
Department of Numerical Analysis and Computer Science
TRITA-NA-P02/11 • CVAP-268 • ISSN 1101-2250 • ISRN KTH/NA/P--02/11--SE

Fast Block Matching with
Normalized Cross-Correlation

using Walsh Transforms

Peter Nillius & Jan-Olof Eklundh

Computational Vision and Active Perception Laboratory (CVAP)



Peter Nillius & Jan-Olof Eklundh
Fast Block Matching with Normalized Cross-Correlation using Walsh Transforms

Report number: TRITA-NA-P02/11, ISRN KTH/NA/P--02/11--SE, CVAP-268
Publication date: September 2002
E-mail of author: nillius@nada.kth.se

Department of Numerical Analysis and Computer Science
Royal Institute of Technology
SE-100 44 Stockholm
SWEDEN



1

Fast Block Matching with Normalized Cross-Correlation
using Walsh Transforms

Peter Nillius∗ and Jan-Olof Eklundh

Abstract—Local image matching (block-matching) is a frequent
operation in many image processing tasks, such as MPEG com-
pression and the estimation of optical flow and stereo disparities.
Normalized cross-correlation (NCC) is particularly useful since
it is insensitive to both signal strength and level. However, NCC
is computationally expensive. In this article we attempt to speed
up NCC first by transforming each sub-block of the image into
the Walsh basis. The Walsh transform expansion can be done
very efficiently through a binary tree of filters. Calculating the
NCC using the Walsh components requires 2N − 1 operations
instead of 4N + 1 in a straightforward implementation.
Further, the Walsh transform expansion is shown to have se-

veral scales encoded in it. Using only a part of the Walsh com-
ponents is the same as doing the correlation at a coarser scale.
A coarse-to-fine algorithm for doing block-matching using this
is presented and tested. The performance of the algorithm is
a trade-off between how well the algorithm can find the correct
match and how many calculations that are saved. When matching
99% of the blocks correctly the calculations were reduced to
9 − 23% of what a full search would require, depending on the
images and the size of the search region.

Keywords—Matching, Block matching, Fast normalized cross-
correlation, Walsh functions, Coarse-to-fine

I. Introduction

Matching of blocks between images is needed for a num-
ber of tasks such as MPEG compression, optical flow and
stereo disparity calculation. Typically block-matching is
done by comparing a block with a number of blocks wit-
hin a region in another image. The block in the search
region with the highest correspondence value is selected
as the matching block. There are several ways to measure
the correspondence between two blocks. Cross-correlation
gives a robust and dense measure of the correspondence
between two blocks. In particular if you normalize the
cross-correlation in terms of mean and variance you will
get a correspondence measure that is insensitive to lumi-
nance scale and level. Burt et al [1] showed in a comparison
that the normalized cross-correlation consistently gave the
lowest error rates compared to non- or partially normali-
zed, Laplacian filtered and binary correlation.

Block-matching requires extensive computations and
there exists several algorithms to speed it up, e.g. by redu-
cing the number of blocks to compare with by using diffe-
rent search strategies, [2], [3], [4], [5] and by using pyramid
representations and do the search in a coarse-to-fine way,
[6], [7]. Some work has also been done in optimizing the
calculation procedure itself, [8], [9].

Even though it is relatively robust compared to other me-
asures, normalized cross-correlation (NCC) is rarely used.
This is probably because it is computationally expensive

The authors are with the Computational Vision & Active Perception Labora-
tory (CVAP), Department of Numerical Analysis and Computing Science, Royal
Institute of Technology (KTH), S-100 44 Stockholm, Sweden. Phone: +46-8-790
6905, Fax: +46-8-723 0302. E-mail: nillius@nada.kth.se, joe@nada.kth.se

∗ Corresponding Author

due to the normalization. Also the mean-normalization gi-
ves the problem a structure that makes it difficult to speed
up using clever algorithms such as the running sum algo-
rithm.

In this article we propose a method to speed up matching
with NCC using Walsh functions, both by speeding up the
calculations themselves and by using a coarse-to-fine search
strategy.

