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Abstract

The aim of this paper is to find the best representation for
the appearance of surfaces with Lambertian reflectance un-
der varying illumination. Previous work using principal
component analysis (PCA) found the best sub-space to rep-
resent all images of an object under a varying point light
source. We extend this to images from any illumination dis-
tribution. Specifically we calculate the bases for all config-
urations of a point plus ambient light source and two point
light sources, as well as from a database of captured real
world illumination. We also reformulate the optimization
criterion used in PCA. The resulting basis, we believe has
higher representability and is better for analysing images
of shaded objects. The different bases are compared on a
database of images to test the representability.

1. Introduction

Computer vision algorithms applicable to real world scenes
must be able to cope with variations in appearance caused
by changes in the illumination. This is not an easy task.
There is an infinite number of possible illuminations which
results in an infinite number of possible appearances of an
object. In fact, Belhumeur and Kriegman [2] show that the
space of images of a convex Lambertian object under all
possible lighting conditions is infinite dimensional.

A step towards dealing with this problem is given by
Basri and Jacobs [1] and Ramamoorthi and Hanrahan [10].
They show that a Lambertian surface acts as a low-pass fil-
ter on the incoming illumination in practice reducing the
dimensionality of the reflected light. More precisely, they
suggest that a 9D linear sub-space will suffice to represent
the reflected light from a Lambertian surface under all pos-
sible illuminations.

Additionally, when viewing an object in a single im-
age, only one hemisphere of the surface normals is visible,
thereby reducing the dimensionality of the image space fur-
ther. In [9], Ramamoorthi derives analytically the principal

components of the space of all images of a Lambertian ob-
ject illuminated with a point light source from all possible
directions. He shows that the image space in practice can
be represented by approximately five principal components.
These results correspond well, both quantitatively and qual-
itatively with earlier empirical work using PCA on images
of objects under varying illumination by Hallinan [6] and
Epstein et. al. [5].

In this paper we generalize the work of [9] to include
any illumination distribution. We also modify the criterion
of PCA slightly. The resulting basis, we believe, is better
in terms of representability. Using the developed frame-
work we derive the principal component bases for various
illumination distributions including captured real world il-
lumination. The representability of the bases are compared
on a set of images. The potential applications are among
other things illumination estimation and illumination invari-
ant feature detectors. We demonstrate this by briefly going
through the conditions of illumination estimation using the
principal component basis, and by deriving the basis for the
appearance of apparent contours.

2. Shading in Spherical Harmonics

We use the spherical harmonic representation of image irra-
diance developed by Basri and Jacobs [1] and Ramamoorthi
and Hanrahan [10]. Spherical harmonics are orthonormal
basis functions forming the analogy to the Fourier series
on the sphere. There are two main advantages using this
framework. The first is that we can model any light source.
The reflectance distribution function of a Lambertian sur-
face acts as a low-pass filter on the incident illumination
making the reflected light, in essence, lie in a lower dimen-
sional space. In most cases, nine coefficients are enough to
represent the reflected light.

The second advantage is that attached shadows are taken
into account while still having a linear expression. Attached
shadows occur when the surface normal points away from
the light source.
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Let the coordinate frame be located with itsx and y-
axes in the image plane and thez-axis pointing towards the
camera. With the surface normal in spherical coordinates,
Θ = (θ, φ) the image irradiance is

i(Θ) =
∞∑

l=0

√
4π

2l + 1
Rl

l∑
m=−l

LlmYlm(Θ) (1)

whereYlm are the spherical harmonic functions,Llm are
the spherical harmonic coefficients of the illumination.Rl

are the coefficients for Lambertian reflectance, including at-
tached shadows.

We will also index the spherical harmonics using a single
variable. This is commonly done bys = l2 + l + m. The
reverse transform to double indices can be done byl(s) =
ceil(

√
s+ 1)−1 andm(s) = s− l(s)2− l(s). The shading

using single index notation is

i(Θ) =
∞∑

s=0

√
4π

2l(s) + 1
Rl(s)LsYs(Θ) (2)

3. The Image Space

We begin by defining the image space. An image of an ob-
ject depends on the object’s shape, the illumination and the
surface reflectance function. In this article we only consider
Lambertian surfaces.

