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A set of accurate quadrature rules applicable to a class of integrable functions with isolated singularities
is designed and analysed theoretically in one and two dimensions. These quadrature rules are based
on the trapezoidal rule with corrected quadrature weights for points in the vicinity of the singularity. To
compute the correction weights, small-size ill-conditioned systems have to be solved. The convergence of
the correction weights is accelerated by the use of compactly supported functions that annihilate boundary
errors. Convergence proofs with error estimates for the resulting quadrature rules are given in both one
and two dimensions. The tabulated weights are specific for the singularities under consideration, but the
methodology extends to a large class of functions with integrable isolated singularities. Furthermore, in
one dimension we have obtained a closed form expression based on which the modified weights can be
computed directly.
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1. Introduction

This paper focuses on the design of accurate quadrature rules for functions with isolated singularities.
The need to numerically evaluate such integrals arises in, e.g., methods based on boundary integral
equations, where the fundamental solution, or Green’s function, has an integrable singularity.

In the literature one can find several different approaches to the numerical integration of singular
functions. These include different semianalytical techniques and singularity subtraction approaches (see
Pozrikidis, 1992). Different mappings and changes of coordinates in order to remove the singularity
have also been applied (see Duffy, 1982; Bruno & Kunyansky, 2001; Atkinson, 2004; Khayat & Wilton,
2005; Sidi, 2005; Mousavi & Sukumar, 2010). The approach that we will follow here is to modify the
trapezoidal rule to render it high-order accurate for singular functions. The resulting quadrature rules
are very attractive due to their simplicity—the trapezoidal rule is modified with a small number of
correction weights, and the simple structure is retained.

The trapezoidal rule is spectrally accurate for smooth, compactly supported or periodic functions.
For other functions it is in general at most second-order accurate. There are two sources of these
larger errors: singularities and boundaries. Both of these error sources can be reduced by modifying
the quadrature weights locally, in the vicinity of the singularity (which is assumed here to be isolated)
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or at the boundaries. Hence, by adjusting the weights locally, high-order-accurate versions of the trape-
zoidal rule can be constructed also in the presence of singularities and boundaries. The new weights
are precomputed and tabulated; once constructed, the modified trapezoidal rule can easily be applied.
In the case of a singularity, the modified weights are, however, specific to the singularity that is being
considered.

The first singularity-corrected trapezoidal methods introduced in Rokhlin (1990) were restricted in
practice to rather low orders of accuracy since the magnitude of the correction weights became very
large for higher-order methods. To alleviate this problem, Alpert (1995) used more correction weights
than the optimal number, and minimized their sum of squares. The integration interval is split at the
singularity into two subintervals such that the singularity is always at a boundary. Kapur & Rokhlin
(1997) introduced additional quadrature points and weights outside the interval of integration and could
thereby obtain much smaller correction weights. Such a method is not always convenient to apply, and
yet another approach by Alpert (1999), was to introduce a hybrid Gauss–trapezoidal rule, where a few
of the regularly spaced nodes towards the interval end points are replaced with irregularly spaced nodes.
The computed weights at the irregular nodes are both bounded and positive.

In the papers Rokhlin (1990), Alpert (1995, 1999) and Kapur & Rokhlin (1997), quadrature rules
are designed for singular functions of the form f (x)= φ(x)s(x)+ ψ(x) and f (x)= φ(x)s(x), where
φ(x) and ψ(x) are regular functions and s(x) has an isolated integrable singularity such as s(x)= |x|γ ,
γ >−1 or s(x)= log(|x|). The integration interval is split at the singularity, and for each subinterval
there is a regular end and a singular end. Corrections to the trapezoidal rule are applied at both ends in
order to reduce the boundary errors at the regular end and to control the error from the singularity and
the boundary at the other end. Theoretical analysis is offered for all these methods.

It is inconvenient to split the domain of integration at the singularity in higher dimensions. Aguilar
and Chen designed singularity-corrected trapezoidal rules for the s(x)= log(|x|) singularity in R

2 (see
Aguilar & Chen, 2002), and for s(x)= 1/|x| in R

3 (see Aguilar & Chen, 2005). The singularities are
interior to the domain and a singularity correction in the interior is combined with boundary corrections
to yield higher-order methods. No theoretical analysis is provided in these papers, but the expected order
of accuracy is given for the method, which is consistent with numerical examples.

One procedure for constructing a set of increasingly accurate quadrature rules is to require the exact
integration of monomials of increasing degree (see Keast & Lyness, 1979). A similar procedure is
followed here to determine the modified weights of the corrected trapezoidal rules. The exact integration
of monomials, up to a desired degree, multiplying the singular function s(x) is first enforced for a
specific uniform grid spacing h. This leads to a linear system of equations for the modified weights.
The obtained correction weights will then depend on h. This is not very practical. Instead, one wants
to use the converged weights that are defined as the weights obtained in the limit as h → 0. They are
grid independent, universal for the given singularity and can be tabulated once computed. As Aguilar &
Chen (2002, 2005) note, the system to be solved for the weights becomes severely ill conditioned, more
so for smaller h and multiprecision arithmetic is needed to perform this task.

Duan & Rokhlin (2009) apply similar techniques to design singularity-corrected trapezoidal rules
for s(x)= log(|x|) singularities in two dimensions. However, they do not seek converged correction
weights, but compute weights that depend on the grid size h. They are able to derive analytical, although
very lengthy, expressions for the weights and thereby avoid solving an ill-conditioned system. The
analytical formulas that they derive are, however, approximated numerically, but to very high accuracy.
A theoretical proof is offered regarding the accuracy of the quadrature rules, using also some theoretical
results developed in Lyness (1976).
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In this paper we consider singularities of the kind s(x)= |x|γ , γ >−1 in one dimension and s(x)=
1/|x| in two dimensions. The singularities are interior to the domain. As in Aguilar & Chen (2002),
our singularity corrections can be combined with boundary corrections (see Alpert, 1995) to reduce
boundary errors as needed.

One difference in our approach compared with all previous works cited above lies in the procedure
for computing the weights. The corrected trapezoidal rule is based on the punctured trapezoidal rule
(excluding the point of singularity) together with a correction operator which is applied at grid points
in the vicinity of the singularity. In order to accelerate the convergence of the weights, the boundary
errors in the punctured trapezoidal rule must be reduced. The approach used previously is to introduce
a boundary correction for the trapezoidal rule. Here, we suggest an alternative approach where we
multiply s(x) by a fixed, compactly supported function g(x). This completely annihilates the boundary
errors. The convergence rate of the weights will now instead depend on the number of derivatives of
g that vanish at the point of singularity. This is proved for the one-dimensional case in Section 3; see
Lemma 3.8. For the two-dimensional case, we cannot offer a rigorous proof, but note the same behaviour
in practice. With a faster convergence rate for the weights, larger values of h can be used, which to some
extent reduces the ill conditioning of the system. To compute converged weights to double precision,
we use a multiprecision library that allows for computations in multiprecision arithmetic.

In the one-dimensional case we are able to show that the converged weights are the solution to a
linear system of equations, where the system matrix is a Vandermonde matrix and where the right-hand
side has an analytic expression in terms of the Riemann zeta function (see the Appendix). Hence, in this
case, we can directly compute the converged weights by solving this system of equations.

The singularity corrections that we design are of order O(h2+γ+d+2p) in R
d , d = 1, 2 as weights are

modified at grid points in p layers around the singularity; see Theorem 3.7. In two dimensions (γ = −1),
for p = 0, which corresponds to a single correction weight at the singularity, we have a third-order
rule. For each additional layer of correction weights, the order of accuracy increases by 2. Compared
with Aguilar & Chen (2002) our layers differ somewhat, with the number of correction weights in our
approach growing more slowly as the number of layers is increased. We also have a theoretical analysis
of the method’s convergence rate.

In two dimensions, we have considered the singularity 1/|x|, which is the Green’s function for the
Laplace equation in three dimensions, instead of log(|x|) as in Aguilar & Chen (2002) and Duan &
Rokhlin (2009). A boundary integral equation for the three-dimensional Laplace equation contains inte-
grals over two-dimensional surfaces that are the boundaries of the domain. This method would apply
when the boundary is flat. Extensions based on the approach and the theory presented in this paper are
discussed in the conclusions.

The outline of the paper is as follows. In Section 2, we describe the modified trapezoidal rules
and their structure and we define the system of equations from which the correction weights can be
obtained. The theoretical analysis is presented in Section 3, starting with the accuracy of the punctured
trapezoidal rule, before we prove the accuracy of the modified trapezoidal rules. We also give a proof
of convergence for the correction weights in one dimension. Numerical results to validate the con-
structed quadrature rules together with discussions concerning implementation aspects are provided in
Section 4.

1.1 Notation

In order to render the text more legible, multiindex notation will be used. A multiindex in the
d-dimensional set-up is α = (α1, . . . ,αd). For α ∈ R

d , Zd , including multiindices, we define the norms
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|α| = ∑d
i=1 |αi| and |α|2 =

√∑d
i=1 α

2
i . To be more explicit we write at times |α|1 instead of |α|. We also

use α! = α1! · · ·αd !. For x ∈ R
d we define monomials xα = xα1

1 · · · xαd
d and for the partial derivatives,

∂αf (x)= ∂ |α|

∂xα1
1 · · · ∂xαd

d

f (x).

Occasionally, we will make use of the basis vectors in R
d which shall be denoted by ei with

1 � i � d.
The notation [x] for the integer part of x and {x} for the fractional part of x will also be used;

recall that x = [x] + {x}. Throughout the manuscript C will denote a constant which is independent of
other parameters relevant in the particular context where it is used, typically the grid spacing h and
position x. It may at times be accompanied by a numeric subscript to differentiate it from other similar
constants.