II. Normalized Cross-Correlation

Representing the image blocks as vectors, the norma-
lized cross-correlation (NCC) between two blocks P =
(p0, p1, . . . , pN−1)T and Q = (q0, q1, . . . , qN−1)T , where N
is the number of pixels in the block, is given by

1
σpσq

(P − P̄ ) • (Q − Q̄) (1)

where σp and σq are the standard deviations over the
blocks and P̄ and Q̄ are vectors containing the means:

σp =
√

(P − P̄ ) • (P − P̄ ) (2)

p̄ =
1
N

N−1∑
i=0

pi (3)

P̄ = (p̄, p̄, . . . , p̄)T (4)

If we rewrite the blocks in an orthonormal basis,
{Wj ; j = 0, . . . , N − 1}, we get

P =
N−1∑
j=0

wp,jWj , (5)

where the wp,j are P ’s coefficients in the new basis.
Rewriting (1) and (2) in this basis gives us.

1
σpσq


N−1∑

j=0

wp,j(Wj − W̄j)


 •


N−1∑

j=0

wq,j(Wj − W̄j)




=
1

σpσq

N−1∑
i=0

N−1∑
j=0

wp,jwq,j(Wi − W̄i) • (Wj − W̄j) (6)

σp = (
N−1∑
j=0

w2
p,jσwj

2
)

1
2 (7)

The expression for the NCC has now expanded to a doub-
le sum. However, if the basis vectors Wj were constructed
such that

(Wi − W̄i) • (Wj − W̄j) =

{
1 if i = j

0 otherwise
(8)



2

then all terms outside the “diagonal” of the double sum
would be zero.

Such a basis can be constructed as follows. Set W0 =
1√
N

(1, 1, . . . , 1)T and complete the orthonormal basis to get
the other basis vectors. Then the mean of W0 will be 1√

N
,

i.e. W̄0 = W0. The means of the other basis vectors can be
expressed as the dot product between W0 and the vectors
Wi, times a scalar. Due to orthogonality towards W0 those
means will be zero, i.e. W̄i = 
0 for i = 1, . . . , N − 1.

We get

(Wi − W̄i) • (Wj − W̄j) =

{
1 if i = j �= 0
0 otherwise

which is what we wanted. All the products outside the
diagonal and the first product in the diagonal of the double
sum are zero. Now the expression for the NCC will come
down to

1
σpσq

N−1∑
i=1

wp,iwq,i (9)

σp = (
N−1∑
j=1

w2
p,j)

1
2 (10)

An orthonormal basis that meets these requirements is
the Walsh basis, [10], [11].

III. Normalized Cross-Correlation in the Walsh
Basis

The Walsh functions form an orthogonal basis. Their di-
screte version consists only of the values +1 and −1, which
makes them computationally efficient to calculate.

To calculate NCC using the Walsh functions, each sub-
block (including overlaps) of the image needs to be trans-
formed into the Walsh basis. This will be referred to as the
Walsh transform expansion (WTE). Calculating the WTE
is the same as convolving the image with each of the Walsh
functions. This section will show how this can be done ef-
ficiently.

First look at the Walsh functions. The discrete Walsh
functions can be defined recursively as follows. Let
W

(N)
i , i = 0, . . . , N − 1 be the set of discrete Walsh func-

tions of length N . Set

W
(1)
0 = (1) (11)

With i = 0, . . . , N/2−1, the higher order sets are defined
as

W
(N)
2i =

(
W

(N/2)
i W

(N/2)
i

)
(12)

W
(N)
2i+1 =

(
W

(N/2)
i −W

(N/2)
i

)
(13)

Equations (12) and (13) can also be expressed with con-
volutions:

W
(N)
2i = W

(N/2)
i ∗ (

N/2︷ ︸︸ ︷
1 0 . . . 0 1)

W
(N)
2i+1 = W

(N/2)
i ∗ (

N/2︷ ︸︸ ︷
1 0 . . . 0 −1)

This means that the Walsh functions can be described
as a series of convolutions of simple filters, i.e. they are
separable. For example

W
(8)
2 = W

(4)
1 ∗ (1 0 0 0 1) = · · · =

(1) ∗ (1 1) ∗ (1 0 −1) ∗ (1 0 0 0 1) =
(1 1 −1 −1 1 1 −1 −1). (14)

For our purposes we should rather use the two dimen-
sional version of the Walsh basis. The 2D Walsh functions
can be defined similarly with convolutions alternately in
the horizontal and vertical direction. With W