Let the illumination distribution be described as a distri-
bution of the spherical harmonic coefficients,pL(L), where
L is the vector containing the coefficientsLs.

Since we are assuming convex objects there are no cast
shadows, which means that the image irradiance is uniquely
determined by the surface normal. Given the surface normal
of the object at each point in the image we can generate all
possible images of that object under the illumination distri-
bution we have defined.

However, the criteria we use for deriving PCA depend
only on the scalar product of images. Therefore it is not
necessary to generate the images as long as the scalar prod-
uct between images can be calculated. For this purpose only
the distribution of surface normals is needed. Given the ob-
ject’s surface normal distribution,pn̂(Θ),Θ ∈ S2, we can
calculate the scalar product of imagesI andJ as

I • J =
∫

S2
i(Θ)j(Θ)pn̂(Θ)dωΘ, (3)

wherei(Θ) andj(Θ) are functions returning the image ir-
radiance for a particular surface normal for imageI andJ .

So, for our purposes the illumination distribution and the
surface normal distribution is sufficient to define the image
space.

4. Principal Component Analysis
In this section we derive the principal components of the
image space. We recreate the results of Ramamoorthi [9]
but do the derivation differently. This leads to a generaliza-
tion where any illumination distribution can be considered
as opposed to a single point light source used in [9]. The
final expression involves a matrix defining the geometry of
the object and a matrix containing the covariance structure
of the illumination. These two matrices uniquely determine
the principal component basis. Using this expression one
can easily experiment with various object geometries and
illumination configurations.

4.1. Criteria to Derive the Principal Compo-
nents

Principal component analysis amounts to finding a coordi-
nate transformation such that the covariance matrix of the
random variable (in our case the image) is diagonalized. A
geometric interpretation of PCA is that the first eigenvector,
here calledU0, is the direction which has the highest vari-
ability. U0 is the vector that maximizes the variance of the
scalar product betweenU0 and the images, or mathemati-
cally:

U0 = argmax
||U ||=1

V ar{I • U}, (4)

where the imageI is the random variable. Subsequent
eigenvectors are constructed iteratively by maximizing the
same variance with the added condition that they are or-
thogonal to all the previous eigenvectors, [8]. Using this
criterion we derive the principal components.

We also use a slightly different criterion. The objective is
to find a basis that decomposes the image into a linear com-
bination of coefficients and basis functions,I =

∑
i ciUi.

Typically images are analysed by estimating the coefficients
ci. There are a number of things we can do to make this es-
timation as robust as possible. First, the basis should be
orthogonal. This ensures that the basis is as efficient as
possible when truncated. Moreover, it allows us to esti-
mate the coefficients individually using the scalar product,
ci = I • Ui, as opposed to estimating them all simultane-
ously using e.g. least squares.

Secondly, the basis should contain the constant function.
The illumination frequently contains an ambient component
which can vary. By including the constant function in the
basis we make the remaining functions independent of the
ambient component.

Thirdly, the componentsciUi should on average (over
the image distribution) have as high variancein the image
as possible. Components with a high variance have a high
signal-to-noise ratio and are therefore more robustly esti-
mated.
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To include the constant function in the basis we subtract
the image’s mean from each image. This forces the basis
functions to be orthogonal to the constant function. The
constant function is then added to the basis at a later stage.
The image mean is calculated byI •11, where1 is an image
with ones. The variance of each component is simplyc2i .
We arrive at the following criterion.

U0 = argmax
||U ||=1

E{((I − (I • 1)1) • U)2} (5)

In the following sections we display three variants of
bases. The first two are created using criterion (4) and are
analogous to the bases in [9]. They are referred to asNon-
Centered PCAandStandard PCA. In non-centered PCA the
mean is not subtracted when calculating the covariance ma-
trix. The third variant is created using our criterion (5) and
is calledModified PCA.

