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Abstract

This thesis is mostly about supervised visual recognition problems. Based
on a general definition of categories, the contents are divided into two parts:
one which models categories, and one which is not category based. We are
interested in data driven solutions for both kinds of problems.

In the category-free part, we study novelty detection in temporal and
spatial domains as a category-free recognition problem. Using data driven
models, we demonstrate that based on a few reference exemplars, our methods
are able to detect novelties in ego-motions of people, and changes in the static
environments surrounding them.

In the category level part, we study object recognition. We consider
both object category classification and localization, and propose scalable data
driven approaches for both problems. A mixture of parametric classifiers, ini-
tialized with a sophisticated clustering of the training data, is demonstrated
to adapt to the data better than various baselines such as the same model ini-
tialized with less subtly designed procedures. A non-parametric large margin
classifier is introduced and demonstrated to have a multitude of advantages
in comparison to its competitors: better training and testing time costs, the
ability to make use of indefinite/invariant and deformable similarity measures,
and adaptive complexity are the main features of the proposed model.

We also propose a rather realistic model of recognition problems, which
quantifies the interplay between representations, classifiers, and recognition
performances. Based on data-describing measures which are aggregates of
pairwise similarities of the training data, our model characterizes and de-
scribes the distributions of training exemplars. The measures are shown to
capture many aspects of the difficulty of categorization problems and corre-
late significantly to the observed recognition performances. Utilizing these
measures, the model predicts the performance of particular classifiers on dis-
tributions similar to the training data. These predictions, when compared to
the test performance of the classifiers on the test sets, are reasonably accurate.

We discuss various aspects of visual recognition problems: what is the
interplay between representations and classification tasks, how can different
models better adapt to the training data, etc. We describe and analyze the
aforementioned methods that are designed to tackle different visual recogni-
tion problems, but share one common characteristic: being data driven.

Keywords: Visual Recognition, Data Driven, Supervised Learning, Mix-
ture Models, Non-Parametric Models, Category Recognition, Novelty Detec-
tion.
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Chapter 1

Introduction to Visual Recognition

Constructing algorithms which can interpret and acquire understanding of the con-
tents of images and videos, has been the holly grail of the computer vision field.
Such algorithms, tackling visual recognition, have been identified as a core com-
ponent of AI systems which are to interact with people. This interaction might
come in different forms such as providing information regarding contents of images,
searching large collection of images for instances of object categories, and learning
individual preferences. Although humans perform recognition tasks rather triv-
ially and almost without any conscious effort, thanks to a billion years of evolution
of multi-cellular life forms, developing algorithms which match human vision has
proven to be extremely complex.

Visual recognition is not only a complex and interesting academic problem.
With the advances in computer hardware, and also in visual recognition algorithms,
we have reached a point where industry is taking serious steps towards including
visual recognition in their next generation AI systems. The reason that visual
recognition has gained much attention from both academia and industry is the
ever increasing amounts of data and the ever improving power to process them.
What might make construction of robust visual recognition algorithms possible is
the ever growing production of better digital cameras – available in various forms
such as dSLRs, mobile, and wearable cameras – giving rise to huge collections
of images and video footage, and the ability to have data driven models learn
different concepts from such data collections. The consequence is that acquiring
and processing extremely large bodies of images and video footage have become
an extremely fruitful research direction, with the potential to transform the AI
technology in the 21st century.

Pursuing the dream of many computer vision scientists and experts, this thesis
is dedicated to visual recognition. That is, we seek computational approaches for
recognition of visual patterns. We define what we exactly mean by visual recogni-
tion, and discuss how different representations and classifiers affect it in Section 1.1.
We discuss and define what we mean by categories in Section 1.2, and introduce

3



4 CHAPTER 1. INTRODUCTION TO VISUAL RECOGNITION

the two types of problems we consider in this work: category-free and category level
recognition. For both the category-free and category level recognition problems,
we consider data driven approaches. After discussing what parametric and non-
parametric classifiers are in Section 1.3, we elaborate on what is meant by data
driven, and how it differs from non-parametric classification, in Section 1.4.

To summarize, what we investigate in this thesis is:

Learning, from training data, to classify visual patterns; given (a large amount of)
prior knowledge.

The prior knowledge plays a significant role in visual recognition, and it covers very
general aspects and assumptions about e.g. the natural world, the imaging process,
and the distribution of exemplars sharing particular characteristics under specific
representations.

This chapter introduces the background for the problems studied in this work.
Category-free recognition is more thoroughly discussed in Chapter 2. Chapter 3
covers category level recognition. Summaries of the included papers are given in
Chapter 4. Chapter 5 concludes the thesis.

1.1 Representation, Classification and Recognition

Throughout this thesis, we adopt a definition of recognition which differs from
what is defined as recognition in cognitive sciences, biological vision, and also in
the mainstream computer vision. In computer vision, recognition usually refers
to the study of problems such as object recognition, action recognition, and scene
recognition; and problems such as learning to detect boundaries of objects in natural
images is not considered to be doing recognition. Such categorization of problems is
suitable for fields such as biological (human) vision, where different cells and neural
circuits that affect human vision and perception play different roles in transforming
the signals captured in retina to a semantic understanding of the natural world. In
computer vision, such distinct circuitries for extracting signals from still images or
videos do not exist. Furthermore, there is no reason for computer vision to try to
adopt a systems approach similar to how signals are transformed in human brain,
as 1) computational algorithms are not constrained (or even guided) by evolution,
and 2) we still do not have a clear understanding of human vision in a way that
allows construction of algorithms that mimic it in a computationally feasible and
efficient manner.

As a result of this difference between computational and biological systems, we
argue that unless the goal is to exactly mimic the human vision, there is no reason
to try to define computer vision tasks in the same way that they are carried out
in the human brain i.e. based on the same inputs, outputs, and in the same way
the input is transformed to the output. A high level computational task might be
implemented in various ways, and one might pick solutions which have lower com-
putational complexities, higher accuracies, or have other specific desired properties



1.1. REPRESENTATION, CLASSIFICATION AND RECOGNITION 5

1. As a result of this freedom in implementation of high level visual tasks, the
question is then the following: what can be considered a high level visual task? We
consider any visual task which is derived by (computational) learning a high level
visual task. This is in contrast with the current mainstream definition based on
biological counterparts of the tasks being (significantly) constrained by evolution.
In other words, we adopt a computationally motivated definition for recognition,
as opposed to a biologically inspired one.

The Oxford English dictionary defines recognition as:

“Identification of a thing or person from previous encounters or knowledge.”

In computer vision, we are mostly interested in visual patterns as the ‘thing’ to
recognize. In [10], pattern recognition is described as:

“The field of pattern recognition is concerned with the automatic discovery of
regularities in data through the use of computer algorithms and with the use of
these regularities to take actions such as classifying the data into different

categories.”

Pattern recognition includes problems such as regression, classification, and struc-
ture prediction. In this thesis, the focus is on the learning aspect of classification
of visual patterns.

Is visual recognition the same as pattern recognition techniques applied to visual
patterns? Our short answer is no; with the following motivation. Unlike in tradi-
tional pattern recognition and machine learning, where the representation of data
is usually fixed and given, the RGB pixel values of images do not constitute a good
representation suitable for pattern classification. For example, images acquired by
pinhole cameras, represent a projection of the natural world. This projection can
perturb properties that exist in the natural world e.g. perpendicular lines are not
necessarily perpendicular when projected, or give rise to new ones in images e.g. oc-
clusions. However, many properties are preserved such as continuity and linearity.
What makes visual recognition particularly hard, is the lack of a good represen-
tation of visual patterns which highlights the important information and discards
what is irrelevant. The consequence is that the models that are used to classify
visual patterns cannot rely on these properties to be reflected in the representation.
As a result, the models and/or the representations need to be adapted particularly
for visual recognition. 2

1This has been pointed out by Marr [29] in the context of his computational theories.
2It is crucial to note that for any representation, a measure of (dis) similarity needs to be spec-

ified. For example, the χ2 distance is a better dissimilarity measure for histogram representations,
in comparison to the Euclidean distance. Similarly, a Gaussian RBF kernel is more appropriate
than a linear kernel, as a measure of similarity for representations which result in linearly non-
separable data distributions. Therefore, when we refer to representations, we assume that they
are accompanied by suitable (dis) similarity measures. In this regard, the choices regarding suit-
ability of (dis) similarity measures are as equally important as the algorithms for deriving and
extracting the representations from images, videos, etc. For the sake of brevity, in this thesis we
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Although there have been works on how to derive suitable representations, there
has not been any consensus even on what constitutes an ideal representation. There
are many ways to acquire representations from images, each highlighting specific
aspects and suppressing other sources of variance in images; see Marr’s argument on
the implementation of computational theories [29]. The most common approaches,
arguably inspired by Marr’s representational scheme [29], follow this pipeline: con-
struct some local features based on some properties of images, and acquire a global
representation based on some sort of aggregation of these local features. The list
below gives some examples of such an approach:

• HOG [13] where HOG cells are particularly aggregated and normalized local
image gradients, and the global representation is acquired by globally con-
catenating the HOG cells on a 2D spatial grid. This representation mostly
captures shape, and is invariant mostly to illumination changes and very small
local deformations.

• Bag of Words [39] where local regions are somehow identified e.g. dense sam-
pling on a grid, or interest regions [30], and somehow described e.g. via SIFT
[28], or learned descriptors [37]; and a representation is acquired by somehow
aggregating these local descriptors e.g. in a spatially ignorant manner [39], or
on hierarchies of 2D spatial grids [25]. Depending on the choice of descrip-
tors, this approach can result in a representation invariant to local and global
transformations of the input image. For example a plain bag of densely sam-
pled SIFT descriptors will be invariant to global translations and rotations, a
plain bag of affine covariant interest regions described with SIFT is invariant
to global affine transformations, and the same approaches aggregated on 2D
spatial grids are only invariant to local deformations.

• Hyper features [1] which are similar to the bag of words approach, but the
feature extraction, coding and representation is repeated multiple times in a
spatially aware manner.

• Attribute based mid-level representations [17] which describe images, or re-
gions of interest, by pooling responses of some (semantically meaningful) clas-
sifiers.

For a rather long period of time, image representation usually referred to an
approach similar to one of the aforementioned ones, potentially based on different
local features, regions, coding techniques, pooling techniques, etc. The represen-
tation was defined, derived, and fixed, prior to learning a classifier. However, the
rather recent deep learning approach defines representation in an alternative way.

The deep convolutional representation learning, mostly based on Yann Lecun’s
convolutional networks [45], gained significant attention from the computer vision

use ‘representation’ to refer to both i.e. we also consider approaches such as metric learning to be
(implicitly or explicitly) related to representations.
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community with the success of [23] in ImageNet [14]. In [23], consecutive convolu-
tions with locally (shared) convolutional kernels, followed by particular normaliza-
tions and max-poolings constitute local features, and concatenation of convolution
responses constitutes the (intermediate) representation. This step is repeated mul-
tiple times, and the invariance to local deformations is aggregated towards larger
and more global invariance to deformations/transformations with the addition of
consecutive convolutional layers. The convolutional response of the last convolu-
tional layer, or the response of the next (fully connected) layer, is said to constitute
a representation suitable for recognition.