(1)
0 = (1) and

i = 0, . . . , N/4 − 1:

W
(N)
4i = W

(N/4)
i ∗ (

√
N /2︷ ︸︸ ︷

1 0 . . . 0 1) ∗




1
0
...
0
1




W
(N)
4i+1 = W

(N/4)
i ∗ (1 0 . . . 0 1) ∗ (

√
N /2︷ ︸︸ ︷

1 0 . . . 0 −1)T

W
(N)
4i+2 = W

(N/4)
i ∗ (1 0 . . . 0 −1) ∗ (1 0 . . . 0 1)T

W
(N)
4i+3 = W

(N/4)
i ∗ (1 0 . . . 0 −1) ∗ (1 0 . . . 0 −1)T

Since the Walsh functions are separable down to simple
filters which only require one addition or subtraction, con-
volving the image with them can be done very efficiently.
Further calculations can be saved by arranging these filters
into a binary tree of convolutions so that the result of each
convolution is reused maximally, see Figure 1.

By using this separable scheme we can reduce the num-
ber of calculations required to transform each sub-block
of an image, down to 2(N − 1) additions/subtractions per
block, where N is the number of pixels in the block. Wit-
hout separating the functions the same operation would
require N2 additions/subtractions per block. Also, by cal-
culating the NCC through the Walsh transform we will save
2N subtractions per block so for every time we reuse the
Walsh transform we will in total save 2N subtractions per
block. If we e.g. compare a block with all other blocks in
a 20x20 block region in the same image we will reuse the
Walsh transform for each block 800 times.

IV. Scale Properties of the Walsh Functions

The Walsh functions appear in different order depending
on how they are defined, [12]. Equations (11)-(13) define
them in dyadic ordering. When defining the 2D Walsh fun-
ctions the same way, we get what can be called a 2D dyadic
ordering. This ordering has some scale properties that can
be used to calculate the NCC in a coarse-to-fine manner.



3

0

0

1

0

0

1

0

0

1

1 0 0

.

.

.

Convolution operator*

N /2-1 zeros½

1 0 1

1 0 -1

1

1

1

-1

1 0 1

1 0 -1

1 1

1

0

1

1

0

-1*

*

*

*

*

*

*

*

*

*

1

1

1 -1

1

-1

I

*

*

1 0 0 0 1

1 0 0 0 -1

0

0

1

1

-1

1

*

*
= I*W

= I*W

= I*W0

1

2

. . .
. . .

. . .

. . .

*

*

-1

= I*WN-1

. . .

1

Fig. 1. Calculating the Walsh transform expansion of Image I. The Walsh functions, Wi, can be separated into a chain of simple filters each using
only one addition or subtraction. More so calculating the Walsh transform expansion can be done with a binary tree of these filterings. By using
this scheme the Walsh transform expansion can be calculated in approximately 2(N − 1) additions/subtractions per block, where N is the number
of pixels in the block.

Looking at the Walsh bases for 8x8 and 4x4 blocks, Fi-
gure 2, we see that the vectors in the 4x4 basis match the
first 16 vectors in the 8x8 basis. The same holds for all ot-
her Walsh bases of size 2nx2n. The vectors of a 2nx2n basis
are the same as the 22n first vectors in the 2n+1x2n+1 ba-
sis but at a doubled scale. Why this is so can best be seen
in Figure 1. The top sub-branch after the second stage in
the filter tree has the image convolved with the 2x2 ave-
rage operator, as input. All the filters following there have
a zero in every second position. That is the same as sub-
sampling the image at every second pixel. Removing those
zeros we get the same filter tree as the whole tree but with
two steps less depth, i.e. a tree that gives the Walsh basis
with half the width and height as the whole tree.

This means that using only the first 16 components in
the 8x8 Walsh transforms will be the same as doing the
same thing with the 4x4 transform on an halved image,
where the halved image comes from convolving the image
with a 2x2 average operator and then sub-sampling it at
every second pixel.

Because this holds for all 2nx2n Walsh bases, using the
first four components of the 8x8 Walsh transform is the

same as using the same number of components of the 4x4
transform on a halved image and that is the same as using
all (four) components of the 2x2 transform now on an image
scaled down by a factor of four.