4.2. Deriving the Basis
In order to do the analysis we rewrite the eigenfunction in
its spherical harmonic representation.

U(Θ) =
∑

s

usYs(Θ) (6)

The scalar product ofI andU becomes

I • U =
∑
s,s′

Rl(s)

√
4π

2l(s) + 1
Lsus′

×
∫

S2
pn̂(Θ)Ys(Θ)Ys′(Θ)dωΘ (7)

We can rewrite this in matrix form.

I • U = uT MQL, (8)

whereL is the vector containing the spherical harmonic co-
efficients of the light sourceLs, Q is a diagonal matrix with

elementsqii = Rl(i)

√
4π

2l(i)+1 , M contains the elements

mss′ =
∫

S2
pn̂(Θ)Ys(Θ)Ys′(Θ)dωΘ (9)

andu is a vector containing the spherical harmonic coeffi-
cients ofU .

Now, the only random variable in (8) isL. Let
Covar{L} = ΣL. Then

V ar{uT MQL} = uT MQΣLQMu. (10)

The transpose is dropped onM andQ since they are both
symmetric.

1Due to our definition of the scalar product we don’t need to divide
with the number of pixels.

The expression should be maximized under the condition
thatU is normalized. We obtain the following condition on
U ’s coefficients.

U • U =
∑
s,s′

usus′

∫
S2
pn̂(Θ)Ys(Θ)Ys′(Θ)dωΘ

=
∑
s,s′

usus′mss′ = uT Mu = 1 (11)

The maximization problem can now be written in terms of
U ’s spherical harmonic coefficients.

u0 = argmax
uT Mu=1

uT MQΣLQMu (12)

Applying the coordinate transform

v = M1/2u, (13)

we obtain

v0 = argmax
vT v=1

vT M1/2QΣLQM1/2v. (14)

This is a quadratic expression ofv which should be
maximized under the condition thatv is normalized. It
is well known that the solution is the eigenvector of
M1/2QΣLQM1/2 with the largest eigenvalue. The sub-
sequent eigenvectors maximize the expression while being
orthogonal to the previous ones. We have in fact performed
the PCA. To be sure we check that orthogonality of the vec-
torsv corresponds to orthogonality in the image space.

Ui • Uj = ui
T Muj = vi

T vj (15)

The spherical harmonic coefficients for the eigenimagesUi

are computed byui = M−1/2vi.
In relation to the derivation of [9], subtracting the mean

or not is in our case a matter of subtracting the mean or not
when calculatingΣL.

When constructing the basis according to the second cri-
terion (5) we should subtract theimagemean. The image
mean is

I • 1 =
∑

s

Lsqss

∫
S2
Ys(Θ)pn̂(Θ)dωΘ

=
∑

s

Lsqssns, (16)

wherens is the mean ofYs over the surface normal distri-
bution.

Now,

(I − (I • 1)1) • U =
∑
s,s′

Lsqssus′ (17)

×
∫

S2
(Ys(Θ)− ns)Ys′(Θ)pn̂(Θ)dωΘ

=
∑
s,s′

Lsqssus′(mss′ − nsns′)

= uT (M− nnT )QL (18)
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Furthermore

E{((I−(I•1)1)•U)2} = uT (M−nnT )QVLQ(M−nnT )u
(19)

whereVL = E{LLT }.
Doing the same coordinate change as before we get the

v vectors as being the eigenvectors of the matrix

M−1/2(M− nnT )QVLQ(M− nnT )M−1/2 (20)

and finally the spherical harmonics coefficients of the eigen-
images byui = M−1/2vi as before.

