributing sig-
nal variance of each basis functionEmq

lop . To compute the
signal variance in the image we need to assume a geometry
of the surface, or at least, a surface normal distribution of
the surface in the image. This distribution will due to fore-
shortening be proportional to the cosine of the slant angle,
cos α in our case. The variance of each basis function can
then be computed as

∫
HS2

Emq
lop (α, β)2 cos αdω.

Figure 2 shows the signal variance of each basis function
plotted with the illumination modes on one horizontal axis
and the surface modes on the other. The variances for each
illumination orderl, m = −l, . . . , l have been summed to-
gether for a more viewable graph. The first row shows the
variances for the Lambertian case. We can again see that
orders up tol = 2 (9 basis functions) suffice to represent
most of the variance. Higher order modes require more ba-
sis functions. For instance a surface having modes up to
ordero = 4 requires basis functions with orders ofl up to
about 5 (464 basis functions). A7-order surface requires
basis functions up to orderl = 7 (2264 basis functions).

As can be seen, for non-Lambertian surfaces more and
more basis functions are required to represent the image ir-
radiance. But these basis functions are not orthogonal in the
space of images. To orthogonalize them we will construct
the principal component basis.

2.5. Ordering of the basis functions
It is convenient to order the basis functions so that they can
be indexed by a single variable. We order them in decreas-
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ing variance using the same variance as in the previous sec-
tion. In single index notation the image irradiance can be
written as

E(α, β) =
∑

s

csEs(α, β), (16)

wherecs = Lm
l bq

op andl, m, o, p andq are given by s due
to the ordering of the functions.

3. Principal Component Analysis
Using the basis derived in Section 2.3, we here analytically
derive the principal components of the image space when
both the illumination and surface reflectance vary.

3.1. Criteria for Deriving the Principal Com-
ponents

Principal component analysis amounts to finding a coordi-
nate transformation such that the covariance matrix of the
random variable (in our case the image) is diagonalized. A
geometric interpretation of PCA is that the first principal
component,U0, is the direction which has the highest vari-
ability. I.e. U0 maximizes the variance of the scalar product
of itself and the images, or in mathematical terms:

U0 = argmax
||U ||=1

Var{I • U}, (17)

where the imageI is the random variable. The following
eigenvectors are constructed iteratively by maximizing the
same variance with the added condition that they are or-
thogonal to all the previous ones, [8]. Using this criterion
we will derive the principal components.

We will also use a slightly different criterion. The ob-
jective is to find a basis that decomposes the image into
a linear combination of coefficients and basis functions,
I =

∑
i diUi. Typically images are analyzed by estimat-

ing the coefficientsdi. There are a number of things we can
do to make this estimation as robust as possible. First, the
basis should be orthogonal. This ensures that it is as effi-
cient as possible when truncated. Moreover, it allows the
coefficientsdi to be estimated individually using the scalar
product,di = I • Ui, as opposed to estimating them all
simultaneously using e.g. least squares.

Secondly, the componentsdiUi should on average (over
the image distribution) have as high variancein the image
as possible. Components with a high variance have a high
signal-to-noise ratio and are therefore more robustly esti-
mated. The variance of each componentdiUi is simply
d2

i = (I • Ui)2.
Thirdly, the basis should contain the constant function.

The illumination frequently contains an ambient component
which can vary. Including the constant function in the basis
makes the remaining functions of the basis independent of
the ambient component. The constant function is included

in the basis by subtracting the image’s mean from each im-
age. This forces the basis functions to be orthogonal to the
constant function. The constant function is then added to
the basis at a later stage. The image mean is calculated by
I • 11, where1 is an image of ones. We arrive at the fol-
lowing criterion.

U0 = argmax
||U ||=1

E{((I − (I • 1)1) • U)2} (18)

To conclude, the Standard PCA criterion (17) maximizes
the variance over illumination and material changes while
criterion (18) maximizes the variance in the image. In more
detail, the difference between the two criteria is how the
data is centered. Standard PCA subtracts the mean image
from the dataset. Criterion (18) suggest that this should not
be done. Instead each image should be centered individu-
ally by subtracting the individual mean. We call the method
Image-Centered PCA.