In short, we have all octaves of scales downwards, enco-
ded in this Walsh transform expansion.

V. A Coarse-to-fine Algorithm

The scale properties of the Walsh functions can be used
to do a coarse to fine algorithm for block matching. The
following algorithm is proposed.

The idea is to start calculating the NCC on the coarsest
scale. That is done by using only four components (actually
only three since the first component containing the average
of the block is never used) of the Walsh transform. From
there you select which points will go on the next finer scale.
This is done by thresholding using a threshold that is rela-
tive to the current maximum NCC value. Now the NCC for
selected points are calculated for the next scale. The new
maximum is calculated and the same thresholding process
as before takes place. This goes on until you are at the finest
scale, where all Walsh components are used. The maximum



4

1 2 3 4

1

2

3

4

(a) 4x4 Walsh Basis

2 4 6 8

2
4
6
8

(b) 8x8 Walsh Basis

Fig. 2. The Walsh functions consist only of the values +1 and −1, which
makes them computationally efficient to use. Here are the Walsh func-
tions in 2D dyadic ordering. The 2D dyadic ordering has the property
that the basis vectors in an 2nx2n basis occur in the 2n+1x2n+1 ba-
sis, first, in the same order, but at a doubled scale. E.g. in the figure
the 16 vectors of the (a) 4x4 basis appear in the beginning of the (b)
8x8 basis.

point is the matched block found by the algorithm.
The algorithm step by step:

1. Set s = 1
2. Calculate the NCC using the 4s first components of the
Walsh transforms.
3. Find the maximum correlation value cmax.
4. Select the points with correlation value c ≥ cmax − αs.
5. Set s = s + 1
6. For the selected points, calculate the NCC using 4s

Walsh components.
7. If 4s �= N goto 3.
8. Find the point with maximal correlation value.

The calculations at each iteration can be stored so that
you just add the extra Walsh components needed for the
next scale.

Fig. 3. Some images from the sequences used. The images were recor-
ded with a camera on a pan-tilt unit, with the pan-tilt unit moving
stepwise in a constant direction and with constant speed.

A. Using Other Block Similarity Measures

The presented algorithm can be used for block matching
using other block similarity measures than NCC, as long as
the measure is calculated through the Walsh components.
For instance, cross-correlation without luminance-level nor-
malization (without subtracting the mean) can be achieved
simply by including the first Walsh component in the cal-
culations.

For other applications it might be more useful to use the
sum of squared errors as block similarity measure. Using
the same notation as previously, the sum of squared error
can be written as

(P − Q) • (P − Q). (15)

Rewriting the expression in the Walsh basis we get(
N−1∑
i=0

(wp,i − wq,i)Wi

)
•
(

N−1∑
i=0

(wp,i − wq,i)Wi

)
=

= · · · =
N−1∑
i=0

(wp,i − wq,i)2 (16)

Using this formula the algorithm can be used for block-
matching using the sum of squared error.

VI. Experiments

Doing block matching in a coarse-to-fine way is an ap-
proximation of doing full search. There is no guarantee that
the block with the highest correlation value is found. How
well the coarse-to-fine method works depends on the ima-
ges and how the scales are calculated. A series of experi-
ments has been done in order to test if the scales encoded
in the Walsh transform expansion are useful for doing block
matching in a coarse to fine way.

The images used in the experiments were recorded from
a camera on a pan-tilt unit, with the pan-tilt unit moving
stepwise in one direction and with constant speed. Figure 3
shows a few images from the sequences used.



5

The Walsh transforms were calculated for 8x8 sized
blocks which means that every block will have 64 Walsh
components. The coarse-to-fine algorithm used three scales
for its search, using 3, 15 and 63 components respectively
(the first Walsh component, which is the average of the
block is not used).

The experiments were done by randomly selecting a
point in an image and then trying to find it in another
image in the same sequence. The distance between the
images were selected such that the algorithm was tested
for different sub-pixel positions. For each image pair 1000
randomly selected points were used.

As ground truth we used the block who had the max-
imum NCC value at the finest scale. So when we re-
fer to correct rate we mean when the coarse-to-fine algo-
rithm finds the block with the maximum normalized cross-
correlation value at the finest scale.

A. How useful are the encoded scales?

The first set of experiments tests how useful the scales
encoded in the Walsh transform are.