The convolutional deep learning approach is similar to Marr’s representational
approach in that there is a sequence of increasingly complex representations that
achieve the desired generalization and invariance. However, unlike Marr’s approach
and other traditional representational schemes, only a description of what will con-
stitute a representation is specified in the method, and the parameters of the con-
volutional kernels are learnt jointly with the classifier coupled with a categorization
task 3. This is in contrast to the other representational approaches that are usually
decoupled from particular tasks they might be needed for.

The question is, if we need to consider representation and classification two
different components required for recognition, or if they are inter-connected and
non-separable? In other words, is the representational part of the deep learning
approach the RGB pixel values, and in that case the convolutional layers will be
a part of the classifier, or is the representation the convolutional part of the net-
work, and thereby the fully connected multi layer network at the end of the deep
learning architecture constitutes the classifier? Similarly, are the particular choices
for traditional representations (HOG, BoW, etc.) classifier choices, and if they are,
the representation will be the RGB pixel values, or are the representations separate
from the choice of classifiers? Answering these questions is outside the scope of
this thesis. However, we provide a framework in Section D which can be used to
select representational schemes which are more suitable for particular datasets and
recognition tasks.

While there exist works which suggest that the representation acquired from
deep learning might be suitable for various kinds of recognition tasks [36, 32], the
deep learning framework was not as popular and accessible when these studies were
performed. Therefore, in this thesis we do not investigate the deep learning repre-
sentation. Instead, in the category-free part, various representations are considered
and evaluated for different recognition tasks. Similarly, in the category level part,
the representation is fixed to a slightly modified version of HOG described in [18].

3There are works which use regressors in the last layer [41]. There is no limit on what can
be connected to the network, as long as its (sub) gradients can be computed and used in the
back-propagation.
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1.2 Category Free and Category Level Recognition

The definition of categories is a complicated and a rather sensitive topic, specially
because in cognitive sciences, what comprises a category is directly translated to
our understanding of the reasoning capabilities of humans, and our understand-
ings of the world surrounding us [24]. While there are more complex definitions of
categories in various fields such as cognitive science and psychology, we are only in-
terested in a simplified definition of categories which can be used in a computational
framework. Consequently, we take on a rather traditional definition of categories;
one which Lakoff relates to ‘the objectivist view’ [24].

Empirical results of our methods (discussed later in Chapter 3 and in Section C
and Section D) qualitatively suggest that exemplars of what we consider as cate-
gories are not equal, that is, we implicitly make use of graded category memberships
[24]. The inequality of exemplar-category memberships might have various reasons
such as 1) the biases (photographer and selection bias [40]) involved in the sam-
pling process of exemplars, or 2) the difference in the centrality of the exemplars to
the category. Although our empirical results suggest that exemplars do not exhibit
equal category memberships, and classifiers might be better off ignoring some ex-
emplars or model those which are more ‘central’, we do not claim to have followed
or avoided prototype theory [24]. Specifying the reason for this inequality, and simi-
larly, stating an exact definition of categories irrespective of computational aspects,
are outside the scope of this thesis. Instead, we consider a simplified definition of
categories, specifically the one the Oxford dictionary provides.

The Oxford English dictionary defines category as:

“A class or division of people or things regarded as having particular shared
characteristics.”

where it defines characteristic as:

“A distinguishing feature or quality.”

Depending on how one defines ‘shared characteristics’, categories in computer vision
can be defined in various ways. For example, sharing characteristics might be
defined as

• being visually similar to a mountain

• can be used to sit on

• being harmful to the Ozone layer

• having 6 legs

According to this definition of categories, the resulting classifications will be se-
mantically meaningful.
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In this regard, what we mean by category-free recognition is a classification
problem in which none of the classes form any specific categories; interpreted with
regards to the given definition of categories. Particularly, what we consider in
the category-free recognition is novelty detection i.e. classification to ‘common’
and ‘uncommon’. None of the ‘common’ or ‘uncommon’ classes match the given
definition of a category: being ‘common’ or ‘uncommon’ in a given dataset has
nothing to do with any particular characteristic that ‘common’ or ‘uncommon’
exemplars share.

In the category level recognition, we model categories e.g. ‘cars’, ‘people’, and
‘plants’. We do not assume any particular characteristic to be shared between all
exemplars of the same category. However, we assume that groups of exemplars
from the same category exhibit some sort of similarity in some visual characteristic
e.g. shape, texture, or color. Obviously, the kind of visual characteristics a category
supposedly has puts some constraints on the type of information/features that are
to be extracted from images. For example, a color-invariant feature/representation
is inappropriate for modelling a category whose most distinctive characteristic is
a color. By fixing the representation to HOG, we essentially model the shapes of
(prototypes of) categories.

1.3 Parametric and Non-Parametric Classifiers

Consider a binary classification problem. If we know the distributions the exemplars
of each class are sampled from, we can directly use a model of these distributions
to derive a decision criterion which optimizes the expected value of a given loss
function. When these known distributions have specific forms that can be specified
by some parameters independent of the actual data e.g. Gaussian, Laplacian, and
Poisson, the distribution is referred to as a parametric distribution.

On the contrary, if such a family of distributions does not exist, one can utilize
mixtures of parametric distributions e.g. mixture of Gaussians, or non-parametric
distributions e.g. Parzen window (kernel density estimation), to approximate the
unknown distributions4. Both mixtures of parametric and non-parametric distri-
butions can approximate arbitrary distributions with any desired accuracy 5. The
main difference is in the way each is constructed: the complexity of mixture of
parametric models is controlled by parameters: the number of mixture components
and the family of mixtures, and the complexity of non-parametric models is regu-
lated mostly by the actual data. In other words, non-parametric distributions have
less assumptions about the structure of the data, and consequently, they store and
re-use the training data to represent the actual distributions; while in the mixture

4We do not consider mixtures of parametric distributions, a third category in addition to
parametric and non-parametric distributions. While they are parametric by nature, we will argue
that the distinction between non-parametric distributions and mixtures of parametric distributions
fades away when considering complex enough mixtures of parametric distributions.

5More accurate approximations, in general, demand more samples from the distributions that
are to be approximated.
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of parametric case, parameters of the mixture models are learnt from the training
data, which is discarded afterwards. Therefore, mixtures of parametric models are
usually more expensive to ‘train’, but cheaper to ‘test’.

Similarly, if the decision function – for the classification task – can be rep-
resented with reasonable accuracy by parametric functions e.g. polynomials and
exponentials, the parametric functions can be used to define the decision rule, and
the resulting classifier is called parametric. Alternatives are mixtures of paramet-
ric classifiers e.g. piecewise quadratic, and non-parametric classifiers e.g. nearest
neighbor classifier and kernelized SVM equipped with RBF kernels. Similar to
parametric and non-parametric distributions, non-parametric classifiers store and
re-use copies of the actual data points, and they are usually more expensive than
parametric and mixture of parametric classifiers to ‘test’ and cheaper to ‘train’.

There is a crucial interplay between complexity of representations and complex-
ity of classifiers. Given a classification task with arbitrary complex class distribu-
tions, the more complex the representation is, the less complexity is required from
the classifier. For example, one can map linearly non-separable data to a higher
dimensional space where the data is more likely to be linearly separable. This can
be seen as increasing the complexity of the representation, which is traded off by
using a simpler classifier in the higher dimensional space. The kernelized SVMs
equipped with RBF kernels, though non-parametric and extremely non-linear, are
linear classifiers in an infinite dimensional space. The complexity of the classifier
not only is reduced by its linearity, but also by the max-margin constraint of the
SVMs, which regulates extra degrees of freedom that are not required to separate
the data [35]. Similarly, kernel embedding approaches follow similar reasonings; see
e.g. [43].

Another example is the representation acquired from the deep learning frame-
work [23]. The system takes as input RBG pixel values, and outputs a 1000 way
classification based on approximately 60 million parameters distributed in multiple
layers. The trade-off can be easily seen in this case: depending on what layer one
defines the representational part to finish, the classification part is started from
the next layer forward. In other words, if the representational part is seen as RGB
pixel values, the coupled classifier is extremely complex and consists of multiple
layers of convolutions, followed by a few fully connected layers, followed by softmax
functions. On the contrary, if the representational part is seen as all the convolu-
tional layers followed by two fully connected layers, the coupled classifier is only
the softmax at the end of the network.

What makes non-parametric classifiers particularly interesting is that they can
adapt their complexity based on the size of the training data: the more training data
is provided to them, the more complex decision boundaries they can learn. Despite
this great property, their test time complexities make them rather inapplicable to
large scale scenarios. Various attempts have been made to reduce the test time
complexity of non-parametric classifiers, which mainly involve approximations [11],
or directly controlling the complexity of the classifier [26, 44]. We discuss the latter
more in Section E.
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1.4 Data Driven Recognition

The term data driven has been used to emphasize on data-adaptability of non-
parametric classifiers, when compared to basic parametric classifiers which cannot
adapt to arbitrary distributions. As argued in the previous section, mixtures of
parametric classifiers have been shown to be able to adapt to arbitrarily complex
data distributions, provided that the model’s complexity is not over-regulated i.e.
a large number of mixture components is allowed. Also, classifiers exist which are
not non-parametric, and therefore parametric, and can adapt to arbitrary data
distributions e.g. random forests, artificial neural networks, etc. Therefore, a more
modern definition of what constitutes data driven learning would involve classifiers
/ regressors complex enough to perform the required recognition tasks with any
desired level of accuracy, given enough training data.

We have already motivated that the classifier / regressor is tightly coupled with
the representation it builds upon. Additionally, we have argued in [3, 5] that the
right kind of data for data driven methods will most likely have to satisfy some
qualitative constraints. We discuss in Section D that for any complex enough
model, there is a very crucial factor which is usually neglected: the distribution
of the training data provided to the model. We argue that by considering the
data as a design parameter, a new kind of recognition is brought to life, which
actually concerns with ‘tuning the training data’. In other words, we will argue
that classifiers might learn better from a subset of training data, and they could
potentially select, from a large pool of candidate training data, exemplars which
will help the classifier generalize better.

Although we motivate and partially demonstrate this in Section D, we think
that more solid theoretical or experimental results are needed to verify the extent
of validity of this hypothesis. Therefore, our definition of data driven in this thesis
will be one which acknowledges the importance of ‘right kind of data’ but does not
specify how such data might be acquired:

Data Driven Learning: A process involving the design and training of
classifiers/regressors and representations, which can perform required recognition
tasks with any desired performance, given a sufficiently large number of suitable

training data.