5. Illumination Distributions
Let us next derive the covariance matrices for a number of
interesting illumination distributions. The derivations will
be exemplified with bases calculated using a surface normal
distribution of an image of a sphere. When viewing an im-
age of a sphere, the visible area of a surface is proportional
to the cosine of the polar angle of the surface normal. Tak-
ing this into account, as well as the geometry of the visible
hemisphere, the elements ofM are

mss′ =
1
π

∫ π
2

0

∫ 2π

0

Ys(θ, φ)Ys′(θ, φ) cos θ sin θdθdφ (21)

In the sections below we only derive the elements ofVL

andµL = E{L}, sinceΣL andVL are related as

ΣL = VL − µLµL
T . (22)

5.1. Rotated Light Sources
First we consider the case of a light field, defined by its
spherical harmonic coefficientsblm, rotated to illuminate
from all possible directions. The coefficients after rotation
can be written as a linear combination of the other coeffi-
cients in the same orderl

Llm =
l∑

n=−l

Dlnm(α, β, γ)bln, (23)

whereDlmn are the rotation reparameterization functions
sometimes referred to as the Wigner D-functions, [3].

The elements ofVL are the product of two rotated coef-
ficients integrated over the rotation group,SO(3). Because
the orthogonality relation∫

SO(3)

Dlnm(R)Dl′n′m′(R)dR =
δl,l′δm,m′δn,n′

2l + 1
(24)

holds, the off-diagonal elements ofVL will be zero and the
elements on the diagonal are

E{L2
lm} =

l∑
n=−l

b2ln
2l + 1

. (25)

AsD000(α, β, γ) = 1 and due to the orthogonality rela-
tion, the means are zero for allLlm exceptL00 and

E{L00} = b00. (26)

These formulas are used in the calculations in the next
sections.

5.2. Point Light Source
Here we derive the bases for a single point light source.
Since equation (25) already takes into account all rotations
of the light source we can select any start position of our
light source e.g.Θ = (0, 0). To find the spherical harmonic
coefficients for a light source we integrate the product of
the light source and each spherical harmonic function. The
point light source is described by a delta function so the co-
efficients will be a sample of the spherical harmonic func-
tion at the position of the light source, i.e. with the point
light at (0, 0), blm = Ylm(0, 0), where

Ylm(0, 0) =

{ √
2l+1
4π m = 0

0 m 6= 0
(27)

Hence

E{L2
lm} =

2l + 1
4π(2l + 1)

=
1
4π

(28)

E{L00} =
1

2
√
π

(29)

Table 1 lists the eigenvectors with their eigenvalues and
the cumulative sum of eigenvalues, corresponding to the
variance accounted for (VAF). Figure 1 shows the first five
eigenimages generated from those vectors.

5.3. Point Light and Ambient Source
A more interesting case is the when there is a point light
source and an ambient component. As before we position
the point light at(0, 0) and use equation (25) to take all
rotations into account. The ambient component only con-
tributes tob00. The otherblm remain the same. This means
that the top left element of the covariance matrix differs
from the previous section. We also allow the level of the
ambience,a to vary from zero toamax.

E{L2
00} =

1
amax

∫ amax

0

(
1

2
√
π

+ a)2da (30)

and

E{L2
lm} =

{
1
4π + amax

2
√

π
+ a2

max

3 l = m = 0
1
4π otherwise

(31)

E{L00} =
1

2
√
π

+
amax

2
(32)

The eigenvectors, foramax = 1, are in Table 2.
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Figure 1: Eigenimages of a sphere under a point light source. The top row shows spheres created using the Non-Centered
PCA, the middle row shows spheres from Standard PCA and the bottom row spheres from Modified PCA.

5.4. Two Point Light Sources
We can construct the distribution of all configurations of
two point light sources. Position the first light source at
(0, 0) and the second at(ψ, 0). Let ψ vary between0 and
π and let equation (25) take care of the rotations. The co-
efficients before rotation areblm = Ylm(0, 0) + Ylm(ψ, 0)
and

E{L2
lm} =

l∑
n=−l

∫ π

0
(Yln(0, 0) + Yln(ψ, 0))2dψ

π(2l + 1)
(33)

E{L00} =
1
π

∫ π

0

(Yln(0, 0) + Yln(ψ, 0))dψ (34)

Table 3 lists the eigenvectors.