3.2. The Image Space
Let the illumination distribution be described as a distribu-
tion of the spherical harmonic coefficients,pL(L), whereL
is the vector containing the coefficientsLm

l . Furthermore,
let the variation in an objects material be described as a dis-
tribution of the coefficients of the BRDF representation (7),
pb(b), whereb is a vector containing the elementsbq

op .
If we assume convex objects there are no cast shadows

or interreflections. This means that the image irradiance is
uniquely determined by the surface normal. Given that we
have the surface normal of an object at each point in the im-
age we can generate all possible images of that object under
the illumination and material distribution we have defined.
However, the criteria we use for deriving PCA depend only
the scalar product of images. Therefore it is not necessary
to generate the images as long as the scalar product between
images can be calculated. For this purpose only the distri-
bution of surface normals is needed. Given the object’s sur-
face normal distribution,pn̂(α, β), (α, β) ∈ HS2 , we can
calculate the scalar product of imagesI andJ as

I • J =
∫
HS2

i(α, β)j(α, β)pn̂(α, β)dω, (19)

wherei(α, β) andj(α, β) are functions returning the irra-
diance for a particular surface normal for imageI andJ .

So, for our purposes the distribution of the illumination,
the material and the surface normals are enough to define
the image space.

3.3. Deriving the Basis
We begin by writing the eigenfunction as a sum of the ba-
sis functions of the image irradiance. This ensures that the

1Due to our definition of the scalar product we need not to divide with
the number of pixels
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symmetries of the BRDF are preserved in the eigenfunc-
tions.

U(α, β) =
∑

s

usEs(α, β) (20)

The scalar product ofI andU becomes

I • U =
∑
s,s′

csus′

∫
HS2

pn̂(α, β)Es(α, β)Es′(α, β)dω (21)

We can rewrite this in matrix form.

I • U = uT Mc, (22)

wherec is the vector containing the products of the coeffi-
cients of the light source and the materialLm

l bq
op, M con-

tains the elements

mss′ =
∫
HS2

pn̂(α, β)Es(α, β)Es′(α, β)dω (23)

andu is a vector containing the coefficients forU .
Now, the only random variable in (22) isc. Let

Covar{c} = Σc. Then

Var{uT Mc} = uT MΣcMu. (24)

The expression should be maximized under the condition
thatU is normalized. We obtain the following constraint on
the coefficients ofU

U • U =
∑
s,s′

usus′

∫
HS2

pn̂(α, β)Es(α, β)Es′(α, β)dω

=
∑
s,s′

usus′mss′ = uT Mu = 1. (25)

The maximization problem can now be written in terms of
U ’s coefficients.

u0 = argmax
uT Mu=1

uT MΣcMu (26)

Applying the coordinate transform

v = M1/2u, (27)

we obtain

v0 = argmax
vT v=1

vT M1/2ΣcM1/2v. (28)

This is a quadratic expression ofv which should be maxi-
mized under the condition thatv is normalized. It is well
known that the solution is the eigenvector ofM1/2ΣcM1/2

with the largest eigenvalue. The subsequent eigenvectors
maximize the expression while being orthogonal to the pre-
vious ones. We have in fact performed the PCA. To be sure

we can convince ourselves that orthogonality of the vectors
v corresponds to orthogonality in the image space.

Ui • Uj = ui
T Muj = vi

T vj (29)

The coefficients for the eigenimagesUi are computed by
ui = M−1/2vi.

When constructing the basis according to the second cri-
terion (18) we should subtract the image mean. The image
mean is

I • 1 =
∑

s

cs

∫
HS2

Es(α, β)pn̂(α, β)dω =
∑

s

cses, (30)

wherees is the mean ofEs over the surface normal distri-
bution.

Now,

(I − (I • 1)1) • U =
∑
s,s′

csus′

×
∫
HS2

(Es(α, β)− es)Es′(α, β)pn̂(α, β)dω

=
∑
s,s′

csus′(mss′ − eses′) = uT (M− eeT )c (31)

Furthermore

E{((I− (I •1)1)•U)2} = uT (M−eeT )Vc(M−eeT )u
(32)

whereVc = E{ccT } which corresponds to the covariance
matrixΣc calculated without subtracting the mean.

Applying the same coordinate change as previously we
obtain thev vectors as the eigenvectors of the matrix

M−1/2(M− eeT )Vc(M− eeT )M−1/2 (33)

and finally the coefficients of the eigenimages byui =
M−1/2vi as before.

3.4. Calculating the Covariances
It is worth making some comments about calculating the co-
variance matricesΣc andVc. The two matrices are related
by

Σc = Vc − µcµc
T (34)

whereµc is the mean vector ofc. Since we can assume
that the illumination and the surface reflectance are inde-
pendent2 the calculation of the elements ofµc andVc can
be partitioned into

µcs
= E{Lm

l }E{bq
op} (35)

E{cscs′} = E{Lm
l Lm′

l′ }E{bq
opb

q′

o′p′} (36)

The indicesl,m, o, p andq are given bys due to the order-
ing of the basis functions.