It is worth emphasizing that a desired recognition performance dictates require-
ments from training data in addition to requirements from the model. For example
very high categorization performances require

• non-gradual category memberships e.g. high resolution images of cars vs
plants

• either

– very strong priors about the natural world e.g. rich enough representa-
tions which lead to separable data and a very small Bayes risk
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– a complex enough machinery for learning the representations and classi-
fiers + sufficiently many training exemplars from which a representation
and a classifier can be learnt that can match the required categorization
performance

In other words,

• Problems such as ‘young’ vs ‘old’ will not achieve very high recognition per-
formance as the ‘young’ and ‘old’ categories are not mutually exclusive.

• In absence of rich representations that provide rather certain information
about occlusions, lighting conditions, pose, etc.

– A linear classifier using HOG representation cannot accurately classify
cars from arbitrary view points, no matter how much data is used.

– A view point dependent representation requires many samples from var-
ious view points and a complex classifier that can adapt to the (poten-
tially) multi modal distribution of positives and negatives, with some
mechanism for occlusion reasoning

– An algorithm which learns a view point independent representation and
learns a complex classifier that can correctly classify occluded exemplars
under the learnt representation, will require many examples of objects
in different view points – potentially augmented with correspondences
in multiple views – exhibiting various occlusion patterns



Chapter 2

Category Free Recognition

This chapter introduces the category-free recognition problems we consider in this
thesis. Section 2.1 overviews category-free recognition problems frequently encoun-
tered in computer vision. Section 2.2 discusses novelty detection as a recognition
problem. The category-free part of this work mostly involves novelty detection in
wearable visual systems, which we introduce and motivate in Section 2.3.

2.1 Category Free Recognition in Computer vision

Many problems in computer vision are category free. For example, object boundary
detectors such as [9, 27], involve category-free recognition of pixels in images which
correspond to the contours of the objects in the natural images. Having correspond-
ing pixels in images end up on salient contours of the object is not a characteristic
that parts of objects in real world share. Similarly, non-semantic segmentation
methods such as [7, 6], are category-free, and so are general object tracking sys-
tems e.g. [21]. Interpreted according to the definition of recognition discussed in
the previous chapter, in all these problems some visual pattern from a training set
is being re-identified: visual patterns corresponding to pixels on prominent bound-
aries of objects, visual patterns that correspond to one prominent object within
images, and the visual pattern corresponding to the object that is to be tracked.

2.2 Novelty Detection as a Recognition Problem

As motivated earlier, novelty detection is a form of category-free recognition. Nov-
elty detection and outlier detection are sometimes considered the same. We make
a subtle distinction between the two. Outlier detection is mostly about identifying
data points which do not seem to be similar to the majority of data points. The
main reasons for a point to become an outlier might be sensory or manual labelling
errors, or not agreeing with a model which explains a significant majority of the
data points. Novelty detection on the contrary aims to identify patterns which are

13
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believed to be of interest, and the reason for identification of those patterns is not
believed to be a sensory error, or mis-labelling of the data. In other words, the aim
of the outlier detection is to have a model which clearly explains the data, while
the aim of novelty detection is identification of rare patterns.

In order to detect novelties, one needs to identify the novel pattern to belong
to a certain group or category, and then identify it as being novel in that group or
category. In essence, non-novel patterns need to be recognized in order for the novel
patterns to be classified as novel. This can be identified in the works that we present
in Section A and Section B, where the novel temporal segments are found within
sequences of images which partially share structure with non-novel sequences, and
novel spatial segments are found within images which partially share structure with
non-novel images.

2.3 Novelty Detection in Wearable Visual Systems

Digital cameras are becoming smaller, processors are becoming more powerful and
energy efficient, communications are becoming faster, storage units are becoming
smaller and support more capacity; and all of them are becoming cheaper. The
result is that light devices equipped with small cameras, good processors, plenty of
storage capacity, and fast communications are becoming cheap to produce. Many
similar devices have existed for quite a few years now: Microsoft SenseCam, Muvi
Atom, and GoPro; some have been recently produced: Google glass; and more will
be developed and mass marketed soon.

Most of these devices are designed to be continuously worn and/or record
lengthy video footage. Each hour of video footage, recorded at 30 HZ, comprises
more than 100,000 images. When sub-sampled at 1 HZ, 8 hours of daily recording
results in over a million images each year. Storing, processing, or just viewing these
images, as might be required by applications such as life logging or memory therapy,
will be associated with huge costs in terms of storage, computation, or attention
time. An automatic selection process will be crucial to help manage such a large
body of images.

Novelty detection can be used to filter out what is most common in such large
datasets, leaving only those which are in some sense rare. We propose two different
novelty detection frameworks based on wearable footage. The first one, presented in
Section A, explores novel ego-motion detection in sequences of images of a subject
walking from a metro station to work on a daily basis. We show that the novelties
the system detects reflect events such as ‘running into a friend’, ‘meeting a friend’,
‘giving directions’, and ‘buying ice-cream’. The second one, presented in Section B,
seeks novel spatial patterns in images of roughly the same physical place e.g. in
front of the metro station. We show that what is mostly novel in images of the
same outdoors urban areas are ‘people’, ‘bicycles’, ‘cars’, etc., which are not parts of
a static environment. We believe these results to reflect a useful ‘filtering process’,
which allows the rest of the sequences to be summarized as ‘the usual’.



Chapter 3

Category Level Recognition

This chapter introduces the problems related to category level recognition that we
study in this work. Section 3.1 overviews the category level recognition problems
frequently encountered in computer vision. Section 3.2 overviews the most promi-
nent object recognition systems. Section 3.3 discusses data driven object recogni-
tion, and what our works contribute to it. In Section 3.4 we discuss modelling the
interplay between representations, classifiers, and the data.

3.1 Category Level Recognition in Computer Vision

Many problems in computer vision are category based. For example, scene recogni-
tion [31] aims to classify images of scenes to categories such as ‘indoors’, ‘cinema’,
and ‘park’. In object recognition, the aim is to either determine if an object from
categories such as ‘chair’, ‘person’, and ‘car’ exists within an image [16, 15], or to
localize such instances within images [16, 18]. Semantic segmentation [20] is about
partitioning pixels of images according to the categories they belong to. Similarly,
in pose estimation [46, 22, 8] and action recognition [12], the ‘human’ category is
the focus of the model, and in face recognition [38] categories such as ‘person 1’,
‘person 2’, etc. are considered.

3.2 A Brief Overview of Object Recognition Systems

The category level part of this thesis investigates the object recognition problem.
In cognitive neuroscience, object recognition is defined as the ability to perceive
objects’ (visual) properties such as shape, texture, and color, and assign semantic
attributes to them. In this work, we are not concerned with the semantics associated
with objects, other than the categories they belong to. Additionally, since we use
the HOG representation, we mostly model shape rather than color or texture.

Object recognition in computer vision is usually divided into three distinct prob-
lems: 1) instance level recognition, where the goal is to identify the same object

15
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in novel images, 2) object category classification, where the goal is to determine
if instances of different categories exist within an image, and 3) object category
localization which aims to localize instances of categories within images. The com-
plexities of these problems are usually considered to be in the same order.

Instance level recognition can be performed via local feature matching [28],
potentially followed by a geometric verification step e.g. [39], or by other means
of modelling the appearance e.g. [21]. The classification problem usually involves
holistic reasoning based on (explicit or implicit) global representations [23, 15],
and therefore the training and testing samples usually do not exhibit significant
scale variation within images. The detection problem is usually considered the
most complex, as detectors are expected to handle significant position and scale
variations of objects within images. The inference process usually needs to classify
all the bounding boxes with varying aspect ratios and scales over an image. The
consequences are: 1) the training procedure becomes much more expensive than
holistic approaches, as all bounding boxes that do not overlap significantly with
the provided ground truth bounding boxes define ‘negative’ samples, and 2) the
inference procedure for each image becomes very expensive which renders expensive
classifiers rather impractical. There are approaches that do not implement scanning
window classifiers, but rather use more sophisticated approaches for pruning the
search space, or speeding up the computations e.g. [42, 33, 19]. Nevertheless, the
detection problem is considered to be more complex than the classification problem
(when dataset sizes are comparable).

In this thesis, we consider both classification and detection problems. In Sec-
tion C we present our object detection model. Section E describes our object
classification system.

3.3 Data Driven Object Recognition

Object Detection: As motivated earlier, we consider mixtures of parametric clas-
sifiers as data driven methods, provided that they have a sufficiently large number
of mixture components.1 This suggests that such models need to adapt their com-
plexity to the training data distributions. Cross-validation can be used to tune
the number of mixture components; provided that these models can learn mixtures
with different number of components equally well.

As the optimizations involved in training mixture models are non-convex in
the absence of fixed data-mixture component associations (latent associations),
these models are sensitive to initializations. We consider a data driven cluster-
ing step, based on sophisticated visual similarity measures, to provide the initial
data-mixture component associations within the mixture learning framework. The

1The deformability of part based models such as [18] can be potentially considered equivalent
to compressing many rigid templates in one deformable component [47]. However, deformable
models such as [18] usually limit the deformability of parts and strongly penalize highly deformed
part configurations. In this sense, even deformable part based models require many global mixture
components in order to be able to handle high intra-class variation.
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approach is shown to adapt the mixture models to the distributions of data better
than the simple and common alternative of clustering the data based on the aspect
ratio of bounding boxes. This is discussed further in Section C.
Object Classification: One of the most popular non-parametric classifiers is the
kernelized SVM equipped with RBF kernels. The RBF kernel performs particularly
well when the Euclidean distance on the input representation is a reasonable mea-
sure of dissimilarity. The main problem with such a configuration is the expensive
training and testing procedures associated with it, in addition to the inappropriate-
ness of the Euclidean distance, or other metrics [34], for most of the representations
of visual patterns. In Section E, we introduce a non-parametric classifier which has
better training and testing costs (computational and memory), while it does not
assume metrics, or more accurately positive (semi-definite) similarity measures.
What is particularly interesting about this model is that it can be equipped with
deformable/invariant similarity measures which are indefinite.

3.4 Modelling Categorization Problems

Due to the interplay between representations, classifiers, and the training data,
and due to a lack of understanding about what constitutes a good representation
and classifier configuration for particular data distributions, cross-validation has
been the dominant approach to select representations and classifiers which perform
well on particular training sets. The lack of objective measures for describing and
characterizing distributions of data has contributed to the practice of trying vari-
ous combinations of representations and classifiers, and selecting the configuration
which performs well on held out data.

The cross-validation procedure does not provide much insight on how to select
new configurations for unseen distributions of data, nor does it provide any objec-
tive measure of what kind of performance one can expect with certain representa-
tion - classifier combination without going through the expensive training-testing
procedure for various combinations [47, 40].

In Section D, we introduce our solution to this problem: we aim to model
various factors that affect a recognition system, which in addition to the data-
describing measures that we introduce, is able to characterize distributions of data.
For example, it can quantify semantic characteristics of training data e.g. intra-class
variation, connectivity, etc., and predict the test performance of specific represen-
tation/classifier choices with reasonable accuracy.