5.5. Real World Illumination Maps
Of greater interest is to perform PCA over more realis-
tic illuminations. What is a realistic illumination? To-
day there exist a number of databases of captured illumi-
nation maps from different scenes, so called environment
maps or light probe images. These maps are captured with
high dynamic range, to capture the whole range of illu-
mination from weak indirect reflections to direct sunlight.
We will derive the eigenimages of a sphere illuminated by
these maps under all 3D-rotations. We have used the light
probe images of Debevec [4] that can be downloaded from
http://www.debevec.org.

We havenL light sources. Each light sourcek =
1, . . . , nL has spherical harmonic coefficientsbklm and a

probability ofP (k). Again, starting at (25) and summing
over all light sources results in

E{L2
lm} =

nL∑
k=1

l∑
n=−l

b2klnP (k)
(2l + 1)

(35)

E{L00} =
nL∑
k=1

bklnP (k) (36)

With each illumination map being equally probableP (k) =
1

nL
. The eigenvectors are in Table 4.

5.6. Discussion
The main difference between the PCA variants is how they
behave under variations in the ambient component of the
illumination. When the ambient component varies, such as
in Table 2 and 4, this gets encoded in the Non-Centered and
Standard bases. The Modified basis on the other hand is
not affected at all by this. For instance, the Modified bases
created from the point light and the point plus ambient light,
are identical.

Moreover, when there are variations in the ambient com-
ponent the first eigenfunction of the Non-Centered basis be-
comes approximatelyY0. Subsequent eigenfunctions are
orthogonal to the first and hence will be very similar to the
Modified PCA basis. This becomes apparent in the next
section where the two bases get similar results. However,
a Non-Centered basis trained with e.g. a point light source
does not behave as well when representing images containg
a varying ambient component.
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Table 1: Eigenfunctions of Sphere under Point Light Source
Non-Centered PCA Standard PCA Modified PCA

eigenfunction λ VAF eigenfunction λ VAF eigenfunction λ VAF
0.88Y0 + 0.48Y2 + 0.039Y6 0.62 0.62 0.99Y2 + 0.1Y6 0.43 0.43 0.99Y1 + 0.17Y5 0.39 0.39

0.99Y1 + 0.17Y5 0.15 0.78 0.99Y1 + 0.17Y5 0.24 0.68 0.99Y3 + 0.17Y7 0.39 0.78
0.99Y3 + 0.17Y7 0.15 0.93 0.99Y3 + 0.17Y7 0.24 0.92 −0.79Y0 + 0.59Y2 + 0.2Y6 0.13 0.9

−0.82Y0 + 0.51Y2 + 0.28Y6 0.035 0.96 Y8 0.024 0.95 Y8 0.038 0.94
Y8 0.015 0.98 Y4 0.024 0.97 Y4 0.038 0.98
Y4 0.015 0.99 −0.59Y2 + 0.81Y6 0.019 0.99 −0.78Y3 + 0.63Y7 0.009 0.99

−0.78Y3 + 0.63Y7 0.003 1 −0.78Y3 + 0.63Y7 0.005 0.99 0.78Y1 − 0.63Y5 0.009 1
−0.78Y1 + 0.63Y5 0.003 1 −0.78Y1 + 0.63Y5 0.005 1 0.65Y0 − 0.7Y2 + 0.3Y6 0.001 1

0.65Y0 − 0.7Y2 + 0.3Y6 0.000 1 0.65Y0 − 0.7Y2 + 0.29Y6 0 1 Y0 0 1

Table 2: Eigenfunctions of Sphere under Point and Ambient Light Source
Non-Centered PCA Standard PCA Modified PCA

eigenfunction λ VAF eigenfunction λ VAF eigenfunction λ VAF
1Y0 + 0.059Y2 + 0.0042Y6 0.9 0.9 0.89Y0 + 0.46Y2 + 0.037Y6 0.63 0.63 0.99Y1 + 0.17Y5 0.39 0.39