1.2 Trapezoidal rule

Consider a function f ∈ C2p+2(Rd), defined on the interval S = [−a, a] for d = 1, and on the square
S = [−a, a]2 for d = 2. The standard trapezoidal rule in one dimension is then given by

∫
S

f (x) dx ≈ Th[f ] :=
N∑

β=−N

hf (βh)− 1

2
(hf (a)+ hf (−a)), h = a/N (1.1)

and in two dimensions, with the same h, by

∫
S

f (x) dx ≈ Th[f ] :=
∑
βh∈S
β∈Z

2

h2f (βh)− 1

2

∑
βh∈∂S
β∈Z

2

h2f (βh)− 1

4

∑
βh∈∂Sc

β∈Z
2

h2f (βh), (1.2)

where we used ∂Sc to denote the four corner points of S. Typically, for a smooth integrand over a
bounded interval, numerical integration using the trapezoidal rule exhibits second-order convergence.
To delve further into the error analysis of the trapezoidal rule, and later the modified trapezoidal rule,
we will use two main approaches: the Euler–Maclaurin expansion and Fourier analysis. We use the
following precise form of the Euler–Maclaurin expansion.

Theorem 1.1 (Euler–Maclaurin expansion) For a function f ∈ C2p+2([a, b]),

∫ b

a
f (x) dx = Th[f ] +

p∑
�=1

h2�b2�

(2�)!
(f (2�−1)(b)− f (2�−1)(a))

+ h2p+2

(2p + 2)!

∫ b

a
B2p+2

({
x − a

h

})
f (2p+2)(x) dx. (1.3)

The expression uses the Bernoulli polynomials Bp and the Bernoulli numbers defined as bp = Bp(0).
The periodized versions Bp({x}) are piecewise smooth and bounded functions detailed in Cohen (2007,
Proposition 9.3.1 and Remark 2).
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From the Euler–Maclaurin expansion (1.3) we see that there are two main sources of error in the
trapezoidal rule, corresponding to the terms in the error expression. First, we have the contribution to
the error from the boundaries given by

p∑
�=1

h2�b2�

(2�)!
(f (2�−1)(b)− f (2�−1)(a)). (1.4)

Second, we have the contribution of the error which is determined by the regularity of the function,

h2p+2

(2p + 2)!

∫ b

a
B2p+2

({
x − a

h

})
f (2p+2)(x) dx.

There are two common situations when the sum in (1.4) vanishes for integrands of class C2p+2(R):
when the integrand is periodic on [a, b] and when the integrand is compactly supported within (a, b). In
this case the error of the trapezoidal rule is O(h2p+2). If the integrand is C∞ and there are no boundary
errors, the trapezoidal rule exhibits spectral convergence.

The accuracy of the trapezoidal rule may also be studied through Fourier analysis. In this approach
we use the Poisson summation formula for f ∈ C2

c (R) and note that

Th[f ] =
∑

j

hf (jh)=
∑

k

f̂

(
k

h

)
=

∫
f (x) dx +

∑
k |= 0

f̂

(
k

h

)
,

where

f̂ (k)=
∫

f (x) e−2π ikx dx. (1.5)

Our aim is to show that this oscillatory integral can be estimated by

|f̂ (k)| � C

|k|p , p> 1,

from which it will then follow that∣∣∣∣Th[f ] −
∫

f (x) dx

∣∣∣∣ �
∑
k |= 0

∣∣∣∣f̂
(

k

h

)∣∣∣∣ � Chp
∑
k |= 0

1

|k|p � C′hp.

2. Modified trapezoidal rules

We will construct modified trapezoidal rules with a singularity correction for functions with isolated
singularities. More precisely, we consider functions f (x)= s(x)φ(x) where φ(x) is regular and

s(x)= |x|γ with

{
γ ∈ (−1, 0), x ∈ R,

γ = −1, x ∈ R
2.

(2.1)
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2.1 Simple correction

Let us define the punctured trapezoidal rule, as applied to a compactly supported function f :

T0
h [f ] =

∑
β |= 0

hdf (βh), β ∈ Z
d . (2.2)

Introduce the simply corrected quadrature rule Q0
h[φ · s] = T0

h [φ · s] + a(h)ω0φ(0), where a(h) is a
weight factor depending on the singularity and it is known beforehand. The correction weight ω0(h)
is defined by

a(h)ω0(h)g(0)=
∫

g(x)s(x) dx − T0
h [g · s], (2.3)

where g(x) is a compactly supported function with g(x) |= 0. The function g(x) is introduced to annihilate
the boundary errors from the punctured trapezoidal rule.

If the weight factor a(h) is chosen correctly, then ω0(h)→ ω̄0 as h → 0 where ω̄0 does not depend
on h nor on g. The convergence rate of ω0(h)→ ω̄0, however, depends strongly on the choice of g.
Convergence is fast when the function g is flat at the singularity, i.e., it has several derivatives that
vanish at the origin; see Section 4.

The modified quadrature rule reads

Q0
h[φ · s] = T0

h [φ · s] + a(h)ω̄0φ(0), (2.4)

where for a space of dimension d,
a(h)= hds(h)= hγ+d . (2.5)

We will show below that adding a modification at the origin in this way will lead to a method of
order O(h2+d+γ ) for s(x) given by (2.1). This assumes that the function φ(x) is regular enough, and
also compactly supported within the integration domain. If it is not compactly supported, T0

h should be
replaced by a boundary-corrected punctured trapezoidal rule (see Alpert, 1995).

2.2 Higher-order correction

A higher-order quadrature rule will involve more correction weights. Define

Qp
h[φ · s] = T0

h [φ · s] + a(h)
∑
β∈Lp

ω̄βφ(βh), (2.6)

where
Lp = {β ∈ Z

d s.t. |β|1 � p}. (2.7)

In analogy with (2.3), the weights should satisfy the following equations:∫
g(x)s(x)x2α dx = T0

h [g · s · x2α] + a(h)
∑
β∈Lp

ωβ(h)(βh)2αg(βh) ∀α s.t. |α|1 � p. (2.8)

Temporarily denote the weight associated with a point (xi, yj) (β = (i, j)) by wi,j. We then require
w±i,±j = w±j,±i for all possible combinations of signs. Such a weight will be denoted by wm

q , where
q = |i| + |j|, and m will be defined below. Due to these symmetry assumptions for the weights, the
equations in (2.8) are stated only for even-order monomials since the equations for odd monomials
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p=1 p=2 p=3

β
1

β 2
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0

1

2

3

Fig. 1. The sets Lp include all grid points on and inside the layers indicated in the figure.

are automatically satisfied. We will show that the number of unknown weights equals the number of
equations in (2.8).

Let us now consider the two-dimensional case. Consider sets Lp as in (2.7), with d = 2 (see Fig. 1).
Introduce the subsets Gm

q ⊂Lp over which weights are equal,

Gm
q = {β ∈ Z

2 s.t. |β|1 = q, |β|2 =
√

m2 + (q − m)2}, (2.9)

for q = 0, . . . , p and m = 0, . . . , [q/2]. This defines disjoint subsets of Lp such that Gm
q ∩ Gm′

q′ = 0 for
m |= m′, or q |= q′ and

⋃
q�p

⋃
m�[q/2] Gm

q =Lp.
To each of these sets Gm

q we associate one weight ωm
q . The number of all distinct weights associated

with Lp is

Np =
p∑

m=0

([m/2] + 1)=
{
(p/2)2 + p + 1 if p is even,

(p + 1)2/4 + (p + 1)/2 if p is odd.
(2.10)

We want to enforce (2.8) for all α such that |α| � p. This set can be described by α ∈Mp with

Mp =
⋃
q�p

⋃
m�[q/2]

{(q − m, m)}. (2.11)

For this set, we have |Mp| = Np, and (2.8) constitutes a square system. Relating to the notation above,
we have αm

q = (q − m, m).
In Table 1 we list the monomials along with the sets of discretization points where the weights are

corrected for layers up to q = 4. The first two columns provide the levels q and m at which we take a
monomial x2α , where α = αm

q is listed in the third column. The last two columns list the sets of points,
Gm

q and the associated weights ω̄m
q .

Hence, we solve the following Np × Np linear system of equations:

a(h)
p∑

q=0

[q/2]∑
m=0

ωm
q

∑
β∈Gm

q

g(βh)(βh)2α =
∫

g(x)s(x)x2α dx − T0
h [g · s · x2α] ∀α ∈Mp. (2.12)
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Table 1 Sets of discrete points Gm
q for different values of q

q m αm
q = (q − m, m) x2α Gm

q Associated weight ω̄m
q

0 0 (0,0) 1 (0,0) ω̄0
0

1 0 (1,0) x2
1 (±1, 0) (0, ±1) ω̄0

1

2 0 (2,0) x4
1 (±2, 0) (0, ±2) ω̄0

2

1 (1,1) x2
1x2

2 (±1, ±1) ω̄1
2

3 0 (3,0) x6
1 (±3, 0) (0, ±3) ω̄0

3

1 (2,1) x4
1x2

2 (±2, ±1) (±1, ±2) ω̄1
3

4 2 (2,2) x4
1x4

2 (±2, ±2) ω̄2
4

1 (3,1) x6
1x2

2 (±3, ±1) (±1, ±3) ω̄1
4

0 (4,0) x8
1 (±4, 0) (0, ±4) ω̄0

4

5 2 (3,2) x6
1x4

2 (±3, ±2) (±2, ±3) ω̄2
5

1 (4,1) x8
1x2

2 (±4, ±1) (±1, ±4) ω̄1
5

0 (5,0) x10
1 (±5, 0) (0, ±5) ω̄0

5

In order to recast this system in matrix notation we introduce an index i = 0, . . . , Np − 1 and define
αi, ωi and Gi from αm

q , ωm
q and Gm

q , respectively, by letting i = Nq + m, where Nq is given by (2.10). We

can then introduce the matrices K, Ĩ ∈ R
Np×Np with elements

Kij =
∑
β∈Gj

β2αi , i, j = 0, . . . , Np − 1

and

Ĩij = g(βh)δij, β ∈ Gj, i, j = 0, . . . , Np − 1,

which is well defined since the function g(βh) takes the same value for all β ∈ Gi.
The right-hand side of the system becomes

ci(h)= 1

h2|αi|a(h)

(∫
g(x)s(x)x2αi dx − T0

h [g · s · x2αi ]

)
, i = 0, . . . , Np − 1.