Chapter 4

Summary of Papers

A Novelty Detection from an Ego-Centric Perspective

This paper presents a solution for temporal segmentation of novelties in ego motion
of a person walking from a metro station to work [6]. The novelty detection pre-
sented in the paper is performed in a non-parametric category-free manner. The
sequence of images acquired by sub-sampling a new query video are registered to
the stored reference sequences and the temporal segments which cannot be regis-
tered are identified as novelties. This is demonstrated in Figure 1, and an example
is depicted in Figure 2.

The registration is performed by aligning sequences according to a pairwise
similarity of ego motion defined on the frame level. As a sequence of similar view
points reflects similar ego-motions in the same environment, the similarity between
view-points is utilized in a dynamic time warping algorithm to register sequences.

Ego Motion Environment

Novelty

Query sequence

Reference sequences

Figure 1: Novelty detection via sequence alignment. Each block represents an
image, and each row represents frames sub-sampled from a video. Links represent
correspondences between frames.
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Figure 2: Reference sequences are aligned with the query sequence and novelty is
detected

Similarity between view-points is approximated by the number of matching local
descriptors between pairs of frames. As local appearance based descriptors are
ambiguous by nature, Epipolar geometry is utilized to ensure that only the local
features that correspond roughly to the same point in the 3D world are matched
together.

Experimental parts of the paper suggest that such an approach can identify
deviations from an implicitly learned model of ‘normal’ ego motions in the same
environment. Storing approximately 5 reference sequences was shown to be suffi-
cient in order to recognize environment-specific ‘normal’ ego motions, which in turn
results in detection of novelties.
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B Multi View Registration for Novelty/Background
Separation

This paper presents a solution for spatial segmentation of novelties in multiple im-
ages of the same enviornment [7]. Similar to the previous paper, the environmental
setup is that of a person walking from a metro station to work, and recognition
is performed in a non-parametric and category-free manner. Given a query image
and multiple reference images of the same enviornment, reference images are spa-
tially registered to the query image, and novelty is defined as the regions in the
query image which cannot be explained by the registered reference images. This is
depicted in Figure 3.

What's new? 
I've been 

here before!

Query Image Output 

Reference Images

Figure 3: Our system takes as input a query image and multiple reference images.
We assume all these images are of the same environment taken from approximately
the same view point but at different times. The algorithm segments out objects in
the query image which are not part of the environment. The bottom right figure
shows the computed segmentation.
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Figure 4: From top left to bottom right: initial probability of novelty, final proba-
bility of novelty, final segmentation, and the ground truth labelling of novelties in
an example.

The reference images are registered and warped towards the query frame sep-
arately. The appearance-based residuals of warping errors from reference images
are then aggregated in a fixed-length vector, which in turn approximates an initial
probability of novelty via a regression function. The parameters of this regressing
function are learnt in a supervised way, and the resulting estimate is used in multi-
ple iterated graph cuts segmentation procedures with different parameter settings
representing different priors. The solutions from each of the segmentation proce-
dures are then aggregated into a final probability of novelty. The parameters of this
regressing function are also learnt in a supervised manner, and a final non-iterated
graph cuts segmentation produces the output of the algorithm. The regressed prob-
abilities of novelties, the final output and the defined ground truth for an example
query image are depicted in Figure 4.

Experimental results of the paper suggest that the proposed method detects
spatial novelties in the query image such as ‘cars’, ‘bicycles’, ‘people’, etc. It is
shown that the method can produce reasonable outputs, given roughly 5 reference
images for a query image.
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C Mixture Component Identification and Learning for
Visual Recognition

This paper proposes a framework for learning mixtures of rigid templates targeting
category level recognition, where the data-component associations are initialized
through a sophisticated clustering of category-specific exemplars [2]. Each category
is partitioned into a fixed number of clusters, based on pairwise affinity of exemplars
within the category. Mixtures of linear classifiers are then learnt based on these
clusters in a binary (one vs rest) manner. This is demonstrated in Figure 5.

The pairwise similarity measure used in the clustering step performs feature
selection on the exemplar level via discriminative reasoning. This was shown to
perform better than coarser measures of similarity such as similarity in aspect ratio
of the bounding boxes, or appearance based measures that do not perform feature
selection. The similarity measures considered in the paper were rigid i.e. they did
not model deformability of the exemplars. Consequently, the resulting mixture
components considered are rigid and not deformable.

The clustering algorithm considered does not assume any shape or property
for the clusters, but it requires the number of clusters to be determined apriory.
Although there are ways to determine the number of clusters based on distributions

Figure 5: The high level overview of our approach. We group visually similar posi-
tive instances together and for each cluster, learn a linear classifier which separates
the cluster from all negative data. Each color represents a different cluster.
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of the data, they are not studied in this paper. As a part of the clustering step,
an embedding of the data is acquired which is qualitatively shown to match our
perceptual evaluation of similarity, given that images have sufficient resolutions, and
that the considered category does not exhibit “too much intra-class variation”1.

The training of the mixture model involves a non-convex optimization problem,
which in turn makes the model sensitive to initial data-component associations
provided to the optimization process. It is shown that the clustering equipped with
the feature-selecting similarity measure constitutes the best initialization among
the ones that were considered. The resulting model was shown to outperform all
other non-deformable models that are based on the same feature that was used in
our study. Figure 6 visualizes the clusters and the filters learnt for each cluster for
the ‘car’ category.

Figure 6: Visualization of the clusters and the filters learnt for each cluster.

1This observation motivated the study in the next paper, where we investigated what com-
prised “too much intra-class variation”, and how to measure it.
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D Properties of Datasets Predict the Performance of
Classifiers

Inspired by the observations regarding the intra-class variation and the test perfor-
mance in the previous paper, this paper aims to quantify the dependencies between
test performance, properties of the datasets, and other factors that affect the test
performance [5]. The paper demonstrates that these dependencies can be modelled
in a way that under some reasonable assumptions, the resulting model can predict
the test performance that particular classifiers will achieve when trained on rather
arbitrary training sets. The model that has been used in the paper is demonstrated
in Figure 7.

A rather critical assumption in the model is that training sets and test sets are
sampled from the same distribution. The distributions of training exemplars, and
similarly the testing exemplars, are quantified via aggregations of affinity measures
on the training set. A regressing function is then defined which maps these ag-
gregated measures to the test performance. As a training step of this model, the
parameters of this regressing function are learnt in a supervised manner i.e. the
aggregating measures are computed on different training sets, models are trained
on the training sets and tested on the corresponding test sets, and the test perfor-
mances are provided to the learning algorithm as ground truth regression targets.

The test performances predicted by this model are shown to rather accurately
agree with the novel test performances. While the model does not consider all the
factors involved in the recognition process, we show that it can reasonably predict
the majority of the variation in the observed test performances. In particular, the
‘connectivity’ of the training exemplars is shown to play the most significant role in
determining the test performance. The correlation of the ‘connectivity’ measure to
the test performances is shown to be stronger than that of the ‘intra-class variation’
or other measures. This suggests that the existing models have specific requirements

Feature

Training Set

Testing Set Test Performance

Train Classifier

Pairwise Affinity

Performance Prediction

Proposed Measures

Classifier Family

Figure 7: The training-testing process (red boxes) and the proposed test perfor-
mance prediction process (green boxes). The direction of arrows determines the
flow of information and also the dependencies. Both procedures are dependent on
the white boxes.
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Feature

Training Set

Testing Set Test Performance

Train Classifier

Sample Selection

Performance Prediction

Proposed Measures

Classifier Family

Figure 8: Illustration of the proposed procedure for sample selection.

about the training data. In other words, the existing models will perform better if
they are provided with the right kind of training data.

Being able to quantify the quality of a training set, the next step explored in the
paper is to modify the training set in a way which best suits particular classifiers, see
Figure 8. Due to the assumptions associated with the model used in the paper, the
modifications to the training sets are required to be small i.e. radical changes to the
training set violate the assumptions of the model, making the resulting predictions
invalid. However, the small changes to the training set that are acquired from
the current model agree substantially with our expectations in that, what is being
suggested to remove from the training set are outliers that are not connected to the

(Worst Outliers) (Best Inliers)
Remove to gain 1% AP Remove to lose 1% AP

(Remove 97) APPred=56, AppxAPPred=55 (Remove 72) APPred=55, AppxAPPred=53

Figure 9: Demonstration of Automatic Dataset Selection. For the ‘car’ class of
Pascal VOC 2007, exemplars are shown which upon removal from the training set
result in 1% change in the predicted test performance.
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rest of the training set; as reflected by the affinity measure. The exemplars which
are labelled best inliers on the other hand, are those which keep different groups
of training exemplars, distributed in form of clusters in the ‘configuration space’,
connected. In other words, these exemplars ensure that enough support in rather
critically undersampled areas of the ‘configuration space’ is retained. Figure 9
depicts qualitative results for such a procedure.
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E Large Scale, Large Margin Classification using Indefinite
Similarity Measures

This paper proposes a scalable large-margin non-parametric categorizer equipped
with deformable indefinite similarity measures [4]. The model, named Basis Ex-
pansing SVM (BE-SVM), is based on a normalization of empirical kernel maps
based on a restricted set of bases. The resulting optimization procedure is convex,
and in fact, general fast approximate linear SVM solvers are used to optimize the
model’s parameters.

The pairwise similarity measures used in the paper are generalizations of in-
variant kernels, which search for the optimal (global) translation and (local) defor-
mations which maximize the similarity between pairs of instances. The measures
are more expensive than the RBF kernels, and they are indefinite i.e. not positive
(semi) definite. However, it is shown that the negative eigenvectors of the resulting
similarity matrices hold significant discriminative information. This suggests that
metric restrictions on measures are not necessarily optimal for classification.

The empirical kernel maps are used to acquire a fixed length representation of
exemplars based on the given similarity measures. The representation is acquired
by evaluating the similarity of the instance to a fixed set of bases. Various basis
selection strategies are investigated which did not exhibit significant change in the
performance on the CIFAR-10 dataset. It can be expected that on more challenging
datasets such as Pascal VOC, the basis selection strategy will be of much more
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(a) Kernelized SVM
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Figure 10: Demonstration of kernelized SVM and BE-SVM using two Gaussian
RBF kernels. Figure 10(b) is based on 10% of the data randomly selected as bases.
10 fold cross validation accuracy and the number of support vectors are averaged
over 20 scenarios based on the same problem but with different spatial noises. The
visualization is on the noiseless data for clarity. Best viewed electronically.
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significance, as motivated by the work presented in the previous section.
Although it is expensive to evaluate this fixed length representation, it has

the benefit of simplifying the resulting optimizations step. The computational
complexities and memory requirements for training and testing of the proposed
model are compared to that of the kernelized SVM based on positive definite kernels,
and the proposed model is shown to have similar or better computational and
memory requirements.

The experimental results on the CIFAR-10 dataset suggest that the proposed
model equipped with proper invariant similarity measures outperforms the kernel-
ized SVM based on the optimal parameter setting. It is shown that the model
outperforms the competitors given the same number of supporting exemplars, or
the same number of model parameters. Figure 10 depicts the proposed model in
comparison to kernelized SVM on 2D toy data.