For different α, we calculate the percentage of correct
points being above the threshold. If it is above the thres-
hold it will be found when the full NCC for those points is
calculated. At the same time we record how many points
we were able to eliminate and thereby save calculations.

Figure 4a shows the rate of the correct block being above
the threshold, as well as the relative number of blocks be-
ing above threshold, for different α. This is at the coarsest
scale, i.e. using only three Walsh components.

Figure 4b shows the same graph, but at the intermediate
scale, i.e. using the 15 first Walsh components.

The figures clearly show that the encoded scales can be
used for coarse-to-fine matching. At e.g. α = 0.1 when the
images are blurred with a 3x3 binomial filter, we eliminate
90% of all points while only missing 3% of the correct points
and this when using only three out of 64 Walsh components
(Fig. 4a).

B. Testing the algorithm

Figure 4 shows that the scale properties of the Walsh
basis can be used for doing a coarse-to-fine search for the
maximum normalized cross-correlation point. However, Fi-
gure 4b show the graph for all blocks in the images, while
the coarse-to-fine algorithm, at this scale (15 Walsh compo-
nents), would only calculate the correlation for those blocks
that are above the threshold in the previous scale (3 Walsh
components). To see the full effect of that we need to look
at the different combinations of the parameters α1 and α2.

Tables I and II show the correct rate and the rate of
calculations needed for different combinations of α1 and
α2. The calculation rate is in relation to calculating the
full NCC map and still using the Walsh transforms. It is
calculated as rcalc = (3 + λ1 ∗ 12 + λ2 ∗ 48)/63, where λ1

and λ2 are the rates of pixels above threshold at stages 1
and 2 respectively.

Many of the α1,α2 combinations are sub-optimal in the

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

α

Percentage of correct points being above threshold

Percentage of points above threshold

Raw Image
Blurred 3x3
Blurred 5x5

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

α

Percentage of correct points being above threshold

Percentage of points above threshold

Raw Image
Blurred 3x3
Blurred 5x5

(b)

Fig. 4. Percentage of correct points and the percentage of all points
being above threshold in the correlation image calculated using (a)
three Walsh components and (b) 15 Walsh components, for different
α. The threshold used was cmax − α, where cmax is the maximum
value in each correlation image. In each of the graphs, the three top
curves show the percentage of the correct points being above threshold
and the three bottom curves show the percentage of all points being
above threshold.

sense that there exists several α1,α2 pairs that will give
you the same correct rate, but have different calculation
rates. The pair with the lowest calculation rate is the op-
timal. Figure 5 shows the calculation rate as a function of
the correct rate when the sub-optimal threshold pairs ha-
ve been removed. This gives a nice view of the trade-off
between the correct rate and the calculations saved. The
best results are obtained when the image is slightly blur-
red. Only minimal blurring is required to get a substantial
improvement. When the images are blurred with a 3x3 bi-
nomial filter we get 99% correct matches with only 11% of
the calculations.

Many of the blocks in the images have little structure, i.e.
have almost constant grey-value and are therefore difficult
to match correctly. For some applications it might be more



6

TABLE I

Percentage Correct Matches

α2

α1 0.1 0.2 0.3 0.4 0.5
0.1 83.4 87.4 88.4 88.8 88.9
0.2 85.9 91.4 93.3 93.8 94.0
0.3 86.6 92.6 95.1 96.0 96.3
0.4 86.9 93.4 96.0 97.0 97.3
0.5 87.0 93.6 96.3 97.4 97.9

TABLE II

Percentage of Calculations Required Compared to Full Search

α2

α1 0.1 0.2 0.3 0.4 0.5
0.1 7.54 9.06 10.4 11.5 12.3
0.2 8.73 10.7 13.0 15.0 16.5
0.3 9.71 11.7 14.5 17.3 19.6
0.4 10.6 12.6 15.5 18.8 21.8
0.5 11.4 13.4 16.3 19.8 23.4

interesting to see how well blocks with some structure are
matched. Figure 6 shows the performance when considering
only blocks with a high signal energy, in comparison with
the performance when considering all blocks. The images
were blurred with a 3x3 binomial filter. Only points with
σ > 500 were used in the high energy case. This corre-
sponds to a step edge of height 7.8 (the images range from
zero to 255). Overall the performance is slightly better for
the high energy blocks. We get 99% correct matches using
only 9% of the calculations.