0.99Y1 + 0.17Y5 0.039 0.94 0.99Y1 + 0.17Y5 0.15 0.78 0.99Y3 + 0.17Y7 0.39 0.78
0.99Y3 + 0.17Y7 0.039 0.98 0.99Y3 + 0.17Y7 0.15 0.93 −0.79Y0 + 0.59Y2 + 0.2Y6 0.13 0.9

−0.79Y0 + 0.58Y2 + 0.2Y6 0.012 0.99 −0.82Y0 + 0.51Y2 + 0.28Y6 0.035 0.96 Y8 0.038 0.94
Y8 0.003 0.99 Y8 0.015 0.98 Y4 0.038 0.98
Y4 0.003 1 Y4 0.015 0.99 0.78Y3 − 0.63Y7 0.009 0.99

0.78Y1 − 0.63Y5 0.000 1 −0.78Y3 + 0.63Y7 0.003 1 0.78Y1 − 0.63Y5 0.009 1
−0.78Y3 + 0.63Y7 0.000 1 0.78Y1 − 0.63Y5 0.003 1 0.65Y0 − 0.7Y2 + 0.3Y6 0.001 1

0.65Y0 − 0.7Y2 + 0.3Y6 0.000 1 0.65Y0 − 0.7Y2 + 0.3Y6 0.000 1 Y0 0 1

Table 3: Eigenfunctions of Sphere under Two Point Light Sources
Non-Centered PCA Standard PCA Modified PCA

eigenfunction λ VAF eigenfunction λ VAF eigenfunction λ VAF
0.97Y0 + 0.26Y2 + 0.025Y6 0.71 0.71 0.99Y2 + 0.13Y6 0.42 0.42 0.98Y1 + 0.21Y5 0.38 0.38

0.98Y1 + 0.21Y5 0.11 0.82 0.98Y1 + 0.21Y5 0.24 0.66 0.98Y3 + 0.21Y7 0.38 0.76
0.98Y3 + 0.21Y7 0.11 0.93 0.98Y3 + 0.21Y7 0.24 0.91 −0.79Y0 + 0.57Y2 + 0.24Y6 0.13 0.89

−0.81Y0 + 0.52Y2 + 0.29Y6 0.032 0.97 Y8 0.028 0.94 Y8 0.044 0.93
Y8 0.013 0.98 Y4 0.028 0.96 Y4 0.044 0.98
Y4 0.013 0.99 −0.59Y2 + 0.81Y6 0.022 0.99 0.78Y3 − 0.63Y7 0.01 0.99

−0.78Y1 + 0.63Y5 0.003 1 −0.78Y3 + 0.63Y7 0.006 0.99 −0.78Y1 + 0.63Y5 0.01 1
−0.78Y3 + 0.63Y7 0.003 1 −0.78Y1 + 0.63Y5 0.006 1 0.65Y0 − 0.7Y2 + 0.3Y6 0.001 1

0.65Y0 − 0.7Y2 + 0.3Y6 0.000 1 0.65Y0 − 0.7Y2 + 0.29Y6 0 1 Y0 0 1

Table 4: Eigenfunctions of Sphere under Natural Illumination
Non-Centered PCA Standard PCA Modified PCA

eigenfunction λ VAF eigenfunction λ VAF eigenfunction λ VAF
0.99Y0 + 0.13Y2 + 0.0056Y6 0.83 0.83 0.86Y0 + 0.51Y2 + 0.024Y6 0.64 0.64 1Y3 + 0.097Y7 0.41 0.41

1Y1 + 0.097Y5 0.069 0.9 1Y1 + 0.097Y5 0.15 0.79 1Y1 + 0.097Y5 0.41 0.82
1Y3 + 0.097Y7 0.069 0.97 1Y3 + 0.097Y7 0.15 0.95 −0.78Y0 + 0.62Y2 + 0.12Y6 0.12 0.94