Chapter 5

Discussion and Conclusions

In this thesis, we investigated two types of recognition problems: category level
recognition which models categories (and the inherent semantics associated with
them), and category-free recognition which does not assume any semantics associ-
ated with what is to be recognized.

In the category-free part, we considered novelty detection in spatial and tem-
poral domains. We showed that having access to roughly 5 reference exemplars
allows a non-parametric model to perform novelty detection within the problem
domains that we considered. Since the view-point change was limited in our sce-
narios, we expect this number to increase when significant view point changes are
to be addressed by the system. However, as motivated, the data driven approach
can overcome these limitations, simply by making use of more of the right kind of
training data, and without any significant changes to the proposed models.

In the category-level part, we demonstrated how particular mixture models can
be better adapted to the training data. Particularly, we showed that by using
careful clustering of the training data, and using these clusters as initialization for
the mixture models, more complex mixture models can be utilized which adapt
better to the training data i.e. they can become more data driven.

We also demonstrated how to make use of invariant/deformable similarity mea-
sures in a non-parametric manner, while achieving reduced training and testing
costs associated with non-parametric models. Particularly we showed that de-
formable similarity measures can play a significant role in designing scalable non-
parametric classifiers.

Finally, we demonstrated how a model of recognition systems can be constructed
which can characterize distributions of data under specific representations, and
can quantify the relation between characteristics of data and expected recognition
performance on similar test data. We believe this to be a first step towards gaining
a more detailed insight on the interplay between data, representations, and the
test performance of recognition systems. A more sophisticated version of such
models would allow us to optimize data as a design parameter i.e. they could be
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used to automatically ensure that the training data satisfies particular qualitative
requirements which are shown to significantly correlate to recognition performance.

Future Work

In the category-free part, it will be interesting to investigate other types of novelties
that can be extracted from large scale data, potentially acquired from wearable cam-
eras. A more detailed insight about how the human brain selects memories would
be beneficial for the continuation of the same research path. This would involve
inter-disciplinary research between psychologists, neuro-scientists, and computer
vision scientists/experts.

In the category level recognition part, it will be interesting to apply the frame-
work introduced for analyzing representations, classifiers, and data distributions,
to representations other than HOG, in order to gain a more detailed insight on how
different representations change properties of the data: do they reduce the intra-
class variation, increase data connectivity, or change other measurable properties
of the training data?

Developing a more complete model of category recognition systems – one which
allows large modifications to the training data – will also be beneficial. This would
result in systems which can select optimal training data most suitable for catego-
rizing desired target distributions.
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Novelty Detection from an Ego-Centric Perspective

Omid Aghazadeh, Josephine Sullivan and Stefan Carlsson

Abstract

This paper demonstrates a system for the automatic extraction of novelty in im-
ages captured from a small video camera attached to a subject’s chest, replicating
his visual perspective, while performing activities which are repeated daily. Nov-
elty is detected when a (sub)sequence cannot be registered to previously stored se-
quences captured while performing the same daily activity. Sequence registration is
performed by measuring appearance and geometric similarity of individual frames
and exploiting the invariant temporal order of the activity. Experimental results
demonstrate that this is a robust way to detect novelties induced by variations in
the wearer’s ego-motion such as stopping and talking to a person. This is an essen-
tially new and generic way of automatically extracting information of interest to
the camera wearer and can be used as input to a system for life logging or memory
support.

1 Introduction

In this paper we address the problem of selecting and storing relevant parts of the
visual input collected from a continuously worn camera capturing images at video
rate. This problem is partly dictated by applications such as life logging [3, 9, 1] and
memory support systems for the disabled [5]. Especially in the design of efficient
memory support, there is a large potential advantage in the automatic selection of
relevant moments of one’s daily visual experience.

Memory selection depends on several factors relating to the complex state of
the human observer and these are not primarily related to vision. Given just the
visual input, however, we can ask ourselves which moments of the input we would
like to capture and store and if there are any rules that can be formulated for this.

It is generally accepted that novelty is very central in deciding whether to re-
member something or not. It is a very natural criterion for selection both on pure
data storage grounds as well as for the purely subjective reasons of later inspection
of stored images. Heuristically novelty can be measured as the deviation from some
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Novelty

Query sequence

Reference sequences

Figure 1: Novelty detection via sequence alignment.

standard background. The less variation there is in the background the easier it will
be to detect novelty. One way to ensure that the background variation is limited
is to choose a specific context within which novelty is selected.

Here we choose the simple context of the daily repeated activity of going to
work. The collected video sequences from various days therefore contain image
frames captured from approximately the same location. The influence of the day-
to-day variation of these locations can be further reduced by aligning corresponding
frames from different days using appearance and geometry information in the image
frames. The content of a recorded sequence depends on two main factors: 1) the
ego motion of the person wearing the camera and 2) the environment in which the
sequence is captured. If there is a sufficient variation in one of these factors, this
leads to the inability to register some or all of the sequence to previously stored
sequences. This inability is taken as a measure of novelty. Ideally variations such
as the person deviates from his/her daily path or stops to do some shopping or a
street being shut off should be captured by our system.

This work extends previous studies based on wearable cameras in two main
ways: 1) We use a very small (4cm high) camera that captures image at video
rate for one hour and stores it on a memory stick. 2) Video is captured from
daily repeated activities such as going to work and we develop algorithms for the
automatic frame to frame registration of sequences recorded on different days. 3)
We define novelty based on the absence of a good registration between a sequence
and stored reference sequences.

The rest of paper is organized as follows. We begin by presenting in section 2
the details of our sequence alignment algorithm. This algorithm establishes frame
to frame correspondences between two sequences. Section 3 then describes how the
correspondences between sequences can be utilized to detect novelties. Afterwards,
we present evaluation of the components of the proposed algorithm in section 4.
Section 5 shows the results of the novelty detection algorithm and finally, section 6
concludes the paper.
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Figure 2: Each above row shows a highly temporally sub-sampled sequence from
our dataset. Each sequence corresponds to a different day and captures what the
subject experienced visually on his way to work.

2 Sequence alignment

Figure 2 displays 10 sequences from our dataset. Each row corresponds to one
sequence and is of the subject walking from the a metro station to his work place.
All our sequences are frames sampled from 25Hz videos at 1Hz. We wish to put
the frames of one sequence s1 in correspondence with another sequence s2. As
the sequences we capture have temporal continuity characteristics and repeated
underlying structures, a natural way to establish correspondences is with Dynamic
Time Warping (DTW). This algorithm requires a measure of similarity between
each frame of s1 and each frame of s2 and the rest of this section is mainly devoted
to how we compute this.

2.1 Appearance based cues

The most straightforward approach to define a measure of similarity between two
sequences is to represent each frame with a fixed length vector and compare the
representative vectors with a kernel such as polynomial or minimum intersection
kernel. In order to represent frames with a fixed length vector, a common approach
is to model the distribution of some local visual words1 disregarding their spatial
information.

1We use the terms visual words and features interchangeably in this article.
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Local features are fixed length description of some local interest regions localized
in different areas of an input image. SIFT [7] and its variations are one of the most
commonly used region descriptors. Various methods detect interest regions based
on different criteria such as the determinant of the Hessian or the Harris tensor. A
thorough study of region descriptors and interest region detectors is performed in
[12]. Alternatively, it is possible to densely sample the SIFT features on multiple
scales from a spatial grid over the image.

The local features are afterwards aggregated in a fixed length vector representing
the entire image. The Bag of Features(BoF), inspired by text processing techniques,
clusters features from many images to C clusters and models the frequency of
assignments of the features in each image to one of cluster centers. This gives rise
to a sparse C dimensional vector for each image regardless of the dimensionality
of the features themselves. Recently, the Vector of Locally Aggregated Descriptors
(VLAD) [6] was introduced that aggregates all the feature vectors assigned to the
same cluster center to reach a vector of the same dimension as the visual words
and performs the same for all cluster centers. This leads to a dense dC dimensional
feature vector where d is the dimension of the local features.

We use the fast and efficient fixed length representation of the image to find the
nearest neighbors of each frame of a query sequence in reference sequences. We will
compare the performance of the VLAD and BoF aggregation methods on interest
region based and dense sampling of SIFT features in our dataset in section 4.1.

2.2 Geometric similarity

The appearance features, described in the previous subsection, highlight pairs of
frames which contain the same local structures. However, they do not guarantee
that the matched local structures occur in a geometrically consistent way. The
features can be considered as geometrically consistent if there is a global transfor-
mation or there are certain constraints are fulfilled between the matched features’
locations encoding the relative position and orientation of the camera viewpoints.
The tried and tested way to check this, especially when one may encounter large
displacements and rotations between the views, is via epipolar geometry and esti-
mation of the Fundamental matrix [8].

Thus we estimate the epipolar geometry between two views. Our measure of
similarity is then defined as the percentage of inliers, with respect to the estimated
fundamental matrix, in an initial set of putative matches. It should be noted we
use this measure of similarity between two frames as an absolute score in [0, 1], not
a means for re-ranking [10], which is independent of the other images.

Estimating epipolar geometry robustly and efficiently

The images we capture are of dynamic environments and from a moving, twisting
platform. Therefore we frequently have to match views with significant amounts of
occlusion and significantly different viewpoints. We thus estimate the fundamental
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matrix from a sparse set of noisy correspondences and robust estimation via a
RANSAC variant.

Unfortunately RANSAC based methods require an exponential number of trials
in the minimum number of points required to fit the model and worse than ex-
ponential trials in the ratio of outliers to inliers. Given the large amount of data
we have to process, a careful implementation w.r.t. the computational demands is
required. Therefore we

• use Prosac [2] as it provides a significant speed up on RANSAC in the presence
of a large number of outliers but where some inliers can be readily identified,

• reduce the minimum number of correspondences required to estimate the fun-
damental matrix from the standard 7 [4] to 5 by using the method suggested
in [11] (though it does give up to 10 solutions),

• reduce the number of false correspondences in the initial putative set by choos-
ing distinctive correspondences. As suggested in [7], we compute for each
feature in one view the ratio of the Euclidean distance to its nearest neighbor
and second nearest neighbor in the other view. These scores are sorted into
ascending order and the first 250 features and its nearest neighbor match,
w.r.t. this ordering, make up the putative set.

Another issue which has to be addressed is that the epipolar constraint is relatively
weak (it maps a point in one view to a line in the other). To accurately judge the
correctness of a hypothesized fundamental matrix in the presence of many incor-
rect correspondences additional constraints are needed. To this end we enforce that
inliers must also be consistent with a homography mapping the local feature loca-
tions from one frame to the other. This homography consistency constraint is only
weakly enforced and is achieved by using Prosac with a loose definition of inlier to
robustly estimate a homography. Then only the matches which are consistent with
this estimated homography are maintained and used for the fundamental matrix
estimation. Algorithm 1 summarizes the complete implementation and the second
row of figure 3 depicts the stages of the fundamental matrix estimation.