For an illustration of the algorithm see Figure 7.

C. Performance with different search regions

The previous experiments were done by searching for a
block over the whole image. In many applications such as
optical flow and stereo correspondence it is more common
to search in a limited search region centered around an
expected position. It is likely that the size of the search
region affects the performance of the algorithm.

Experiments were done with 11x11, 21x21 and 41x41
block search region. The images were blurred with a 3x3
binomial filter. This time only blocks with high signal ener-
gy, σ > 500, were taken into account. Figure 8 shows the
results. As can be seen in the figure for a fixed correct ra-
te, the rate of calculations needed increases as the search
region gets smaller.

VII. Implementation

The calculation of the Walsh transform expansion has
been implemented in C++ using templates for maximum
speed.

The potentially high memory requirement of the inter-
mediate images in the filter tree has been avoided by using
buffering. Only the rows needed by the subsequent filter
are stored.

The algorithm reads the source image only once and
writes full Walsh transform expansion interleaved in one
stream for best performance on systems with cached me-
mory architecture.

70 75 80 85 90 95 100
6

8

10

12

14

16

18

20

22

24

Percentage of correct points found

P
er

ce
nt

ag
e 

of
 c

al
cu

la
tio

ns
 r

eq
ui

re
d

Raw Image
Blurred 3x3
Blurred 5x5

Fig. 5. Calculations required versus correct rate for the best α1, α2 pairs.

91 92 93 94 95 96 97 98 99 100
6

8

10

12

14

16

18

Percentage of correct points found

P
er

ce
nt

ag
e 

of
 c

al
cu

la
tio

ns
 r

eq
ui

re
d

All points
High energy
points only

Fig. 6. Comparison of performance when considering all blocks versus
looking at blocks with high signal energy. Only blocks with σ > 500

were taken into account for the high energy case. The images were
blurred with a 3x3 binomial filter. The dashed curve is the same as
the dashed curve in Fig. 5

Table III shows the computation time of the Walsh trans-
form expansion for different systems and image sizes.

TABLE III

Computation Time of the Walsh Transform Expansion

System 256x256 image 128x128 image
400 MHz Pentium II 210 ms 50 ms
Sun Ultrasparc 5 280 ms 66 ms
Sun Ultrasparc 1 400 ms 95 ms

VIII. Calculations

Table IV shows the number of calculations per block
needed to compute the NCC normally or using Walsh
functions. The mean is only computed when not using
the Walsh functions and can be done in approximately 4
adds/subtracts per block using the running sum algorithm.
The WTE needed for our algorithm can be calculated in
approximately 2(N−1) add/subtracts per block. This is the
same as the number of nodes in the filter tree in Figure 1.
Each filter (node) requires one addition or subtraction.



7

(a) Search Image and Comparison Block (b) Coarsest Scale (3 Walsh Components)

(c) Intermediate Scale (15 Walsh Components) (d) Finest Scale (63 Walsh Components)

(e) Complete Correlation Map at Intermediate Scale (f) Complete Correlation Map at Finest Scale

Fig. 7. The algorithm at work: Finding the block with the highest normalized cross-correlation value. The circle in all the images marks the correct
point. (a) Search image with the enlarged 8x8 comparison block inlined in the bottom right corner. Images (b), (c) and (d) show the different
steps of the algorithm. (b) is the correlation map at the coarsest scale calculated using 3 Walsh components. (c) shows the correlation map at
the next scale (15 Walsh components) for the points above threshold at the previous scale. (d) shows the correlation map at the finest scale (63
components) for the remaining points at the last step. The point with the highest value in this image is the result of the algorithm and in this
case it is the correct one. (e) is the complete correlation map calculated using 15 Walsh components. (f) is the complete correlation map from 63
Walsh components. The parameters in this example: α1 = 0.3, α2 = 0.1



8

96 96.5 97 97.5 98 98.5 99 99.5 100
5

10

15

20

25

30

35

40

45

Percentage of correct points found

P
er

ce
nt

ag
e 

of
 c

al
cu

la
tio

ns
 r

eq
ui

re
d

11x11 Search Region
21x21 Search Region
41x41 Search Region

Fig. 8. Performance for different sized search regions.