−0.79Y0 + 0.6Y2 + 0.13Y6 0.018 0.99 −0.81Y0 + 0.56Y2 + 0.17Y6 0.029 0.98 Y8 0.024 0.96
Y8 0.004 0.99 Y8 0.009 0.99 Y4 0.024 0.99
Y4 0.004 1 Y4 0.009 0.99 −0.77Y3 + 0.64Y7 0.006 0.99

−0.77Y3 + 0.64Y7 0.001 1 0.77Y1 − 0.64Y5 0.002 1 0.77Y1 − 0.64Y5 0.006 1
0.77Y1 − 0.64Y5 0.001 1 −0.77Y3 + 0.64Y7 0.002 1 0.65Y0 − 0.7Y2 + 0.3Y6 0.001 1

0.65Y0 − 0.7Y2 + 0.3Y6 0.000 1 0.65Y0 − 0.7Y2 + 0.3Y6 0.000 1 Y0 0 1

Figure 2: Spheres rendered with groove, beach and stpeters illumination maps of [4].
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Figure 3: Comparison of PCA variants. a) error as the num-
ber of basis functions increases. b) errors relative to the
Modified PCA basis.

6. Testing Representability
In order to compare the different bases, we rendered images
of spheres using the illumination maps of Debevec. Natu-
rally, it is more desirable to use real images. However, by
using synthetic images we rule out many potential sources
of errors. More importantly it gives us access to the geom-
etry of the scene, needed for the experiments. The images
were rendered using importance sampled Monte Carlo in-
tegration and by using real world illumination maps we get
images with the full complexity of natural lighting. Figure 2
shows three of the rendered images.

Each basis was tested by calculating how well it repre-
sents the rendered images. The mean squared residual was
used as a measure. For each basis the residual was cal-
culated using one to all of the basis functions. The Stan-
dard PCA basis was completed with the constant function
Y0 which is proportional to the mean image. The Modified
PCA basis was also completed withY0 as intended. Fig-
ure 3a shows the residual errors for bases of the three PCA
variants constructed from the illumination map distribution.
The Modifed PCA basis exhibits the best representability.
When plotting relative errors, with the Modified basis as a
reference, we see that Standard PCA has around twice the
error for the same number of components, Figure 3b.

When comparing bases constructed from different illu-
mination distributions the differences are smaller. Figure 4
shows the relative residual errors. The basis constructed
with a point light plus ambient source was not included
since it is identical to the basis constructed with only a
point light. The illumination map basis was constructed in
a cross-validation sense so that the map used to render the
image never was in the “training” set. Still it shows the best
representability for the most part.

7. Light Field Estimation from a Single
Image and Known Geometry

Light field estimation from several view points and known
geometry has already been demonstrated using the spherical
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Figure 4: Comparison of bases constructed using different
illumination distributions. Graph shows relative errors of
bases constructed using the Modified PCA.
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Figure 5: Low-pass filtered version of the groove light field
(left) and the estimated light field (right). It was estimated
using five principal components.

harmonic representation, [10]. When estimating the light
field from a single image we need to take into account that
the image lies in a subspace of lower dimensionality than
the 9D space required by the spherical harmonic represen-
tation. The problem should be regularized. The natural way
to do this is to estimate only the components with the high-
est variance in the image. Components with a low variance
will “drown” in the noise, making the estimates error prone.
The principal components are created to have as high vari-
ance as possible and are therefore ideal in this situation.

The procedure is as follows. Using e.g. least squares
the principal component coefficients are estimated so that
the image is written as a linear combination of the principal
components.

I =
N∑

i=0

ciUi (37)

Now, let c be a vector containing the estimated coeffi-
cients andU the matrix containing the column vectors of
spherical harmonics coefficients ofUi, i = 0, ..., N . Then
the light field coefficients are given by

L = Q−1Uc, (38)

whereQ is as in (8). Since the surface acts as low-pass filter
on the illumination, only the lower frequencies of the light
field is recoverable. Figure 5 shows the low-pass filtered
light field of the groove illumination map and its estimated
counterpart. The light field was estimated using five princi-
pal components plus the constant function (Y0).
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Figure 6: Eigenfunctions for apparent contours.