2Though one could argue that e.g. the illumination from an overcast
sky correlates with shiny materials in the form of raincoats.
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4. Creating a General Purpose Basis
Can we create a basis that can be used to represent the image
irradiance from a wide variety of materials under a wide va-
riety of illuminations? Well, at least we can try. In this sec-
tion we construct a basis using a database of real world sur-
face reflectances, the CURET database [3], and a database
of captured illumination, Debevec [4].

To create the basis we need to compute the covariances
of the illumination and material coefficients.

4.1. Calculating the Illumination Covariances
Let the illumination distribution be each of thenL illumi-
nation maps, from the database, rotated over all 3D rota-
tions, SO(3). Let am

l,k be the spherical harmonic coeffi-
cients for illumination mapk. The coefficients after rotation
are

∑l
n=−l D

mn
l (α, β, γ)an

l,k. Because of the orthogonality
relation∫

SO(3)

Dmn
l (R)Dm′n′

l′ (R)dR =
δl,l′δm,m′δn,n′

2l + 1
(37)

the covariancesE{Lm
l Lm′

l′ }will be non-zero only whenl =
l′ andm = m′ and

E{(Lm
l )2} =

nL∑
k=1

l(s)∑
n=−l(s)

(an
l,k)2

nL(2l(s) + 1)
(38)

Furthermore, due toD00
0 = 1 and (37) the means

E{Lm
l } are zero for all elements butL0

0 and

E{L0
0} =

1
nL

nL∑
k=1

a0
0,k. (39)

4.2. Calculating the Material Covariances
Calculating the covariances of the material coefficients in-
volves no rotations. Let each of thenb materials in the
database have coefficientsbq

op,k. The covariances and
means are calculated as

E{bq
opb

q′

o′p′} =
1
nb

nb∑
k=1

bq
op,kbq′

o′p′,k (40)

E{bq
op} =

1
nb

nb∑
k=1

bq
op,k (41)

4.3. Calculating the Basis
In calculating the basis we need to assume a geometry in
the form of a surface normal distribution. We have chosen
it to be proportional to the foreshortened area of the tangent
plane, a factorcos α.

λ = 0.37 λ = 0.37 λ = 0.14 λ = 0.028 λ = 0.028

λ = 0.013 λ = 0.013 λ = 0.0079 λ = 0.0026 λ = 0.0026 λ = 0.0015

Figure 3: The first 12 basis functions for a sphere created from
set of real world materials and illuminations using Image-Centered
PCA. The top left image is the constant basis function added to the
basis after the PCA is performed.

Figure 4:Three of the rendered images. From left to right, vel-
vet in the grove, leather on campus and an orange on the beach.
Notice the characteristic bright rim of the velvet sphere and the
specularity on the leather.

We chose basis functions,Emq
lop , up to orderl = 9 and

o = 7. From those we selected the1000 with the highest
variance. A basis was then calculated using the standard
PCA criterion and the Image-Centered criterion. Figure 3
shows the first eigenimages for the Image-Centered PCA.

4.4. Testing Representability
To test the basis we rendered images of a sphere of all mate-
rials under all illuminations. The rendering was done sim-
ilarly to [13] although we use the Koenderink, van Doorn
basis for the BRDF. The rendering involves summing the
contributions from each basis function. By calculating the
variance of each component we get a bound for the error
and can render to a very high accuracy. Figure 4 shows a
few of the rendered images.

The testing was done by fitting the basis to each of the
images varying the number of principal components in the
basis. The error was chosen to be the variance of the resid-
ual divided by the total variance of the image. Figure 5
shows the results. The Standard PCA and Image-Centered
PCA bases show similar results. Note that fitting the Stan-
dard PCA basis requires subtracting the mean image before
fitting the basis. This is not required for the Image-Centered
basis.

The number of components required to represent an im-
age depends on the material. This is illustrated by Figure 6
which shows the errors for each material. Many materi-

6



10
20

30
40

50
60

46810121416

0

0.05

0.1

0.15

0.2

CURET Material index# Principal   
Components

E
rr

or
1 Felt 32 14 zoomed

2 Polyester 33 Slate a

3 Terrycloth 34 Slate b

4 Rough Plastic 35 Painted Spheres

5 Leather 36 Limestone

6 Sandpaper 37 Brick a

7 Velvet 38 Ribbed Paper

8 Pebbles 39 Human Skin

9 Frosted Glass 40 Straw

10 Plaster a 41 Brick b

11 Plaster b 42 Corduroy

12 Rough Paper 43 Salt Crystals

13 Artificial Grass 44 Linen

14 Roof Shingle 45 Concrete a

15 Aluminium Foil 46 Cotton

16 Cork 47 Stones

17 Rough Tile 48 Brown Bread

18 Rug a 49 Concrete b

19 Rug b 50 Concrete c

20 Styrofoam 51 Corn Husk

21 Sponge 52 White Bread

22 Lambswool 53 Soleirolia Plant

23 Lettuce Leaf 54 Wood a

24 Rabbit Fur 55 Orange Peel

25 Quarry Tile 56 Wood b

26 Loofa 57 Peacock Feather

27 Insulation 58 Tree Bark

28 Crumpled Paper 59 Cracker a

29 Polyester zoomed 60 Cracker b

30 Plaster b zoomed 61 Moss

31 12 zoomed

Figure 6:Error as the number of principal components increases for each material in the CURET database.
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Figure 5:Average error for the whole data-set as the number of
principal components increases for the basis created with Standard
PCA and Image-Centered PCA.