These expressions lead to the system

KĨ(h)ω(h)= c(h). (2.13)

Here, the solution vector ω(h)= (ω0(h), . . . ,ωNp−1(h)) and the right-hand side c(h)=
(c0(h), . . . , cNp−1(h)) have the ordering provided by the new indexing.

For a given p consider the converged solution ω(h)→ ω̄ of system (2.13) and define the modified
quadrature rule for a singularity s(x) with modified weights ω̄m

q ,

Qp
h[φ · s] = T0

h [φ · s] + Ap
h[φ], (2.14)
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with

Ap
h[φ] = a(h)

p∑
q=0

[q/2]∑
m=0

ω̄m
q

∑
β∈Gm

q

φ(βh), (2.15)

where Gm
q is as in (2.9). The constructed rule Qp

h has accuracy O(h2p+3); see Theorem 3.7.
In one dimension the expressions for the sets Lp, Mp greatly simplify since in this context

Np = p + 1 and

Lp = {β ∈ Z, |β| = j, j � p}, Mp = {α ∈ N,α = j, j � p}, Gi = {±i}.

So K ∈ R
(p+1)×(p+1) has elements K00 = 1 and otherwise the Vandermonde structure Kij = 2j2i. More-

over, Ĩij(h)= g(ih)δij. The right-hand-side entries are simply

ci(h) := 1

h2ia(h)

[∫
g(x)s(x)x2i dx − T0

h [g · s · x2i]

]
.

The corrected, punctured trapezoidal rule Qp
h defined as in (2.14) has the correction operator

Ap
h[φ] := a(h)

p∑
j=0

ω̄j(φ(jh)+ φ(−jh)). (2.16)

3. Theoretical analysis

The techniques used to prove the accuracy of the modified quadrature rule differ in the one-dimensional
set-up from the two-dimensional one. The Fourier approach is chosen for the lower dimension while
in two dimensions the Euler–Maclaurin formula is applied in each direction. In this analysis, we focus
on the errors due to the singularities and the accuracy of the singularity corrections. Therefore, we
consider the integration of f (x)= φ(x)s(x), where φ(x) is compactly supported within the integration
domain.

To begin with we provide an accuracy result for the punctured trapezoidal rule. Using this result
we obtain an error estimate of the modified trapezoidal rule in terms of h and the difference ω(h)− ω̄

in Theorem 3.7, where ω(h)− ω̄ can be made sufficiently small with a proper choice of g so that
it does not alter the asymptotic order. This is proved in the one-dimensional case, where we show
that ω(h)→ ω̄ and also obtain an estimate of |ω(h)− ω̄|, thus yielding a complete error estimate
for the modified trapezoidal rule in one dimension. In two dimensions, we offer no rigorous proofs
for the convergence of the weights, but note the same behaviour as in one dimension in numerical
experiments.

3.1 Accuracy of the punctured trapezoidal rule

To prove the order of convergence of the constructed quadrature rule we start by deriving an error
estimate for the punctured trapezoidal rule. Theorem 3.1 states the one-dimensional result. The corre-
sponding two-dimensional result in Theorem 3.2 is weaker; note that the function f = g̃ · s vanishes at
the origin, thus Th[f ] = T 0

h [f ]. General error estimates of the type below were derived in Lyness (1976).
However, those also include the boundary errors and do not cover the cases we are interested in here.
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Theorem 3.1 Consider f : R → R given as f = g(x)s(x) where s(x)= |x|γ with γ >−1. Let p and q be
integers such that 0 � p< q and 2q + 1> γ . Take g(x) ∈ C2q+2

c (R)with g(k)(0)= 0 for k = 2, 4, . . . , 2p.
Then ∣∣∣∣

∫
f (x) dx − T0

h [f ] − g(0)hγ+1c̄(γ )

∣∣∣∣ � C(h2p+γ+3 + h2q+2),

where c̄(γ ) depends on γ but is independent of h and g.

We note that if γ > 0 this also gives an estimate for the standard trapezoidal rule since then f (0)= 0
and Th[f ] = T0

h [f ]. The proof of this theorem is given in Section 3.1.1. In Lemma A2 in the Appendix,
a closed form expression for c̄(γ ) is given.

Theorem 3.2 Consider f : R
2 → R given as f (x)= g̃(x)s(x)where s(x)= 1/|x|. Let q and p be integers

such that q> p. Take g̃ ∈ C2q+3
c (R2) with ∂kg̃(0)= 0 for all k ∈ N

2 such that |k|< 2p + 2. Then it holds
that ∣∣∣∣

∫
f (x) dx − Th[f ]

∣∣∣∣ � Ch2p+3.

This theorem is proved in Section 3.1.2.

3.1.1 One-dimensional case In this section we prove Theorem 3.1. We begin by introducing a cut-off
function ψ ∈ C∞ satisfying ψ(x)=ψ(−x) and

ψ(x)=
{

0, |x| � 1
2 ,

1, |x| � 1.
(3.1)

We then have
T0

h [f ] = Th[fψ(·/h)].
Consequently,∫

f (x) dx − T0
h [f ] =

∫
f (x)(1 − ψ(x/h)) dx +

∫
f (x)ψ(x/h) dx − Th[fψ(·/h)], (3.2)

and we can estimate the two parts separately. For the first term we have

∫
f (x)(1 − ψ(x/h)) dx =

∫ h

−h
g(x)s(x)(1 − ψ(x/h)) dx

= hγ+1
∫ 1

−1
g(hx)s(x)(1 − ψ(x)) dx, (3.3)

where we have used the definition of ψ in (3.1) and a rescaling of the interval. By the symmetry of ψ(x)
and s(x) and the assumption of vanishing derivatives,

∫ 1

−1
(g(hx)− g(0))s(x)(1 − ψ(x)) dx =

∫ 1

−1

⎛
⎝g(hx)−

2p+1∑
j=0

g(j)(0)

j!
(hx)j

⎞
⎠ s(x)(1 − ψ(x)) dx.
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Therefore, after estimating the remainder term in the Taylor expansion of g(x), which is bounded by
C̃h2p+2|x|2p+2,

∣∣∣∣
∫ 1

−1
(g(hx)− g(0))s(x)(1 − ψ(x)) dx

∣∣∣∣ � C̃h2p+2
∫ 1

−1
|x|γ+2p+2|1 − ψ(x)| dx � Ch2p+2. (3.4)

Define

c̄1(γ )=
∫ 1

−1
s(x)(1 − ψ(x)) dx.

Then we obtain from (3.4) and (3.3),

∣∣∣∣
∫

f (x)(1 − ψ(x)) dx − g(0)hγ+1c̄1(γ )

∣∣∣∣ = hγ+1

∣∣∣∣
∫ 1

−1
(g(hx)− g(0))s(x)(1 − ψ(x)) dx

∣∣∣∣
� Ch2p+γ+3. (3.5)

For the second term in (3.2) we can use the strategy based on the Fourier analysis as in Section 1.2
for the standard trapezoidal rule applied to f (x)ψ(x/h). Hence, since f (x)ψ(x/h) ∈ C2q+2

c (R) we obtain
from the Poisson summation formula (1.5),

Th[fψ(·/h)] =
∫

f (x)ψ(x/h) dx +
∑
k |= 0

f̂ψ(k/h, h),

f̂ψ(k, h)=
∫

f (x)ψ(x/h) e−2π ikx/h dx.

(3.6)

Moreover, by the symmetry of ψ(x),

f̂ψ(k/h, h)+ f̂ψ(−k/h, h)= 2
∫

g(x)s(x)ψ(x/h) cos(2πkx/h) dx

= 2�
∫ ∞

0
(g(x)+ g(−x))s(x)ψ(x/h) e2π ikx/h dx. (3.7)

We will now use Lemma 3.3 stated and proved below, which provides estimates on oscillatory
integrals of this type. Since the even derivatives of g(x) are zero up to order 2p at x = 0, all derivatives
of g̃(x)= g(x)+ g(−x) are zero up to order 2p + 1 at x = 0. We can therefore apply Lemma 3.3 to the
integral with 2p + 1 for p and 2q + 2 for q. We obtain

∫ ∞

0
(g(x)+ g(−x))s(x)ψ(x/h) e2π ikx/h dx = g̃(0)W(2πk)hγ+1(2πk)−2(q+1)

+ O(k−2(q+1)(hγ+2p+3 + h2q+2)). (3.8)
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Using (3.7) combined with (3.8), an expression for f̂ψ(k/h, h)+ f̂ψ(−k/h, h) is obtained. Rewriting the
sum in (3.6) to use this expression, we get

Th[fψ(·/h)] =
∫

f (x)ψ(x/h) dx + 2�
∞∑

k=1

∫ ∞

0
(g(x)+ g(−x))s(x)ψ(x/h) e2π ikx/h dx

=
∫

f (x)ψ(x/h) dx + 4g(0)hγ+1�
∞∑

k=1

W(2πk)

(2πk)2(q+1)

+ [hγ+2p+3 + h2q+2]
∞∑

k=1

O(k−2(q+1))

=
∫

f (x)ψ(x/h) dx + g(0)hγ+1c̄2(γ )+ O(hγ+2p+3 + h2q+2), (3.9)

where

c̄2(γ )= 4�
∞∑

k=1

W(2πk)

(2πk)2(q+1)
.