8. The Appearance of Apparent Con-
tours

Using the same framework we can derive the principal com-
ponent basis for apparent contours. We model the intensity
profile of the surface near the apparent contour, along a line
perpendicular to the contour. Assume we have spherical ge-
ometry in the cross-section of the object near the apparent
contour. Since we are modeling a line as opposed to an im-
age we setφ = 0. θ varies from some value, depending
on how far away from the contour we stop measuring, and
π/2 (the value at the occluding contour). Say that we look
at the intensity profile from0 to d pixels distance from the
contour and that the radius of the spherical cross-section is
R then the elements ofM will be

mss′ = k

∫ π/2

θ0

Ys(θ, 0)Ys′(θ, 0) cos θdθ, (39)

whereθ0 = arcsin (R− d)/R andk is a constant for nor-
malizing the integral. Withd = 12 andR = 60 the
first three eigenfunctions have eigenvalues0.97, 0.037 and
0.0002. They eigenfunctions are plotted in Figure 6. The
functions show significant similarity to the eigenfunctions
by Huggins et. al. [7] who created their basis from empiri-
cal data.

9. Conclusion
In [9] Ramamoorthi derives the principal component anal-
ysis on the space of images of a convex Lambertian object
under all possible single point light sources. We have gen-
eralized his results to any illumination distribution. Our re-
sults show that the principal component basis is determined
by two matrices. One depending on the objects shape and
the other being the covariance matrix of the spherical har-
monic coefficients of the illumination. We derive bases for
a number of illumination distributions of interest.

Furthermore, we modify the criterion to derive the PCA.
The resulting basis, we believe, is better for representing the
image space. This basis is orthogonal to the constant func-
tion. When completing the basis with the constant function

this should allow for a better representation when using a
truncated basis. Experimental data supports this.

Acknowledgements

This work was done within the EU-IST project Insight2+.
The support is gratefully acknowledged.

References
[1] R. Basri and D. Jacobs. Lambertian reflectance and linear

subspaces.IEEE Trans. Pattern Analysis and Machine Intel-
ligence, 25(2):218–233, February 2003.

[2] P. N. Belhumeur and D. J. Kriegman. What is the set of im-
ages of an object under all possible illumination conditions?
Int. Journal of Computer Vision, 28(3):245–260, 1998.

[3] G. S. Chirikjian and A. B. Kyatkin. Engineering Applica-
tions of Noncommutative Harmonic Analysis. CRC Press,
2001.

[4] P. Debevec. Rendering synthetic objects into real scenes:
Bridging traditional and image-based graphics with global
illumination and high dynamic range photography. InSIG-
GRAPH, pages 189–198, 1998.

[5] R. Epstein, P.W. Hallinan, and A.L. Yuille. 5+/-2 eigenim-
ages suffice: An empirical investigation of low-dimensional
lighting models. InIEEE Workshop Physics-Based Modeling
in Computer Vision, pages 108–116, 1995.

[6] P. Hallinan. A low-dimensional representation of human
faces for arbitrary lighting conditions. InProc. CVPR, pages
995–999, 1994.

[7] P.S. Huggins, H.F. Chen, P.N. Belhumeur, and S.W. Zucker.
Finding folds: On the appearance and identification of oc-
clusion. InProc. CVPR, pages II:718–725, 2001.

[8] R. A. Johnson and D. W. Wichern.Applied Multivariate Sta-
tistical Analysis, 4:th ed.Prentice-Hall, 1998.

[9] R. Ramamoorthi. Analytic pca construction for theoretical
analysis of lighting variability in images of a lambertian ob-
ject. IEEE Trans. Pattern Analysis and Machine Intelligence,
24(10), October 2002.

[10] R. Ramamoorthi and Hanrahan P. On the relationship be-
tween radiance and irradiance: determining the illumina-
tion from images of a convex lambertian object.JOSA-A,
18(10):2448–2458, October 2001.

8