Algorithm 1 Computation of geometric similarity.
INPUT: Features F1,F2 extracted from images I1, I2
OUTPUT: Similarity measure FGV (I1, I2) ∈ [0, 1]
P ← N best putative matches between F1 and F2
HL ← PROSAC 4 points loose Homography(P )
PH ← inliers of P to HL

E ← PROSAC 5 point Essential Matrix(PH)
PHE ← inliers of PH to E
FGV (I1, I2)← fs(PHE , P )
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The final geometric similarity measure

Once the fundamental matrix has been estimated and used to define a set of fi-
nal point correspondences between the two views, we can calculate the geometric
similarity score. In this work we define this as

fs = min
(

1, αmax
(

0, |PHE |
|P |

− β
))

(1)

where |P | is the number of correspondences in the initial putative set and |PHE |
is the number of final inliers found. The α and β are non-negative scalars which
are learnt from training data. The role of β is to force the average matching score
towards 0 for images which contain no overlap, while α scales the score with the
aim that when images of the same scene are matched they achieve a score of around
1.

2.3 Dynamic time warping
Once one can measure similarity between two frames, using our geometric similarity
measure, the temporal alignment of sequences is straightforward. There are just
a couple of steps involved. First the similarity matrix containing the similarity
between any pairwise frames is formed and turned into a cost matrix by mapping the
similarities to costs using a zero-mean Gaussian with standard deviation σc. Then
temporal alignment is calculated via dynamic time warping on the cost matrix.
Computing alignment in this fashion though straightforward is extremely slow as
evaluating each entry in the cost matrix requires calculating the computationally
expensive geometric similarity score. Clearly, it is not necessary to compute every
entry, we just need to compute those which will have low costs.

These low cost entries can be easily identified, similar to [10], by utilizing the
fast and efficient nearest neighbor search using the previously described appearance
based fixed length representation, of the frames to find the k nearest neighbors in
s2 of each frame in s1. Evaluation of the geometric similarity is then limited to
k evaluations for each frame in s1. As the same local features are used in the
fixed length representation and in the geometric similarity evaluation, we expect
the relevant low cost entries to be computed while ignoring the high cost entries.
Figure 4 shows for one particular alignment example what proportion of geometric
scores from the full matrix are actually computed and how the entries on the ground
truth alignment path have been identified by the k nearest neighbor search.

The minimum cost path connecting the first and last entry of the cost matrix
is denoted by a set of ordered pairs δs1,s2 = {(i1, j1), . . . , (iL, jL)} with i1 ≤ i2 ≤
· · · ≤ iL and similarly for the j’s. We then define the match cost of a frame i in
sequence s1 to sequence s2 as

λ(i, δs1,s2) =


Cik,jk if ∃ (ik, jk) ∈ δs1,s2 s.t. i == ik,

ik − ik−1 = 1 and jk − jk−1 = 1
1 otherwise

(2)
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5 nearest neighborsQuery frame

best 250 putative matches

inliers w.r.t. estimated homography

inliers w.r.t. epipolar geometry

Figure 3: The top row shows the 5 nearest neighbors in a reference sequence to
the query frame. The bottom rows show the stages taken to establishing epipolar
geometry between a query frame and a nearest neighbor. The initial correspon-
dences are successively filtered by a robustly estimated homography and then the
estimated epipolar geometry.

where Cik,jk is the value of the cost matrix at entry (ik, jk). Note the defined match
term is unique for each frame due to the form of the path returned by dynamic
time warping.
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(a) (b) (c)

(d) (e) (f)

Figure 4: The similarity matrices calculated affect the ability to successfully align a
sequence s1 with another sequence s2. Top row: (a) The full appearance similarity
matrix and the ground truth registration between the two sequences is overlayed in
red. (b) Sparse sampling of the appearance similarity matrix, using the 5 nearest
neighbor per query frame (c) Sparse geometric similarity matrix, the geometric
similarity is computed at non-zero entries of the b) matrix. Bottom row: The
results of DTW applied to (d) dense appearance based cost matrix, (e) sparse
appearance based cost matrix (f) sparse geometric similarity based cost matrix.
Note how the final registration is closest to the ground truth.

3 Novelty Detection

Once sequences can be aligned and correspondences can be established between
their frames, then the quality of the alignments can be used for novelty detection.
The crucial point is that novelties induce poor quality alignments. We therefore
align a query sequence with the training sequences and search for frames within
the test sequence which do not have good correspondences in any or very few other
sequences. Figure 1 illustrates such a situation.

Having aligned all sequences to a query sequence, for each frame of the sequence
we compute the minimum match cost for each frame of the query sequence:

E(s(i)
t ) = min

sr∈S
λ(i, δsq,sr ) (3)

where S represents the set containing the reference sequences. If a frame has a good
correspondence in at least one of the reference sequences, the entity E(s(i)

q ) will have
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a small value, otherwise it will have a bigger value close to 1. Therefore, we can
directly threshold theminimum match cost to find novelties. A temporal smoothing
of the minimum match cost E is applied prior to thresholding to reduce the effect
to the multifarious sources of noise. We smooth the E’s with a Gaussian mask
with σN = 2 and then threshold them with θN = e

− 1
23σ2

c to detect novelties. This
threshold is chosen as corresponds to a cost associated with a geometric similarity
of 0.5.

4 Evaluation of the similarity matching

In this section we evaluate the quality of the performance of the constituent parts
of the algorithm to compute the similarity between frames - the nearest neighbor
search based on matching appearance and the geometric similarity scoring. It is
crucial that these attain a certain level of performance to ensure that sequences can
be registered in the presence of non-interesting variations. To help us do this we
have manually annotated all sequences with a total of 9 different labels representing
the location each frame of each sequences belongs to.

4.1 Nearest Neighbor search
The nearest neighbor search based on appearance features plays a critical role in
creating the appropriate sparse cost matrix. Therefore we want to optimize its
design and quantify its performance. There are numerous possible choices for the
exact form of the features used and how they are compared as expounded in section
2.1. We limit, influenced by recent literature, our investigations to

• fixed length vector representations of the image with either BoF or VLAD descrip-
tors built from SIFT features,

• the standard set of interest region detectors, see figure 5(a), including a dense sam-
pling2.

Similarity between two images is then computed with the minimum intersection
kernel for the BoF vectors and a polynomial kernel of degree one to compare VLAD
vectors. When both representations are used, we use linear combination of the
kernels with equal weights.

We then compare the label of a query frame with that of its K nearest neighbors
and compute the proportion of the retrievals over the data set which return at least
one correct label. Figure 5(a) shows the results of this experiment as the number of
nearest neighbors returned and the image feature design varies. It can be observed
that the dense sampling outperforms more specific interest region detection.

Guided by these results, we use the combination of the BoF and VLAD vectors
with the color and gray variation in the final system. With this method, 88% of

2We use the implementation of dense SIFT features [13] with 4 scales and skip parameter of
6 pixels.
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Figure 5: (a) The accuracy of image matching for differing interest region
detectors and numbers of nearest neighbours. Methods (from left to right):
VLAD+HessianAffine, VLAD+MSER, VLAD+HarrisAffine, VLAD+Dense(gray),
VLAD+Dense(color), BoF+HessianAffine, BoF+MSER, BoF+HarrisAffine,
BoF+Dense(gray), BoF+Dense(color), VLAD+BoF+Dense(gray+color). (b) The
average of 100 FGV values on local windows around the true correspondences.

the time at least one of the 5 nearest neighbors to the query frame will correspond
to a high similarity entry in the final cost matrix.
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4.2 Geometric Similarity
There are many parameters that affect the performance of the geometric similarity
function such as the number of fixed initial putative matches N , the thresholds
θH and θE on the reprojection error for the estimated homography and essential
matrix used to define inliers and the number of PROSAC iterations TH and TE
used in estimating the homography and essential matrices. Although it is possible
to find the configuration of the parameters by exhaustive search, such an approach
would be extremely computationally expensive. Instead, we fixed the parameters
and structure of FGV empirically: we used N = 250, θH = 1, θE = 0.01, TH = 100
and TE = 25.

We evaluated the performance of the geometric similarity function using the
dense sampling of the SIFT features and interest region detectors and found the
dense sampling approach to perform better in terms of robustness and accuracy.
This happens as 1) too many interest regions are found around the dynamic objects
in the scene and these do not have a correspondence in the other frame and 2)
too few interest regions are found in many regions which do not contain strong
texture/gradients e.g. the the pavement in a relatively low resolution image. In
these cases, it is no surprise that dense sampling approach can better capture
information from the entire image.

The FGV scores of a frame at a label transition matched to each frame in a
local time window around a label transition to the same label as our target frame
are computed and recorded. This process is repeated for all such transition frames
and time windows. Figure 5(b) depicts the average result of this computation. On
average FGV maps the correct correspondence (the transition point)to a number
close to 1 while its value drops monotonically relatively quickly with the displace-
ment from the transition point. The appearance based fixed length representations
would have a much slower drop and would not be able to precisly locate the label
transitions as precisely or unambiguously.

5 Results

For the experiments in this paper, we used a data set of 31 sequences of the subject
walking from metro station to work. In addition to the labelings mentioned earlier,
we also manually defined temporal segments of the sequences in which something
happened that either did not happen in the other sequences or it was infrequent
e.g. subject meeting with a friend. The labelings resulted to 4 of the 31 sequences
containing novel segments. Below, we present the results of the suggested algorithm
trying to detect these 4 temporal segments.

Figure 7 depicts the intermediate and final results of novelty detection for a
sequence containing novelty(the subject meets a friend). Due to limited space,
we show the final picture containing 15 samples of the sequence(Figure 7(a)) vs
6 reference sequences. It can be observed that the method is able to detect both
segments that were manually labeled as novel segments in addition to one false
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(a) (b) (c)

Figure 6: Precision-recall curves for novelty detection. Each figure uses a different
cost matrix: (a) dense appearance , (b) sparse appearance, (c) sparse geometric.
The red, green and blue curves show when 1, 6 and 10 reference sequences are used.

detection of a segment containing 4 frames(Figure 7(d)). The false detection is
due to a very strong change in the lighting leading to a few overly bright frames;
this inevitably leads to significant changes in local features which then prevents the
algorithm to establish correct correspondences for those frames. Figure 8) depicts
the results of novelty detection on the remaining 3 sequences that contain novel
segments.

The accuracy of the novelty detection on 400 frames(4 sequences sub sampled
to contain 100 frames) for which we had the ground truth manually labeled, are
measured and depicted in figure 6. It can be observed that using dense the appear-
ance costs leads to better accuracy compared to its sparse version. The figure also
suggests that using the method with geometric costs outperforms the use of the
appearance based costs with a strong margin. The high average precision of the
results using geometric costs with as few as 6 reference sequences(AP ≥ 0.96)(green
and blue curves in Figure 6(c)), suggests that the method is accurate and reliable
for the purpose of novelty detection while being robust to various environmental
changes such as view point and illuminations changes as well as occlusions.