Note that this is well defined since q � 0 and W(k) is bounded in k. Using (3.2) we get

∣∣∣∣
∫

f (x) dx − T0
h (f )− g(0)hγ+1(c̄1(γ )− c̄2(γ ))

∣∣∣∣
�

∣∣∣∣
∫

f (x)(1 − ψ(x/h)) dx − g(0)hγ+1c̄1(γ )

∣∣∣∣
+

∣∣∣∣
∫

f (x)ψ(x/h) dx − Th(fψ(·/h))+ g(0)hγ+1c̄2(γ )

∣∣∣∣ .

The result of Theorem 3.1 now follows from (3.5) and (3.9) with

c̄(γ )= c̄1(γ )− c̄2(γ )=
∫ 1

−1
s(x)(1 − ψ(x)) dx − 4�

∞∑
k=1

W(2πk)

(2πk)2(q+1)
,

which is independent of h and g(x). It remains to state and prove Lemma 3.3.

Lemma 3.3 Let p and q be integers such that 0 � p< q and h and k are positive real numbers, and γ be
any real number. Suppose g(x) ∈ Cq

c with supp g ⊂ [0, L] and g(�)(0)= 0 for �= 1, . . . , p. If q> γ + 1
and ψ(x) is as given in (3.1), then there is a function W(k) such that

∣∣∣∣
∫ ∞

0
ψ(x/h)g(x)xγ eikx/h dx − g(0)W(k)hγ+1k−q

∣∣∣∣ � Cqk−q(hγ+2+p + hq), (3.10)

where W(k) is bounded in k and independent of h and g(x) (but depends on q).
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Proof. We let s(x)= xγ and note that |s(j)(x)| � Cxγ−j. Since supp ψ(x/h)g(x)⊂ [h/2, L] ⊂ (0, ∞) we
have, after q integrations by parts,

I(h, k) :=
∫ ∞

0
ψ(x/h)g(x)s(x) eikx/h dx =

(
ih

k

)q ∫ ∞

0

(
dq

dxq
ψ(x/h)g(x)s(x)

)
eikx/h dx.

Define W(k) as

W(k)= iq
∫ ∞

0

(
dq

dxq
ψ(x)s(x)

)
eikx dx. (3.11)

Clearly, W(k) does not depend on h. Moreover, ψ(j)(x) is compactly supported for j � 1 and |s(q)(x)| �
xγ−q is integrable because q> γ + 1. Therefore,

|W(k)| �
∫ ∞

0
|ψ(x)s(q)(x)| dx +

q∑
j=1

dq,j

∫ ∞

0
|ψ(j)(x)s(q−j)(x)| dx � C,

where dq,j are the binomial coefficients. The estimate is independent of k, showing the boundedness of
W(k). After rescaling the integral we also have

W(k)= iqhq−1
∫ ∞

0

(
dq

dxq
ψ(x/h)s(x/h)

)
eikx/h dx

= iqhq−1−γ
∫ ∞

0

(
dq

dxq
ψ(x/h)s(x)

)
eikx/h dx.

Then, with r(x) :=ψ(x/h)g(x),

I(h, k)− g(0)W(k)hγ+1k−q

=
(

ih

k

)q ∫ ∞

0

(
dq

dxq
[r(x)− g(0)ψ(x/h)]s(x)

)
eikx/h dx

=
(

h

ik

)q q∑
j=0

dq,j

∫ ∞

0
[r(j)(x)− g(0)h−jψ(j)(x/h)]s(q−j)(x) eikx/h dx. (3.12)

We have the following expression for the derivatives of r(x):

r(j)(x)=

⎧⎪⎪⎨
⎪⎪⎩

j∑
�=0

dj,�

hj−� ψ
(j−�)(x/h)g(�)(x), h/2 � x � h,

g(j)(x), h< x � L,
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since ψ(j)(x)≡ 0 for j> 0 and x> h. Let δi,j be the Kronecker delta. Exploiting the facts that ψ(x/h)≡ 0
for x< h/2 and ψ(x/h)≡ 1 for x> h we obtain, for 0 � j � q,

∫ ∞

0
[r(j)(x)− g(0)h−jψ(j)(x/h)]s(q−j)(x) eikx/h dx

=
∫ h

h/2

[
j∑

�=0

dj,�

hj−� ψ
(j−�)(x/h)g(�)(x)− 1

hj
ψ(j)(x/h)g(0)

]
s(q−j)(x) eikx/h dx

+
∫ L

h
g(j)(x)s(q−j)(x) eikx/h dx − δ0,jg(0)

∫ ∞

h
s(q)(x) eikx/h dx

=
j∑

�=0

dj,�

hj−�

∫ h

h/2
ψ(j−�)(x/h)[g(�)(x)− δ0,�g(0)]s

(q−j)(x) eikx/h dx

+
∫ L

h
[g(j)(x)− δ0,jg(0)]s

(q−j)(x) eikx/h dx

− δ0,jg(0)
∫ ∞

L
s(q)(x) eikx/h dx. (3.13)

We will now use the assumption that g(�)(0)= 0 for 1 � �� p. From Taylor’s theorem we get

|g(j)(x)− g(j)(0)| � |g(p+1)|∞ |x|p+1−j

(p + 1 − j)!
= C|x|p+1−j, 0 � j � p,

and therefore also

|g(j)(x)− δ0,jg(0)| � Cxmax(p+1−j,0).

We use this to estimate the integrals in (3.13). First, for 0 � j � q and 0 � �� j,

1

hj−�

∣∣∣∣
∫ h

h/2
ψ(j−�)(x/h)[g(�)(x)− δ0,�g(0)]s

(q−j)(x) eikx/h dx

∣∣∣∣
� C

hj−�

∫ h

h/2
xmax(p+1−�,0)+γ−q+j dx � Chmax(p+1−�,0)+γ−q+1+�

� Chp+2+γ−q,

where we used the fact that hmax(r,0) � hr when h< 1. Moreover, for the second integral in (3.13),

∣∣∣∣
∫ L

h
[g(j)(x)− δ0,jg(0)]s

(q−j)(x) eikx/h dx

∣∣∣∣
� C

∫ L

h
xmax(p+1−j,0)+γ−q+j dx � C(hmax(p+1−j,0)+γ−q+j+1 + 1)

� C(hp+2+γ−q + 1).
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Finally, for the last integral in (3.13),∣∣∣∣
∫ ∞

L
s(q)(x) eikx/h dx

∣∣∣∣ � C
∫ ∞

L
xγ−q dx � C,

since q> γ + 1. Together with (3.12) these estimates show that

|I(h, k)− g(0)W(k)hγ+1k−q| � C

(
h

k

)q

(hp+2+γ−q + 1)� Ck−q(hγ+2+p + hq).

This proves the lemma. �

3.1.2 Two-dimensional case The Euler–Maclaurin expansion formula is the basis for the theoretical
analysis in two dimensions. Since it provides an error estimate based on the cancellation and bounded-
ness of higher-order derivatives—see (1.1)—we first evaluate the higher-order derivatives of the singu-
lar function s(x)= 1/|x|. The concluding result of this subsection is the proof of Theorem 3.2.

Lemma 3.4 The partial derivatives of order k of xα/|x| with x = (x1, x2) are given as

∂k xα

|x| = 1

|x||k|−|α|+1
Pk,α

(
x
|x|

)
, (3.14)

where Pk,α is a polynomial with deg Pk,α = |k| + |α| in two variables Pk,α(x)= Pk,α(x1, x2).

Proof. For k = (0, 0) we have

∂k xα

|x| =
(

x
|x|

)α 1

|x|1−|α| ,

which agrees with (3.14) with Pk,α(z)= zα . We let P(j)k,α(x1, x2) := ∂xjPk,α(x1, x2) and note that these are
polynomials of degree one less than the degree of Pk,α(x1, x2) itself. Assume that the theorem statement
is true for k and let k → k + e1. Then we want to show that

∂k+e1
xα

|x| = 1

|x||k|−|α|+2
Pk+e1,α

(
x
|x|

)
,

for some polynomial Pk+e1,α of degree |k| + |α| + 1. By applying the chain rule and evaluating,
we get

∂x1

1

|x||k|−|α|+1
Pk,α

(
x
|x|

)
= Pk,α

(
x
|x|

)
∂x1

1

|x||k|−|α|+1

+ 1

|x||k|−|α|+1

((
1

|x| − x2
1

|x|3
)

P(1)k,α

(
x
|x|

)
+

(
x1x2

|x|3
)

P(2)k,α

(
x
|x|

))

= −(|k| − |α| + 1)x1

|x||k|−|α|+3
Pk,α

(
x
|x|

)
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+ 1

|x||k|−|α|+2

((
1 − x2

1

|x|2
)

P(1)k,α

(
x
|x|

)
+

(
x1x2

|x|2
)

P(2)k,α

(
x
|x|

))

=:
1

|x||k|−|α|+2
Pk+e1,α

(
x
|x|

)
,

where deg Pk+e1,α = |k| + |α| + 1, which is what we needed to show. The case k → k + e2 can be
proved in the same way. This induction step proves that the expression provided by the lemma is
valid. �

Lemma 3.5 Let Ω ⊂ R
2 be a compact set. Consider f :Ω → R given as f (x)= g̃(x) · s(x) where

s(x)= 1/|x| and g̃ ∈ Cq(Ω) has vanishing derivatives up to order p � q at the origin: ∂kg̃(0)= 0 for
all k ∈ N

2 such that |k|< p. Then, for each |n| � q there is a constant C(n) independent of x and p,
such that

|∂nf (x)| � C(n)|x|p−1−|n| ∀x ∈Ω \ {0}.