TABLE IV

Number of Calculations per Block for Normalized

Cross-Correlation

Operation Without Walsh With Walsh
+- */ √ +- */ √

Mean 4 0 0 n/a
WTE n/a 2(N-1) 0 0
Variance 2N N 1 N N 1
NCC 3N N+1 0 N-1 N 0

Assuming that the mean, the WTE and the variance is
precalculated and stored for each image, a comparison can
be made. Using Walsh functions will require about N more
adds/subtracts per block for the precalculations. However,
every time the NCC is calculated about 2N adds/subtracts
per block are saved when using Walsh functions.

IX. Conclusion

We have showed how you can reduce the calculations for
NCC by transforming each sub-block of an image to the
Walsh basis . Because of the simplicity of the Walsh func-
tions this operation can be done very efficiently through
a binary tree of filterings. Calculating the NCC using
the Walsh components requires 2N − 1 operations inste-
ad of 4N + 1 in a straightforward implementation. The
Walsh transform expansion takes about 2(N − 1) addi-
tions/subtractions per block. That means that for every
time the Walsh transform is reused 2N + 2 operations are
saved.

Furthermore, it turns out that the Walsh transform ex-
pansion has several scales encoded in it. All octaves down
are represented in the same transform. Using only some of
the Walsh components when calculating the NCC is equi-
valent to calculating the NCC at a coarser scale. These
scale properties are exploited in an algorithm that does
block-matching in a coarse-to-fine manner.

The experiments show that the algorithm is an effici-
ent way of speeding up block-matching with normalized
cross-correlation. While significantly reducing the number
of calculations the properties of the NCC are preserved.

The method presented here should fit well to speed up

block matching in various applications. It is a straightfor-
ward and fast algorithm. Also, the coarse-to-fine search al-
lows you to easily integrate other constraints used in e.g.
optical flow and stereo correspondence.

References
[1] Burt, P. J., Yen, C., Xu, X. Local Correlation Measures for Motion Analysis

A Comparative Study, Image Processing Laboratory Technical Report,
IPL-TR-024, 1982

[2] Jain, J.R. and Jain, A.K., Displacement Measurement and Its Application in
Interframe Image Coding, IEEE Trans. on Communications, vol. COM-
29, no. 12, Dec. 1981

[3] Srinivasan, R. and Rao, K.R., Predictive Coding Based on Efficient Motion
Estimation, IEEE Trans. on Communications, vol. COMM-33, no. 8, Aug.
1985

[4] Ghanbari, M., The Cross-Search Algorithm for Motion Estimation, IEEE
Trans. on Communications, vol. 38, no. 7, July 1990

[5] Zeng, B., Li, R. and Liou, M.L., Optimization of Fast Block Motion Esti-
mation Algorithms, IEEE Trans. on Circ. and Syst. for Vid. Tech., vol.
7, no. 6, Dec. 1997

[6] O’Neill, M., Denos, M., Automated system for coarse-to-fine pyramidal area
correlation stereo matching, Image and Vision Computing, 14(1996), pp
225-236

[7] Anandan, P., A Computational Framework and an Algorithm for the Me-
asurement of Visual Motion., Int. Journal of Computer Vision, 2(1989),
pp 283-310

[8] Linzer, E., Tiwari, P., Zubair, M., High Performance Algorithms for MPEG
Motion Estimation, Proc. IEEE Int. Conf. on Acoustics, Speech and Sig-
nal Processing, 1996, pp 1934-7

[9] Sun, C., A Fast Stereo Matching Method, Digital Image Computing: Te-
chniques and Applications, Massey Univ., Auckland, New Zealand, 10-12
Dec 1997, pp 95-100

[10] Beauchamp, K. G., Transforms for Engineers: A guide to Signal Processing,
Oxford University Press, 1987

[11] Schipp, F., Wade, W.R., Simon, P., Walsh Series: an introduction to dyadic
harmonic analysis, Adam Hilger, 1990

[12] Ahmed, N., Schreiber, H. H., Lopresti, P. V., On Notation and Definition of
Terms Related to a Class of Complete Orthogonal Functions, IEEE Trans.
Electrom. Compat. EMC-15:75-80, 1973