6 Conclusions and Future Work

We have demonstrated a system that is able to automatically extract novel events
in the context of video captured from a camera continuously worn by a person who
repeats a daily activity. The sequences manually annotated contain (subjectively) a
total of four different novel events. All these novelties were automatically detected
without any false positives. As far as we know this is the first systematic study
of novelty detection of this kind where a repeated activity is used as background.
These results indicate that potentially interesting applications of automatic memory
selections should be possible especially in constrained environments like the kind
considered here.

The frame-to-frame registration of the video captured from one day to another
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Figure 7: A detected novelty - the subject meets a friend. (a) The query frames
without correspondences in the reference set, the black images below, are detected
as novelties. Due to sub sampling only 3 of the 23 detected novelty frames are
shown. (b) The match cost (λ) between each frame of the query sequence and the
reference sequences it has been aligned to. Darker values correspond to lower costs.
(c) The minimum match cost (E). (d) The smoothed minimum match cost. The
red line shows the automatic threshold θN and the green curve the ground truth
labeling of novelty. The large peak corresponds to the novelty displayed in figure
(a).

is possible, just using appearance and geometric cues, as we have constrained the
variation in these sequences to those experienced by human wearer. This makes it
possible to define a background relative to which novelty is measured.

In the future, we want to consider longer individual sequences captured over
longer time periods. These will encompass many more activities in differing envi-
ronments and will undoubtedly require a more complex description and representa-
tion of the captured background. Registration at a more abstract semantic level as
opposed to the appearance/geometric level exploited in this paper will be needed.
Novelty detection at a semantic level will allow disambiguation between false pos-
itives generated by changes in appearance and geometry induced by non-relevant
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[subject runs into a friend]

[subject gives directions to someone]

[subject goes ice cream shopping]

Figure 8: Detected novelties in 3 sequences containing novelty and the correspond-
ing match costs and smoothed minimum match costs on the right side.

variation of the environment or the ego-motion.
The central problem is the ability to measure similarity of recorded background

with the actual captured video. In this sense the problem of novelty detection is
intimately related to the general problem of similarity learning and the structur-
ing of visual manifolds. We believe that the analysis of video captured from an
ego-centric perspective can serve as an important test case for the study of these
problems.
Acknowledgements: This work was supported by The Swedish Foundation for
Strategic Research in the project "Wearable Visual Information Systems".
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Multi View Registration for Novelty/Background Separation

Omid Aghazadeh , Josephine Sullivan and Stefan Carlsson

Abstract

We propose a system for the automatic segmentation of novelties from
the background in scenarios where multiple images of the same environment
are available e.g. obtained by wearable visual cameras. Our method finds
the pixels in a query image corresponding to the underlying background en-
vironment by comparing it to reference images of the same scene. This is
achieved despite the fact that all the images may have different viewpoints
, significantly different illumination conditions and contain different objects
- cars, people, bicycles, etc. - occluding the background. We estimate the
probability of each pixel, in the query image, belonging to the background by
computing its appearance inconsistency to the multiple reference images. We
then, produce multiple segmentations of the query image using an iterated
graph cuts algorithm, initializing from these estimated probabilities and con-
secutively combine these segmentations to come up with a final segmentation
of the background. Detection of the background in turn highlights the novel
pixels. We demonstrate the effectiveness of our approach on a challenging
outdoors data set.

1 Introduction

A mobile surveillance system or a person with a wearable camera often moves in
a geographically limited environment over extended time periods. The problem of
identifying the background pixels of a scene from this environment is an interesting
and challenging one especially as the background will vary and be partially oc-
cluded by different temporary objects each time it is viewed. However, the ability
to perform such background/novelty detection would greatly facilitate visual mem-
ory processing of wearable camera footage and the monitoring of areas with mobile
surveillance systems. In this paper we focus on wearable camera footage and pro-
pose a system for detecting these temporary/novel objects in locations repeatedly
visited by a person wearing a camera.

We consider images captured over time periods of days and during this time
both substantial nuisance and interesting variations can occur in the environment.
Given a query image captured from a specific location on a certain day and reference
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What's new? 
I've been 

here before!

Query Image Output 

Reference Images

Figure 1: Our system takes as input a query image and multiple reference images.
We assume all these images are of the same environment taken from approximately
the same view point but at different times. The algorithm segments out objects in
the query image which are not part of the environment. The bottom right figure
shows the computed segmentation.
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images captured from previous days at approximately the same location, we aim to
distinguish between the novel and background pixels in the query image.

This is not a trivial task. All the images examined are captured on different
days and will have a potentially large variation in their illumination and shading in
combination with relatively large variations in their viewpoints. And also in each
image there will be different temporary objects occluding the background. There-
fore, it is not feasible to build one clean background image and perform background
subtraction. We instead associate background pixels with those which can be con-
sistently and reliably matched to the reference images. Our system has two main
steps. The first probabilistically classifies each pixel in query image as background
or not from appearance consistency features extracted from dense correspondences
to the reference images. While the second stage is two-class segmentation of the
query image guided by the output of the background classification and consistency
of image appearance. Note that the system implicitly relies on the geometric con-
straints that the query and stored images are captured from approximately the
same location.

This problem differs significantly from traditional problems of foreground back-
ground segmentation with stationary surveillance cameras where the main source of
background variation is changes in illumination. Since we use static images widely
separated in time we cannot exploit camera motion constraints as in [4]. Contrary
to [14], our images neither allow 3D modelling of the background nor detailed ge-
ometric analysis [17] to be used. Our reliance on appearance matching and two
class segmentation allows for robust exploitation of our highly varying background
images. The use of multiple static images contrasts with segmentation methods us-
ing optical flow [1, 16] and allows us to segment out novelty that is not necessarily
foreground with high disparity. Co-segmentation approaches [7], though related,
are not suitable due to the significant appearance variations in the background -
the object of constant appearance for co-segmentation - across the images.

The main contribution of the paper is a robust and generic novelty detection
algorithm whose parameters are automatically learnt from annotated data. This
allows for the detection of many time-varying scene components such as people,
cars... in a robust way that mimics the performance of specifically designed object
detection algorithms.

The organization of the paper is: In section 2 we introduce our method for
novelty/background segmentation, in section 3 we quantitatively and qualitatively
evaluate the proposed method and we conclude the paper in section 4.

2 Foreground/Background Segmentation

As previously stated we have a set of reference images and a query image taken
of the same scene. All these images have been captured at different times and
relatively different viewpoints. Our goal is to identify background pixels in the
query image. This is achieved by summarizing comparisons of the query image to
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each reference image as follows:

1. Estimate the probability of each pixel not belonging to background which
we term the probability of novelty from the dense correspondences found
between the query image and each reference image.

2. Produce multiple segmentations of the query image, given the probabilities
of novelty, by varying the parameter settings of the segmentation process.

3. Combine all the segmentations probabilistically to produce a final classifica-
tion of the query image pixels.

We now describe each step in more detail.

2.1 Estimating the probability of novelty
Crucial to our algorithm’s success is the computation of dense correspondences
between the query image and each reference image. Establishing such correspon-
dences, when each image has different parts of the scene occluded, is a hard problem.
In fact establishing correspondences and occlusion estimation are closely related
tasks - knowledge of the image correspondences makes estimation of the occlusions
easier and vice versa.

Some authors have exploited this relationship by explicitly including occlusion
estimation into their algorithms for finding image correspondences [12]. As such
formulations usually rely on expectation-maximization like procedures, they are
usually more susceptible to local minima. Therefore, occlusion estimation is usually
ignored and more emphasis is instead put on imposing priors - such as smooth
displacement fields - when calculating correspondences.

In this work, we do not aim to solve for both occlusions (which in our problem
are mainly novelties) and the correspondences simultaneously. Instead, we aim to
deduce the background pixels given some noisy correspondences between images.
We use SIFT Flow [9] to establish such correspondences as we found it more
robust to illumination changes, occlusions and large displacements compared to
the methods we tried.

We first establish correspondences between the query image Iq and each refer-
ence image Ir ∈ R where R is the set of reference images. Then, we compute the
following features on each pixel of Iq using each Ir in turn:

Ierr
q,r,x = ‖Iq,x − Ir→q,x‖
Serr
q,r,x = ‖Sq,x − Sr→q,x‖ (1)

Herr
q,r,x =

∑
c

QCA0.5 (H(Iq, x, c), H(Ir→q, x, c))

where

• Ii,x is the color (CIE Lab) of pixel x in image Ii,
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Iq Ir Ir→q

Ierr
q,r Serr

q,r Herr
q,r

Figure 2: The features used to calculate the probability of novelty P̃ for pixels in the
query image Iq when compared to a reference image Ir. Ir→q is Ir warped towards
Iq using SIFT Flow. The corresponding pixels of Iq and Ir are then compared via
Ir→q as in equation (1).

• Si,x is the SIFT [10] computed at pixel x of Ii,

• H(Ii, x, c) is the histogram of channel c intensity values of the pixels inside a
rectangular region centered at pixel x in Ii and QCAm(., .) is the distance be-
tween two histograms computed using the Quadratic Chi kernel with respect
to the parameter m and the similarity matrix A [13],

• Ir→q denotes image Ir warped towards Iq.

The measure Herr dubbed Normalized Bagged Similarity measures neighborhood
similarity of pixels similar to Normalized Cross Correlation while unlike NCC it
is invariant to the ordering of the pixels and also, it can be made invariant to
nonlinear transformations of the intensities using proper histogram normalization
techniques and proper similarity matrices (see supplementary material). NBS can
be computed very efficiently by the use of Integral Histograms and its computations
can be parallelized very efficiently by the use of GPUs. Table 1 describes the
properties of the features and Figure 2 shows the features evaluated on an example
case.

We compute these three measurement types at multiple scales and stack the
resulting feature vectors into F̄q,r,x. We then compute for each pixel x at a fixed
scale, the algebraic mean, harmonic mean and minimum of each response in F̄q,r,x
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Properties of the Feature

Feature Source Neigh. Corr. Sens. Illum Inv.

Ierr Color 0 1 0
Serr Sift 1 1 1
Herr Hist 1 0 0,1

Table 1: Features used in the estimation of the probability of novelty and their
properties. Neigh. is 1 if the feature captures information in the neighborhood
of a pixel. Corr. Sens. is 1 if the feature is affected considerably by small errors
in the correspondences. Illum Inv. is 1 if the feature is invariant to illumination
changes. Different normalizations of Herr can make it sensitive or invariant to
illumination changes.

with respect to the reference images Ir. The resulting feature vector, Fq,x, for each
pixel in Iq is 78 dimensional. This feature vector is used to estimate the probability
of novelty as follows.

We use logistic regression to map a pixel’s feature vector, Fq,x, to a scalar be-
tween 0 and 1 estimating the pixel’s posterior probability of being not background.
The parameters of this regression function are learnt from our manually annotated
ground truth data (see Section 3) which provides many pixel feature vectors and
their associated labelling as background or not. L2 regularization is imposed during
learning and LibLinear [6] is used to ensure training takes a reasonable time given
the large number of training examples examined (approximately 3 million) which
are collected by sub sampling the data every 6th pixel in each direction. In the rest
of this paper, we refer to the results of this logistic regression (the probability of
novelty) evaluated at pixel x in the image i with P̃i(x). Figure 4 (top left) depicts
a typical evaluation of P̃ on a query image.