Proof. In order to compute the higher-order derivatives of f the Leibniz rule is applied:

∂n(f (x))= ∂n(g̃(x) · s(x))=
∑

�+r=n

bn
�r∂

�g̃(x)∂rs(x),

where bn
�r are binomial coefficients. By Taylor expanding ∂�g̃ and recalling that ∂kg̃(0)= 0 for all k ∈ N

2

such that |k|< p, we have, for |�|< p,

∂�g̃(x)=
p−1−|�|∑
|k|=0

xk

k!

∂(�+k)g̃(0)
∂xk

+ R�(x)|x|p−|�| = R�(x)|x|p−|�|.

On the other hand, when p � |�| � q we just use the boundedness of ∂�g̃ over Ω and obtain, for all
x ∈Ω ,

|∂�g̃(x)| � C0

{
|x|p−|�|, |�|< p,

1, p � |�| � q,
C0 = max

|�|�|n|
sup
x∈Ω

max(|R�(x)|, |∂�g̃(x)|).

By using Lemma 3.4 with α = 0 for ∂rs(x) we have, for r � n,

|∂rs(x)| = 1

|x||r|+1
Pr,0

(
x
|x|

)
� C1

|x||r|+1
, C1 = max

|r|�|n|
sup

x

∣∣∣∣Pr,0

(
x
|x|

)∣∣∣∣ ,

where C1 is bounded since {x/|x|, x ∈ R
2} is compact. Together these estimates yield

|∂n(f (x))| �
∑

�+r=n

bn
�r|∂�g̃(x)||∂rs(x)|

� C0C1

∑
�+r=n

bn
�r

|x||r|+1

{
|x|p−|�|, |�|< p,

1, p � |�| � q,

= C0C1

∑
�+r=n

bn
�r

{
|x|p−1−|n|, |�|< p,

|x|−|r|−1, p � |�| � q.
(3.15)
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Let η := supx∈Ω |x|. Then, when p � |�| � |n| � q,

max
�+r=n

|x|−|r|−1 = max
�+r=n

1

η|r|+1

∣∣∣∣x
η

∣∣∣∣
−|r|−1

�
(

max
�+r=n

1

η|r|+1

) ∣∣∣∣x
η

∣∣∣∣
p−1−|n|

=: C2|x|p−1−|n|.

Entering this in (3.15) we finally have

|∂n(f (x))| � |x|p−1−|n|C0C1

∑
�+r=n

bn
�r(1 + C2),

which proves the lemma since the sum is bounded independently of p. �

Lemma 3.6 Consider f :R2 → R given as f (x)= g̃(x) · s(x) where s(x)= 1/|x|. Take g̃ ∈ C2m+3
c (R2)

with ∂kg̃(0)= 0 for all k ∈ N
2 such that |k|< 2p + 2. Then∫ a

−a
|∂n(g̃(x)s(x))| dx1 � C|x2|2p−2m, |n| = 2m + 2,

with x = (x1, x2), x2 |= 0, when m> p. This estimate is also true when m = p if n contains at least one
derivative in the x1 direction, i.e., if we can write n = ñ + e1 for some multiindex ñ.

Proof. We first consider the case m> p. By using Lemma 3.5 with 2p + 2 for p we estimate the inte-
grand ∫ a

−a
|∂ng̃(x)s(x)| dx1 � C(n)

∫ a

−a
|x|2p+1−|n| dx1 = C(n)

∫ a

−a
|x|2p−2m−1 dx1. (3.16)

Since x2 |= 0 we can perform the change of variables x1 = x2s and dx1 = x2 ds. We obtain∫ a

−a
|x|2p−2m−1 dx1 = |x2|2p−2m

∫ a/x2

−a/x2

√
1 + s2

2p−2m−1
ds

� |x2|2p−2m
∫ ∞

−∞

1
√

1 + s22m−2p+1 ds � C|x2|2p−2m, (3.17)

since here 2m − 2p + 1> 1, which means that the integral is bounded.
Now we turn to the case m = p and define the polynomial

Q(x)=
∑

|�|=2p+2

∂�g̃(0)

∂x�
x�

�!
.

Since ∂kQ(0)= 0 for |k|< 2p + 2, this polynomial has the property that

∂k[g̃(x)− Q(x)]|x=0 = 0, |k| � 2p + 2. (3.18)

The function f can be split as

f (x)= (g̃(x)− Q(x))s(x)+ Q(x)s(x). (3.19)
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We can now use Lemma 3.5 for (g̃ − Q)s with 2p + 2 zero derivatives instead of only 2p + 1 as in the
case m> p. This is allowed since g̃ has 2m + 3 = 2p + 3 continuous derivatives. Then, in the same way
as in (3.17) we find a constant C1 such that

∫ a

−a
|∂n[g̃(x)− Q(x)]s(x)| dx1 � C1|x2|2p−2m = C1. (3.20)

Next we seek to bound the nth derivative of Q(x)s(x) and proceed by splitting n = ñ + e1. We first take
the ñth derivative and from Lemma 3.4 with |k| = 2p + 1 and |α| = 2p + 2 we obtain

∂ ñ[Q(x)s(x)] =
∑

|�|=2p+2

∂�g̃(0)

�!∂x�
Pñ,�

(
x
|x|

)
=: P

(
x
|x|

)
. (3.21)

By further taking the derivative in the e1 direction and using the same differentiation as in Lemma 3.4
we have

∂n[Q(x)s(x)] = ∂x1P

(
x
|x|

)
= x2

|x|2 E

(
x
|x|

)
, (3.22)

where E is another polynomial. We note that supx |E(x/|x|)| =: C2 <∞ as before. In order to bound the
integral over ∂n[Q(x)s(x)] we apply the change of variables x1 = sx2 once more and obtain

∫ a

−a
|∂n[Q(x)s(x)]| dx1 =

∫ a

−a

∣∣∣∣ x2

|x|2 E

(
x
|x|

)∣∣∣∣ dx1 � C2

∫ a

−a

|x2|
|x|2 dx1

= C2

∫ a/x2

−a/x2

1

1 + s2
dx1 � C

∫ ∞

−∞

1

1 + s2
ds = πC2. (3.23)

Gathering (3.20) and (3.23) we finally have that for p = m,

∫ a

−a
|∂n(g̃(x)s(x))| dx1 �

∫ a

−a
|∂n[g̃(x)− Q(x)]s(x)| dx1 +

∫ a

−a
|∂n[Q(x)s(x)]| dx1

� C1 + πC2,

which concludes the proof of the lemma. �

We are now ready to prove Theorem 3.2. Let the compact support of f be denoted by D and suppose
that D ⊂ [−a, a]2. The error estimate will be obtained by evaluating two consequent approximations
according to the split

∫
D

f (x) dx − Th[f ] =
∫

D
f (x) dx −

∫ a

−a
Th[f (·, x2)] dx2 +

∫ a

−a
Th[f (·, x2)] dx2 − Th[f ]

=
∫ a

−a
I1(x2) dx2 +

∑
j∈Z

I2(jh)h, (3.24)
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with

I1(x)=
∫ a

−a
f (x1, x) dx1 − Th[f (·, x)],

I2(x)=
∫ a

−a
f (x, x2) dx2 − Th[f (x, ·)].

(3.25)

We note that by Lemma 3.5 with p set to 2p + 2 we have limx→0 f (x)= 0 and f can therefore be defined
by continuity at the origin. This implies that both I1(x) and I2(x) are continuous at x = 0.

Since f (x) is smooth when x2 |= 0 we obtain from the Euler–Maclaurin expansion (1.3) that

I1(x2)= h2m+2

(2m + 2)!

∫ a

−a
B2m+2

({
x1 + a

h

})
∂2m+2

x1
f (x) dx1,

for any m � q and x2 |= 0. Therefore, since B2m+2({x}) is bounded,

|I1(x2)| � Cmh2m+2
∫ a

−a
|∂2m+2

x1
f (x)| dx1,

for m � q and x2 |= 0. We distinguish two cases according to whether x2 is in the vicinity of the origin
where the singularity plays a bigger role or whether x2 is away from the origin.

When 0< |x2|< h we take m = p and obtain from Lemma 3.6 with n = (2p + 2, 0) that

|I1(x2)| � C1h2p+2.

When |x2| � h we take m = q> p and obtain from Lemma 3.6 that

|I1(x2)| � C2h2q+2|x2|2p−2q.

Now, since I1(x2) is continuous at x2 = 0 the integral can be bounded as

∫ a

−a
|I1(x2)| dx2 � C1h2p+2

∫ h

−h
dx2 + C2h2q+2

∫
a�|x2|>h

|x2|2p−2q dx2

= 2Ch2p+3 + 2Ch2q+2 h2p−2q+1 − a2p−2q+1

2p − 2q + 1
<Ch2p+3. (3.26)

For I2(jh) we obtain, exactly as above,

|I2(jh)| � Ch2q+2|jh|2p−2q = Ch2p+2|j|2p−2q, |j|> 1.