als require only a small (around five) number of compo-
nents, e.g. many of the matte materials, but also highly
non-Lambertian materials like velvet, see Figure 7a.

More specular materials, such as the leather in the
database require more components. The diffuse shading is
recreated with a few components but to recreate the specu-
larity 30-50 components are required in this case, see Fig-
ure 7b.

5. The Benefits of Analytic PCA
There are many benefits of doing the PCA analytically. For
one thing many sources of error are eliminated. Also, by
doing the rotation of the illumination analytically we can
compute bases for a wide variety of conditions with very lit-
tle effort. Instead of capturing thousands and thousands of
images with varying illumination and material conditions,
it is enough to capture a small number of real world illumi-
nations and surface reflectances. Moreover, the shape of the
object is easily changed by recomputing the matrixM.

Another important feature is that we can relate the prin-
cipal component coefficients back to the parameters of the
illumination and the surface reflectance. E.g. ifd are
the estimated coefficients of an image andU is the ma-
trix containing the coefficients of the principal components.

Number of principal components
3 4 5 6 Original

(a)
Number of principal components
5 10 20 30 Original

(b)

Figure 7:Reconstructed and residual images of a) velvet and b)
leather.

Then the illumination and surface reflectance coefficients
cs = Lm

l bq
op can be computed as

c = Ud (42)

For e.g. rendering it is useful to do the reverse transforma-
tion d = UT Mc (asU−1 = UT M).

6. Conclusions
We have derived a basis for the image irradiance with the
illumination in spherical harmonic representation and the
BRDF represented by the Koenderink, van Doorn basis
for isotropic surface reflectance. Using this basis we have
shown how to analytically construct the principal compo-
nent basis of the image space of an object when there
are variations in both the illumination and the surface re-
flectance properties. The variation is expressed as covari-
ances and means of the coefficients of the illumination and

7



the BRDF. The goal has been to create a framework for con-
structing low-parameter bases that can be used to represent
the image irradiance from a wide variety of materials under
a wide variety of illuminations.

We demonstrate the framework by constructing a PCA
basis from two databases containing captured illuminations
and reflectance properties of real materials.

A. Rotating Real Spherical Harmonics
The spherical harmonics basis functions are defined as

ym
l (θ, φ) = Nm

l Pm
l (cos θ)eimφ, (43)

whereNm
l =

√
(2l+1)(l−m)!

4π(l+m)! is a normalization factor and

Pm
l (z) are the associated Legendre functions.

A spherical harmonic basis function rotated can be de-
scribed as a linear combination of the spherical harmonic
basis functions of the same polar order.

ym
l (Rα,β,γ(θ′, φ′)) =

l∑
n=−l

dmn
l (α, β, γ)yn

l (θ′, φ′), (44)

where

dmn
l (α, β, γ) = Pmn

l (cos α)eimβ+inγ (45)

andPmn
l are the generalized associated Legendre polyno-

mials. For their explicit form and more details on rotating
spherical harmonics see [2].

Real spherical harmonics can be defined as follows.

Y m
l (θ, φ) = Nm

l Pm
l Φm(φ), (46)

where

Φm(β) =


√

2 cos mβ m > 0
1 m = 0√

2 sinmβ m < 0
(47)

This can be written in a form more suitable for rotation

Y m
l (θ, φ) =


1√
2

(
ym

l (θ, φ) + (−1)my−m
l (θ, φ)

)
m > 0

ym
l (θ, φ) m = 0
1

i
√

2

(
ym

l (θ, φ)− (−1)my−m
l (θ, φ)

)
m < 0
(48)

Using (44) we can now rotate these functions. The result
will be in terms of complex spherical harmonics. Convert-
ing these back to real spherical harmonics we get theDmn

l

functions for the real harmonics. Depending on whetherm
andn are positive, negative or zero we get nine cases. Only
some of those are relevant to this paper (γ = 0 andn ≥ 0).
For those cases

Dmn
l (α, β, 0) =

Pmn
l (cos α) + (−1)nPm,−n

l (cos α)√
2(1 + δn0)

Φm(β).

(49)
Φm(β) is the same as (47).
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