

Introduction to Vectorized
Processing in MATLAB with

Application to MCL

Omid Aghazadeh

Particle Filters

 Components(Similarity to Genetic Algorithm)

Particle Filter Genetic Algorithm

Particle Chromosome(Gene)

Particle Set Population

Diffusion Mutation
Cross-over

Likelihood function(Update process) Fitness Function

Re Sampling Selection

Efficient Implementation of MCL
in MATLAB

 Basic Code Optimizations e.g. Pre Allocation
 Avoiding For Loops: Many Particles → For

Loops over particles will be extremely slow!
 Vectorized Processing (this session)
 Mex implementation
 CUDA Mex implementation (not unless the

problem is High Dimensional and the number of
particles is HUGE)

Introduction to Vectorized
Processing in MATLAB

 Motivation:
 You don't want to wait 10 seconds for each

iteration of MCL to finish! 60 iterations would
mean that for every change in parameters you
have to wait 10 minutes to see the effects!

 Example MATLAB codes
(download from here)

http://www.csc.kth.se/~omida/EL2320_vectorized_2010.zip

Ground Rules!

 Matrices in MATLAB are stored in memory in
column major order:
 2D matrices

 size(A) = [d n] → A(i,j) = A(i + (j-1)*d)
 n-D matrices

 size(A) = [d
1
 d

2
 … d

n
] →

 A(i
1
,i

2
,...,i

n
) = A(i

1
 + (i

2
-1)*d

1
 + (i

3
-1)*d

1
*d

2
 +

 (i
4
-1)*d

1
*d

2
*d

3
 + … + (i

n
-1)*d

1
*...*d

n-1
)

Ground Rules 2

 Vectors better (should!) be stored column
wise in matrices:

V
1
, V

2
, .. ., V

n
 → V= [V

1
 V

2
 … V

n
]

V(i,j) → ith dimension of the jth vector

size(V
1
) = … = size(V

n
) = [d 1] → size(V) = [d n]

 DIMENSIONS! The simplest and most
efficient way to find out if something is wrong!

Ground Rules 3

 Multiple entities(e.g. Matrices) better be
stacked on the last singleton dimension:

 E
1
, E

2
, … , E

n
 →

 E = cat(ndims(E
1
)+1,E

1
,E

2
, … , E

n
)

 size(E
1
) = … = size(E

n
) = [d

1
 d

2
 … d

D
] →

 size(E) = [d
1
 d

2
 … d

D
 n]

 The (:) operator reshapes a matrix to a 1D
vector(the same order as storage in memory)

Basic Operations on Vectors

 Sorting arrays:
 [value,index] = sort(V,'ascend')

 V_asc= V(index); re orders(warps) V in the
order of index (ascending) values (value=V_asc)

 Finding indicies
 index = find(P) e.g. P=[V == max(v)]: finds the

nonzero elements of the P vector.
 The same for matrices:

 index = find(A(:) == max(A(:)))

Sample Codes

 Mahalanobis Distance (many to one)

 Finding the closest points, 2 sets

 Finding the closest points, 3 sets

DM x , y , sigma= x− y T sigma−1
x− y 

C2  X ,Y =arg minx∈ X , y∈Y∣∣x− y∣∣
2

C3 X ,Y ,Z =argminx∈X , y∈Y , z∈Z∣∣x− y− z− y

∣∣z− y∣∣2  z− y . x− y∣∣2

(download from here)

http://www.csc.kth.se/~omida/EL2320_vectorized_2010.zip

Now, let's have some fun!

 Consider Matrix Multiplication:

 Write code to do these operations in one
short line(A,B are square and equally sized):

C=A∗B : C i , j=∑k
Ai , k Bk , j

W=A! B : W i , j=∑k
Ak , i B j , k

X =A@ B : X i , j=∑k
Ai , k B j , k

Y=A' B : Y i , j=∑k
Ai , j B j , k

Z=A$ B : Z i , j=∑k
AN−i , k BN− k , j

Notes

 Vectorized processing can lead to significant
speed ups

 It will not always pay to use full vectorized
processing, but it almost always pays to
vectorize over largest dimension(s) if memory
alows it

 Vectorized processing, once mastered, will
lead to less code → faster development, less
logical errors!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