For j = 0 we use the fact that I2 is continuous at x = 0. The same estimate as above then gives

|I2(0)| = lim
x→0

|I2(x)| � Ch2p+2.

This leads to∑
j∈Z

|I2(jh)|h � |I2(0)|h +
∑
|j|�1

|I2(jh)|h � Ch2p+3 + Ch2p+3
∑
|j|�1

j2p−2q � Ch2p+3.
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Using this and (3.26) we get finally get, from (3.24),

∣∣∣∣
∫

D
f (x) dx − Th[f ]

∣∣∣∣ �
∫ a

−a
|I1(x2)| dx2 +

∑
j∈Z

|I2(jh)h| � Ch2p+3,

which concludes the proof of Theorem 3.2.

3.2 Accuracy of the corrected trapezoidal rule

The corrected trapezoidal rule consists of the punctured trapezoidal rule and a correction operator (2.15).
The vector of correction weights ω̄ is defined as the solution to system (2.13),

KI(h)ω(h)= c(h),

as h → 0. We assume throughout this text that the weights ω(h) are well-defined solutions of this system
for sufficiently small h. In two dimensions we also need to assume that the converged values ω̄ obtained
as the limit ω(h)→ ω̄ when h → 0 are well defined; in one dimension this follows from Lemma 3.8.
Theorem 3.7 gives a proof of the convergence rate for the new quadrature rule in both one and two
dimensions based on the assumption that the modified weights are bounded. When the nonconverged
weights ω(h) are used the convergence rate is O(h2p+2+γ+d). In the more practical case, when the
converged weights ω̄ are used, we prove that the convergence rate of the full rule depends on the
convergence rate of the weights—if this rate is fast enough for some g then the overall convergence rate
is unaffected. In one dimension we furthermore show that this fast rate can be obtained by choosing a
flat enough g; see Lemma 3.8. Although we do not prove it, strong numerical evidence confirms that
Lemma 3.8 and the overall rate O(h2p+2+γ+d) hold also in two dimensions.

Theorem 3.7 Given a function φ ∈ C2q+2(Rd) compactly supported and a singular function

s(x)= |x|γ with

{
γ ∈ (−1, 0), x ∈ R,

γ = −1, x ∈ R
2,

consider the modified quadrature applied to f = φ · s written in operator form as

Qp
h[φ · s] = T0

h [φ · s] + Ap
h[φ],

which corresponds to (2.14) with the correction operators (2.16) in one dimension and (2.15) in two
dimensions. Let g ∈ C2q+2

c (Rd) be a radially symmetric function such that g(0)= 1 and ∂kg(0)= 0 for
k � 2p + 1 with p< q. Moreover, let ω(h) be the solution of (2.13) for this g. Then the approximation
error satisfies

|Qp
h[φ · s] − I[φ · s]| � C(h2p+2+γ+d + hγ+d |ω(h)− ω̄|), (3.27)

where I[φ · s] is the analytical integral. In one dimension, by using Lemma 3.8 the estimate leads to

|Qp
h[φ · s] − I[φ · s]| � Ch2p+2+γ+d . (3.28)
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Finally, if Q̃p
h is the quadrature rule where the nonconverged weights ω(h) are used instead of ω̄ in the

correction operator, then

|Q̃p
h[φ · s] − I[φ · s]| � Ch2p+2+γ+d , (3.29)

in both one and two dimensions.

Proof. We start by defining Pφ(x) as the Taylor polynomial of order 2p + 1 of φ at the origin,

Pφ(x) :=
2p+1∑
|α|=0

xα

α!

∂αφ(0)

∂xα
. (3.30)

We furthermore define the compactly supported function φ̃(x)= Pφ(x)g(x) which is an approximation
of φ(x) close to x = 0. Indeed, for |k|< 2p + 2,

∂kφ̃(x)
∣∣∣
x=0

=
∑

�+r=k

k!

r!�!
∂�Pφ(x)∂rg(x)

∣∣∣∣∣
x=0

= ∂kPφ(x)
∣∣
x=0 = ∂kφ(0),

and as a consequence,

∂k[φ(x)− φ̃(x)]|x=0 = 0, |k|< 2p + 2. (3.31)

In order to determine the order of convergence of Qp
h[f ] − I[f ] we split it as

Qp
h[φ · s] − I[φ · s] = T0

h [φ · s] + Ap
h[φ] − I[φ · s]

= Ap
h[φ − φ̃] + (T0

h − I)[(φ − φ̃) · s] + (Qp
h − I)[φ̃ · s]

:= E1 + E2 + E3, (3.32)

and treat these three terms separately.
To estimate E1 we first note that (3.31) implies that, for all x ∈ R

d ,

|φ(x)− φ̃(x)| � C|x|2p+2, C = sup
x∈R

d

|k|=2p+2

1

k!
|∂k(φ(x)− φ̃(x))|<∞.

Also using (2.5) and (2.15) we then get

|E1| = |Ap
h[φ − φ̃]| � Ca(h) sup

β∈Lp

[φ(βh)− φ̃(βh)] � Chγ+d sup
β∈Lp

|βh|2p+2

� Ch2p+2+γ+d , (3.33)

where we assumed that the weights ω̄ are bounded.
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To bound E2 we use Theorem 3.2 in two dimensions and Theorem 3.1 in one dimension, yielding

|E2| = |(T0
h − I)[φ · s − φ̃ · s]| � Ch2p+2+γ+d . (3.34)

It remains to bound E3. Using the fact that φ̃ has the form φ̃ = Pφg with Pφ defined in (3.30) we
have

|E3| = |Qp
h[φ̃ · s] − I[φ̃ · s]| �

2p+1∑
|α|=0

1

α!

∣∣∣∣∂αφ(0)

∂xα

∣∣∣∣ |Qp
h[g · s · xα] − I[g · s · xα]|

� C
2p+1∑
|α|=0

|T0
h [g · s · xα] − I[g · s · xα] + Ap

h[g · xα]|. (3.35)

We now want to show that the terms inside the sum in (3.35) are zero if α1 and/or α2 in α = (α1,α2)

is odd. Since g is radially symmetric, g(x1, x2)= g(±x1, ±x2) for all combinations of signs. The same
holds for s. Therefore,

I[g · s · xα] =
∫

g(x)s(x)xα dx

=
∫

x1�0,x2�0
g(x)s(x)[xα1

1 xα2
2 + (−x1)

α1xα2
2

+ xα1
1 (−x2)

α2 + (−x1)
α1(−x2)

α2 ] dx

=
∫

x1�0,x2�0
g(x)s(x)xα1

1 xα2
2 [1 + (−1)α1 + (−1)α2 + (−1)α1+α2 ] dx,

and this sum vanishes for α1 and/or α2 odd. In a similar way we obtain T0
h [g · s · xα] = 0 for α1 and/or

α2 odd. In one dimension the corresponding expressions are clearly zero if α is odd. For the operator Ap
h

in (2.15) we have

Ap
h[g · xα] = a(h)

p∑
q=0

[q/2]∑
m=0

ω̄m
q

∑
β∈Gm

q

g(βh)(βh)α

= a(h)
p∑

q=0

[q/2]∑
m=0

Cm
q ω̄

m
q hα

∑
β∈Gm

q

βα . (3.36)

Here, we used the fact that g(βh) is constant for all β ∈ Gm
q and we have called this constant Cm

q .
Furthermore, let β = (β1,β2). Since (±β1, ±β2) ∈ Gm

q if β ∈ Gm
q , then

∑
β∈Gm

q

βα =
∑
β∈Gm

q

β
α1
1 β

α2
2 + (−β1)

α1β
α2
2 + β

α1
1 (−β2)

α2 + (−β1)
α1(−β2)

α2

4

=
∑
β∈Gm

q

βα 1 + (−1)α1 + (−1)α2 + (−1)α1(−1)α2

4
= 0, (3.37)
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if α1 or α2 is odd. Hence, we have shown that the terms in (3.35) containing odd polynomials vanish.
Retaining only the even polynomials, we write the sum as

|E3| � C
p∑

|α|=0

|T0
h [g · s · x2α] − I[g · s · x2α] + Ap

h[g · x2α]|. (3.38)

This sum is over all α ∈Mp as defined in (2.11). By (2.12) the first difference in the sum may be
rewritten

T0
h [g · s · x2α] − I[g · s · x2α] = −a(h)

p∑
q=0

[q/2]∑
m=0

ωm
q (h)

∑
β∈Gm

q

g(βh)(βh)2α .

From (3.38), using the formula above and also the definition of Ap
h in (2.15), we obtain

|E3| � C′a(h)
∑

α∈Mp

p∑
q=0

[q/2]∑
m=0

|ωm
q (h)− ω̄m

q ||g(βh)||(βh)|2|α|

� Chγ+d |ω(h)− ω̄|.

By also using (3.33), (3.34) and the split (3.32), the result in (3.27) follows. Finally, to prove (3.29) we
just note that if the weights are changed, the estimate (3.33) for E1 can be done in precisely the same
way, while clearly E3 = 0. �

The estimate (3.28) of the theorem is a consequence of the following Lemma 3.8, upon noting that
we can always find a function g(x) satisfying the assumptions of the theorem with q � 2p + (1 + γ )/2.
Then O(h2q+1−γ−2p)�O(h2p+2) and (3.39) inserted in (3.27) gives (3.28).

Lemma 3.8 Let p and q be integers such that 0 � p< q and 2q + 1> γ + 2p. Suppose g(x) ∈ C2q+2
c (R)

is an even function with g as in Theorem 3.7. Then the approximate weights ω(h) given as the solution
of (2.13) for this g converge to ω̄ and satisfy the error estimate

|ω(h)− ω̄| � C(h2p+2 + h2q+1−γ−2p). (3.39)

Proof. We claim that ω̄ is given as a solution to

Kω̄ = c(γ ),

where c̄(γ ) is defined as c̄ = (c̄0, . . . , c̄Np−1) with c̄i = c̄(γ + 2i) and c̄(γ ) given in Theorem 3.1. Note
that since K is a Vandermonde matrix with Kij = 2j2i it is nonsingular, so ω̄ is well defined. Furthermore
with the notation in Section 2.2 and by Theorem 3.1,

hγ+1+2ici(h)=
∫

g(x)s(x)x2i dx − T0
h [g · s · x2i]

= g(0)hγ+1+2ic̄i + O(h2p+γ+3+2i + h2q+2). (3.40)

Therefore,
|ci(h)− c̄i| � C(h2p+2 + h2q+2−γ−1−2i)� C′(h2p+2 + h2q+1−γ−2p). (3.41)
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By Taylor expanding Ĩ(h) around the origin and using the fact that g(x) has 2p + 1 vanishing deriva-
tives at the origin, we also have

|Ĩ(h)− I| � Ch2p+2, (3.42)

with I the identity matrix. The result (3.39) now follows since

|ω(h)− ω̄| = |Ĩ(h)−1K−1c(h)− K−1c̄(γ )|
= |K−1(c(h)− c̄(γ ))+ (Ĩ(h)−1 − I)K−1c(h)|
� C|c(h)− c̄(γ )| + C′|Ĩ(h)− I|. (3.43)

Using (3.41) and (3.42), this proves the lemma. �

4. Numerical results

The correction weights for the quadrature rules depend on the singularity and must be computed and
tabulated for each singularity under consideration. In this section we first discuss the computation of the
weights, and then provide tabulated weights and discuss examples in one and two dimensions.

4.1 Computing the correction weights

The vector of correction weights ω(h) can be obtained as solutions to system (2.13) with the aid of
a smooth and compactly supported function. How fast these weights converge to their limiting values
ω̄ depends on the number of vanishing derivatives that the compactly supported function has at the
origin—see Lemma 3.8. In practice, we do not choose a compactly supported function but g(x)= e−|x|2k

in such way that it is properly decayed at the boundaries of the domain. Note that for increasing values
of k this function has an increasing number of derivatives that vanish at the origin.

In one dimension the vector of converged weights ω̄ can be obtained as the solution of (A.2), using
the closed form expression of c̄(γ ), and we use these to measure the errors in ω(h). In Fig. 2 the
convergence rate of the weights is displayed for g(x)= e−x2

and g(x)= e−x4
. In the first case, only the

first derivative vanishes at the origin and therefore by Lemma 3.8 we expect a convergence order O(h2).
Similarly, for e−x4

all the derivatives up to third-order evaluate to zero at the origin and thus we expect
O(h4) convergence. The numerical tests confirm the expected orders of convergence.

In two dimensions, we do not have a direct way to obtain the converged weights and system (2.13)
has to be solved as h → 0. A bottleneck in this procedure is the ill conditioning of the linear system;
as the number of modified weights increases the reciprocal condition number of the system reaches
epsilon of the machine. The aim is to obtain the value of the weights with double precision. Therefore,
the systems are solved in multiple precision arithmetic through straightforward Gaussian elimination
followed by repeated Richardson extrapolation.

For g(x)= e−|x|2k
the order of convergence of the weights is O(h2k) and a larger value of k can be

used to speed up the convergence. In Fig. 3, for system (2.13) with p = 3, we show how the choice of k
controls the convergence of the weights with respect to the condition number of the system, κ(A). Note
that the condition number depends only weakly on the choice of g for a fixed h (the data points corre-
sponding to the same h essentially line up along vertical lines). On the horizontal axis we can follow the
growth of the condition number κ(A), while on the vertical axis we can read the error in approximating
the weights. To achieve an error ‖ω̄ − ω(h)‖∞ below a prescribed tolerance, the condition number will
be lower for a larger k, and fewer digits will be lost in the calculations. Hence, not as many digits are

 at K
T

H
 R

oyal Institute of T
echnology on D

ecem
ber 12, 2013

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from
 

http://imajna.oxfordjournals.org/
http://imajna.oxfordjournals.org/


CORRECTED TRAPEZOIDAL RULES FOR A CLASS OF SINGULAR FUNCTIONS 25 of 32

Fig. 2. Error of the weights estimation: circles represent e−x2
; boxes represent e−x4

; dashed lines represent the slopes of the
expected order of convergence: O(h2); O(h4).

Fig. 3. Error in estimating the weights ||ω̄ − ω(h)||∞ versus the condition number of the system κ(A) (p = 3, two-dimensional):
circles represent e−|x|2 ; asterisks represent e−|x|4 ; squares represent e−|x|6 ; triangles represent e−|x|8 .

needed in the multiprecision arithmetic, and the system can be solved much faster. However, it can also
be seen from Fig. 3 that once we use e−|x|8 , the computations for large h display a worse error than
for lower exponents of the Gaussian. This is due to the difficulty in numerically resolving the Gaussian
once the exponent of e−|x|2k

increases. This implies that it will not be feasible to increase k indefinitely
and we must settle for some intermediate value. Consequently, in practice we shall set up system (2.13)
for the function e−|x|6 , compute several solutions ω(h) and use Richardson extrapolation as a final step
in retrieving ω̄ as given in Table 2.

4.2 Applying the quadrature rules: a one-dimensional example

In this section, we study the convergence rates of the newly developed quadrature rules when applied
to a singularity of type |x|γ . We use (2.14) and (2.16) with correction weights at 2p + 1 points, obtained
by solving system (A.2). We consider two cases.

In the first case, we take f (x)= cos(x)|x|γ with γ = −0.8 and p = 2. We include boundaries, but use
high-order boundary corrections given in Alpert (1995) so that the boundaries yield lower errors than the
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Table 2 Modified weights for the 1/|x| singularity in two dimensions

q O(h2q+3) Discretization points Modified weights

0 3 G0
0 = {(0, 0)} ω̄0

0 = 3.9002649200019564 × 100

1 5 G0
0 = {(0, 0)} ω̄0

0 = 3.6714406096247369 × 100

G0
1 = {(±1, 0), (0, ±1)} ω̄0

1 = 5.7206077594304738 × 10−2

2 7 G0
0 = {(0, 0)} ω̄0

0 = 3.6192550095006482 × 100

G0
1 = {(±1, 0), (0, ±1)} ω̄0

1 = 7.0478261675350094 × 10−2

G1
2 = {(±1, ±1)} ω̄1

2 = 6.1845239404762928 × 10−3

G0
2 = {(±2, 0), (0, ±2)} ω̄0

2 = −6.4103079904994854 × 10−3

3 9 G0
0 = {(0, 0)} ω̄0

0 = 3.5956326153661837 × 100

G0
1 = {(±1, 0), (0, ±1)} ω̄0

1 = 7.6498210003072550 × 10−2

G1
2 = {(±1, ±1)} ω̄1

2 = 1.0726043096799093 × 10−2

G0
2 = {(±2, 0), (0, ±2)} ω̄0

2 = −1.0861970941933728 × 10−2

G1
3 = {(±2, ±1), (±1, ±2)} ω̄1

3 = −5.6768989454035010 × 10−4

G0
3 = {(±3, 0), (0, ±3)} ω̄0

3 = 9.3117379008582382 × 10−4

4 11 G0
0 = {(0, 0)} ω̄0

0 = 3.5816901196890991 × 100

G0
1 = {(±1, 0), (0, ±1)} ω̄0

1 = 8.0270822919205118 × 10−2

G1
2 = {(±1, ±1)} ω̄1

2 = 1.3733352021301174 × 10−2

G0
2 = {(±2, 0), (0, ±2)} ω̄0

2 = −1.4045613458587681 × 10−2

G1
3 = {(±2, ±1), (±1, ±2)} ω̄1

3 = −1.1741498011806794 × 10−3

G0
3 = {(±3, 0), (0, ±3)} ω̄0

3 = 1.9899412695107586 × 10−3

G2
4 = {(±2, ±2)} ω̄2

4 = 6.2476521748914537 × 10−6

G1
4 = {(±3, ±1), (±1, ±3)} ω̄1

4 = 9.6911549656793913 × 10−5

G0
4 = {(±4, ±0), (0, ±4)} ω̄0

4 = −1.5657382234231533 × 10−4

5 13 G0
0 = {(0, 0)} ω̄0

0 = 3.5724020676062076 × 100

G0
1 = {(±1, 0), (0, ±1)} ω̄0

1 = 8.2931084474334645 × 10−2

G1
2 = {(±1, ±1)} ω̄1

2 = 1.5807226557430198 × 10−2

G0
2 = {(±2, 0), (0, ±2)} ω̄0

2 = −1.6446295482375981 × 10−2

G1
3 = {(±2, ±1), (±1, ±2)} ω̄1

3 = −1.6998553930113205 × 10−3

G0
3 = {(±3, 0), (0, ±3)} ω̄0

3 = 2.9905345964354009 × 10−3

G2
4 = {(±2, ±2)} ω̄2

4 = 1.5896929239405025 × 10−5

G1
4 = {(±3, ±1), (±1, ±3)} ω̄1

4 = 2.4136953002238568 × 10−4

G0
4 = {(±4, ±0), (0, ±4)} ω̄0

4 = −4.0746367252001358 × 10−4

G2
5 = {(±3, ±2), (±2, ±3)} ω̄2

5 = −8.0410642204279767 × 10−7

G1
5 = {(±4, ±1), (±1, ±4)} ω̄1

5 = −1.7655194334677572 × 10−5

G0
5 = {(±5, ±0), (0, ±5)} ω̄0

5 = 2.8620023884705339 × 10−5
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(a) (b)

Fig. 4. Convergence tests for various singularities: circles represent computed accuracy; the dashed line represents the slope of
the theoretical order of convergence. (a) p = 2, γ = −0.8; O(h8.2); boundary corrections are used; (b) p = 4, γ = −0.5; O(h10.5);
compactly supported integrand.

Table 3 Weights for the quadrature rule Qp
h, with p = 4

for s(x)= |x|−0.5

Discretization
points Weights

j = 0 ω0 = 2.8436476480899424
j = ±1 ω1 = 4.4010623268195800 × 10−2

j = ±2 ω2 = −6.2404540776693907 × 10−3

j = ±3 ω3 = 8.1883632187304387 × 10−4

j = ±4 ω4 = −5.8320747783912244 × 10−4

singularity. The expected convergence rate is O(h2p+3+γ )=O(h6.2) and to preserve this accuracy we
use boundary corrections of order O(h8). The result agrees well with the theory, as reported in Fig. 4(a).

In the second case, we take f (x)= exp−x2
cos(x)|x|γ with γ = −0.5 and p = 4. In this case the func-

tion is essentially zero on the boundaries and no boundary correction is needed. Theory predicts a con-
vergence rate of O(h10.5) which holds up well; see Fig. 4(b). We also record in Table 3 the correction
weights for the quadrature rule used in this case (p = 4 and γ = −0.5).

4.3 Applying the quadrature rules: a two-dimensional example

Consider an essentially compactly supported function, e.g., φ(x, y)= cos(x) e−(x2+y2) and evaluate∫ 8

−8

∫ 8

−8

φ(x, y)√
x2 + y2

dx dy. (4.1)

On this chosen integral we test the set of quadrature rules Qp
h, with p = 0, . . . , 5, as defined in (2.14).

The improvement in accuracy as p increases can be observed in Fig. 5 and in Table 4 where the order of
convergence obtained through numerical experiment is compared with the theoretical one. The expected
order of convergence for Qp

h is 13. In practice even higher-order quadrature rules (p> 5) do not seem to
result in better accuracy; in the asymptotic range, round-off errors dominate in double precision.
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Fig. 5. Accuracy results for increasing values of p (in direction of arrow): stars represent p = 0; asterisks represent p = 1; squares
represent p = 2; triangles represent p = 3; circles represent p = 4; diamonds represent p = 5.

Table 4 Computed order of convergence,
numerical versus theoretical—two-dimensional
case

Convergence order

p Theoretical Numerical

0 3 3.0040
1 5 4.9854
2 7 6.9356
3 9 8.8563
4 11 10.7476
5 13 12.6107

5. Conclusion

We have constructed and also proved the accuracy of high-order quadrature rules that handle singular
functions of the type s(x)= |x|γ with γ >−1 in one dimension and γ = −1 in two dimensions. The
quadrature rules are based on the well-known trapezoidal rule, but with modified weights close to the
singularity. They can be applied in a straightforward manner by using the modified weights which have
been computed and tabulated in this paper.

In the construction of the quadrature rules we used compactly supported functions to annihilate
boundary errors and accelerate the convergence of the correction weights. If the quadrature rule is to be
applied to functions that are neither periodic nor compactly supported within the domain, it should be
combined with boundary corrections for the trapezoidal rule of sufficiently high order to exhibit the full
convergence order it has been designed to have. The correction operator associated with the singularity
remains the same whether or not boundary corrections are necessary.

The modified weights are obtained as the solution of an ill-conditioned linear system of equations.
We have described how this system is set up and discussed its ill conditioning. The convergence rate
of the weights depends on the flatness of the compactly supported function used to annihilate boundary
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errors, i.e., on the number of derivatives that vanish at the singular point. We illustrate this property
in numerical examples and prove mathematically its validity in the one-dimensional case. With an
improved convergence rate for the weights, a larger h can be used, which to some extent alleviates
the ill-conditioning problem. To be able to compute the weights with 16 correct digits, a multiprecision
library is used. In one dimension, we were able to find an analytical expression for the right-hand side
of the system such that converged weights can be computed directly (see the Appendix).

The methodology for setting up the system for the weights can be extended also to other singulari-
ties, e.g., the fundamental solution of the Stokes equations (see Marin et al., 2012) which is not radially
symmetric in all its tensorial components as the functions |x|γ , and more complicated symmetries, must
be taken into account.

The integration of 1/|x| in R
2 as considered here, can also be viewed as an integration of the fun-

damental solution of the Laplace equation over a flat surface in R
3. This relates to the discretization of

boundary integral formulations, where integrals are to be evaluated over the boundaries of the domain,
be it an outer boundary, the surface of a scattering object in an electromagnetic application or the sur-
face of an immersed particle in Stokes flow. We therefore plan to extend this work to also consider the
integration of weakly singular integrals over more general smooth surfaces.
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Appendix. Analytical expression for weights (one-dimensional case)

For the one-dimensional case we are able to provide an analytical expression for the weights. The
weights are a solution, as a function of h, of system (2.13) which reads

KĨ(h)ω(h)= c(h). (A.1)

From Lemma 3.8 we know that Ĩ(h) converges to the identity matrix and if we could obtain an analytical
expression, c̄(γ ) which is the limit value of the right-hand side, the weights could be computed simply
by solving a system independent of the discretization such as

Kω̄ = c̄(γ ), (A.2)

where the vector c̄(γ ) has elements (c̄0, . . . , c̄Np−1) with c̄i = c̄(γ + 2i). The function c̄(γ ) was first
encountered in Theorem 3.1 and consequently shown to have the form1

c̄(γ )=
∫ 1

−1
s(x)(1 − ψ(x)) dx − 4�

∞∑
k=1

W(2πk)

(2πk)2q
.

In Lemma A2 we will show that c̄(γ )= −2ζ(−γ ), where ζ is the Riemann zeta function. In the proof
we will make use of the expansion of ζ(γ ) around the pole at γ = 1.

Theorem A1 (Riemann zeta function) For all integers q � 1 and complex values γ with �γ < 2q,

ζ(−γ )= − 1

γ + 1
+ 1

2
−

q∑
j=1

B2j

(2j)!
s(2j−1)(1)− 1

(2q)!

∫ ∞

1
s(2q)(x)B2q({x}) dx,

where s(x)= xγ .

1 We use q instead of q + 1 here for notational simplicity.
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The result in Theorem A1 can be found, for instance, in Abramowitz & Stegun (1964, Formula
23.2.3, p. 807).

Lemma A2 The expression of c̄(γ ) corresponding to a singularity s(x)= |x|γ which generates the right-
hand side to system (A.2) has the closed form expression

c̄(γ )= −2ζ(−γ ),

where ζ is the Riemann zeta function.

Using definition (3.11) of W(k) we have

4�
∞∑

k=1

W(2πk)

(2πk)2q
= 4�

∞∑
k=1

(2π ik)−2q
∫ ∞

0

(
d2q

dx2q
ψ(x)s(x)

)
e2π ikx dx

= 2�
∞∑

k=1

(2π ik)−2q
∫ (

dq

dx2q
ψ(x)s(x)

)
e2π ikx dx

=
∫ (

d2q

dx2q
ψ(x)s(x)

) ∑
k |= 0

e2π ikx

(2π ik)2q
dx

= − 1

(2q)!

∫ (
d2q

dx2q
ψ(x)s(x)

)
B2q({x}) dx,

where we used the formula for the Fourier series of Bq(x), 0 � x< 1. Thus,

c̄(γ )=
∫ 1

−1
s(x)(1 − ψ(x)) dx + 1

(2q)!

∫ (
d2q

dx2q
ψ(x)s(x)

)
B2q({x}) dx.

Since B2q(1 − x)= B2q(x) then by the symmetry of all functions,

1

2
c̄(γ )=

∫ 1

0
s(x)(1 − ψ(x)) dx + 1

(2q)!

∫ ∞

0

(
d2q

dx2q
ψ(x)s(x)

)
B2q({x}) dx. (A.3)

To evaluate the last integral in (A.3), we will now use the Euler–Maclaurin (Theorem 1.1) summation
formula for the integral over [0, 1] and Theorem A1 for the rest. We also need the fact that sinceψ(x)≡ 1
for x � 1,

dj

dxj
ψ(x)s(x)

∣∣∣∣
x=1

= s(j)(1), j � 0.
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We get

1

(2q)!

∫ ∞

0

(
d2q

dx2q
ψ(x)s(x)

)
B2q({x}) dx = 1

(2q)!

∫ 1

0

(
d2q

dx2q
ψ(x)s(x)

)
B2q({x}) dx

+ 1

(2q)!

∫ ∞

1
s(2q)(x)B2q({x}) dx

=
∫ 1

0
ψ(x)s(x) dx − 1

2
s(1)+

q∑
j=1

B2j

(2j)!
s(2j−1)(1)

− ζ(−γ )− 1

γ + 1
+ 1

2
−

q∑
j=1

B2j

(2j)!
s(2j−1)(1)

=
∫ 1

0
ψ(x)s(x) dx − ζ(−γ )−

∫ 1

0
s(x) dx.

Together with (A.3), this shows that
c̄(γ )= −2ζ(−γ ). (A.4)
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