2.2 Segmenting out the background

Using the estimated probability of novelty P̃ , we iterate between segmentation
of the query image’s pixels into background and novel regions and updating our
models describing the features associated with the background and novel pixels.
We do this in a manner similar to Grab Cut [15]. An important difference, though,
is that we initialize our foreground and background models automatically from the
probability maps indicated by P̃ . This iterative process can be viewed as a variant
of Expectation Maximization.

For the maximization step, we use an energy minimization approach to segment
the images into novelty and background regions. We use Graph cuts [8, 2, 3] to
perform the minimization as we use an appropriate energy function in the popular
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form of a sum of unary and pairwise terms.

E(l) =
∑
x∈X

Dx(lx) + λ
∑

(x,y)∈N

Vx,y(lx, ly) (2)

where l is a binary labelling assigning each pixel x ∈ X a label lx ∈ {0, 1}. Here
Dx(lx) is the data term and determines the cost of assigning the label lx to pixel
x in image I. N is the set of pairs of neighbouring pixels (8 connectivities) and
Vx,y(lx, ly) is the pairwise smoothness (regularization) term and determines the cost
of assigning different labels to neighbouring pixels x and y.

A popular choice of the smoothness term is the Ising prior weighted by some
dissimilarity measure to relax the smoothness constraint at image discontinuities.
We utilize a similar approach and use a parallelized version [5] of the gPb detector
[11] - which utilizes GPUs to estimate the boundaries of objects in natural images -
to encourage the cut to go through those boundaries. Therefore, our pairwise term
is

Vx,y(lx, ly) = 1
‖x− y‖

[lx 6= ly] e−
|IB(x)−IB(y)|2

2σ2 (3)

where [.] is the Iverson bracket and IB(x) denotes the response of the gPb detector
at pixel x.

We define the data term to be

Dx(lx) = − logP (lx | fx) (4)

where fx is a feature descriptor of the pixel x and P (lx | fx) represents the posterior
probability of label lx (novelty or background) conditioned on observing feature fx.
More details of how we estimate this posterior probability are now given.

Let l(t) represent the current best estimate of the pixel labellings. Define X (t)
k =

{x | l(t)x = k} for k ∈ {0, 1} to be the set of pixels with label k according to labelling
l(t). For the expectation step, we collect some statistics about the distribution of
some features in Iq conditioned on the current estimate of the segmentation1. The
features we use for the segmentation are (a subset of) the color, a dimensionality
reduced version of the sift feature vector (to 3 dimensions) and the position of each
pixel. We use Kernel Density Estimation to estimate the likelihood P (fx | lx)

P (fx | lx) = 1
|X (t)
lx
|hd

∑
y∈X (t)

lx

K

(
fx − fy

h

)
(5)

where d is the dimensionality of the fx (8 in case of all 3 features), h is the band-
width(window width) and K(µ) is the multivariate Gaussian density function with

1In the first iteration, we collect statistics only from the pixels whose P̃ is more than a desired
margin m0 away from 0.5. This way, we can collect the initial statistics about segments with the
desired level of certainty and avoid collecting statistics from uncertain regions if m0 > 0.
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Prior name P (lx = 1) ∝ P (lx = 0) ∝

PH
∑

x
P̃ (x)

∑
x
(1− P̃ (x))

PSF P̃ (x) 1
PS P̃ (x) 1− P̃ (x)

Table 2: The three types of priors used for the labelling of a pixel.

identity covariance matrix evaluated at µ. Whitening the feature data is performed
before any likelihood computations are made. We sub-sample the pixels on a fixed
grid, evaluate a homogeneous KDE on the same subset of pixels and use bilinear
interpolation to estimate the likelihood maps on all pixels. The KDE evaluation
is quadratic in the number of (sub sampled) pixels and can be parallelized very
efficiently by the use of GPUs. Evaluating the likelihood maps at each iteration
takes around 1 second on an NVIDIA GTX 470 for a sub sampling of once every 3
pixels in both directions.

To convert the estimated likelihoods to posteriors, based on P̃ , we consider three
types of class priors for each pixel: a uniform prior (PH) and two spatially varying
priors (PSF and PS). Table 2 shows the details of these priors. The prior PSF allows
more deviation from the relatively noisy probability estimates in P̃ compared to PS
which strictly promotes the segmentation suggested by P̃ . Note the way we define
the posterior is different to [1] as we do not marginalize over model parameters but
instead use a pixelwise prior computed from P̃ . We then, use the negative log of
the posterior P (lx | fx) ∝ P (fx | lx)P (lx) as the data term:

Dx(lx) = − log (P (fx | lx)P (lx)) + logZx (6)

where the normalization factor is

Zx =
∑

k∈{0,1}

P (fx | lx = k)P (lx = k) (7)

Figure 3 shows the different segmentations achieved using the different priors PH ,
PSF and PS on the pixel labels. In this example the parameters were set to m0 =
0.1, λ = 5, h = 0.5 and each fx was composed of pixel x’s color, dimensionality
reduced sift representation and its position. We iterate between the expectation
and maximization steps until the solution converges for a maximum of 25 iterations.

2.3 Combining Multiple Segmentations
The segmentation process of the previous section will converge to a stable segmen-
tation. However, the final segmentation achieved will greatly depend on the setting
of the explicit and implicit parameters in the energy function defined in equation
(2). The explicit parameter corresponds to the regularization parameter λ, while
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Figure 3: Segmentation results with different class priors: from top left to bottom
right: initializing with m0 = 0.1 and segmentation results using PH , PSF and PS
class priors. In the figure illustrating the initialization, regions inside blue and
red boundaries represent initial estimates of background and novelty regions. The
margin m0 = 0.1 > 0 on P̃ (refer to Figure 4) leads to gaps between the regions.

the implicit parameters include the initialization margin m0, the bandwidth of the
KDE h in the likelihood function P (fx | lx), the features extracted to define fx
and the prior used in the calculation of the posterior P (lx | fx). For clarity let
S = {λ, h, . . .} denote the set of all the parameters which influence the segmen-
tation process and s a vector containing the values assigned to each parameter in
S.

The question then is which s should we use when we segment a new image?
We could potentially use the s which optimizes performance on a validation set.
However, the choice made in this way will be highly influenced by the images in
the validation set and how performance is measured and also the best parameter
setting can vary drastically across individual images. Ideally, we want to perform
multiple segmentations, corresponding to s1, . . . , sK , and aggregate the results. One
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drawback of this approach is the extra computational cost if K segmentations must
be performed and this becomes computationally impractical for a large K. Another
issue is how to aggregate the results.

We propose the following solution. We start with a large pool {s1, . . . , sK} of
parameter settings (K = 50 in the experiments). Each image in our training set
is segmented K times, once for each sk. Then for a pixel x in a training image
we get a binary vector of length K whose kth entry is lx and lx is its labelling
returned by the segmentation process with parameter setting sk. We then, learn
a logistic regression function with L1 regularization which maps this binary vector
to a probabilistic estimate of its ground truth labelling. The parameter controlling
the regularization, in the regression learning, is set to ensure a sparse solution
is found. An immediate consequence of this sparse solution is that only a small
proportion of the original K segmentations need to be computed when a novel
image is encountered. We denote the evaluation of this learnt logistic function on
image i at pixel x with P̂i(x). The top right image of 4 shows an example of a
computed P̂ (x).

The final segmentation of the query image is found by minimizing an energy
function similar to 2 but with the data term based on P̂ :

D̂x(lx) =

− log
(

1− P̂ (x)
)

if lx = 0

− log
(
P̂ (x)

)
if lx = 1

(8)

We use Graph Cuts to minimize this energy globally2. The bottom left image of
Figure 4 shows the final segmentation found for a query image.

3 Experiments

3.1 Data Set
Our data set consists of 12 images of 12 different places making a total of 12×12 =
144 images. Figure 5 shows 3 images of one of the places from our data set.
Note that as the images of the same place were captured on different days, they
contain significant (non-linear) changes in lighting conditions - strong shadows and
bright regions appear and disappear and occlusions and viewpoints change between
images.

The definition of novelty depends on the memory we provide the system i.e.
which images are used as reference images to detect novelties in a query image.
But it also, from the design of our system, depends on the manual annotations we
provide for training. However, an accurate annotation is very expensive to obtain
manually and is subject to choices made by the annotator. Annotators were not
given strict rules but were simply asked to annotate what they thought was not
a part of the environment in disjoint subsets of images. They did not consider

2This minimization step is not iterated as the data term is fixed.
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Figure 4: Evaluating the logistic regression function P̂ combining multiple segmen-
tation results and the final segmentation acquired from P̂ . From top left to bottom
right: P̃ , P̂ , final segmentation and the ground truth labelling.

what actually changes in the other images in our data set. Therefore, we do not
have entirely consistent annotations that strictly follow objective rules: in some
annotations, we have strong shadows labeled as novelty while in some cases, some
parts of the environment that appear multiple times at the same physical place are
labeled as novelty. While it is impossible for any algorithm to agree completely
with the ground truth, we expect a reasonable algorithm to statistically agree with
the majority of the annotations.

In the following evaluations, we divide our images into training and testing sets,
use the training set to fit our models and to cross validate its parameters and we
report the results on the testing set.

3.2 Estimating the probability of novelty

Figure 6(a) shows the results of using different combination of features in computing
P̃ . The beginning capital letters in the figure denote which features are used e.g. I
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Figure 5: Three images of the same place from our data set and the ground truth
labeling of the last image. Note the variation in lighting conditions, strong shadows,
occlusions and changes in viewpoints.

denotes the Ierr measure and ISH refers to the combination of Ierr, Serr and Herr.
The subsequent letter refers to a single scale "s" or a multi scale "m" version of the
mentioned features. The final letters after the "-" sign ("a", "h" and "m" ) refer to
the aggregation function applied to different pairwise error measures (the algebraic
mean, harmonic mean and the minimum respectively).

It can be observed that by taking the minimum of the most basic measure,
Ierr, over 5 different reference images Is-m, the Average Precision (AP) of 41.2 can
be achieved. By including more aggregating functions, the harmonic and algebraic
means, the AP improves to 43.8 Is-ahm while by considering the multi scale version
of the same measure Im-m, the AP improves considerably to 62.9. Using a multi
scale version of the same feature Ierr with multiple aggregation Im-ahm function
achieves an AP of 66.8. Therefore, we use multiple aggregations and multi-scale
versions of the features in the remaining part of the evaluations.

To evaluate the contribution of each feature, we report the performance mea-
sure when the feature is removed from the feature pool: in order to evaluate the
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Figure 6: Quantitative evaluation of the individual pixel classifier. The effect of
using different features and different combinations of features (a), the effect of
using a different number of reference frames (b) and the final probability measure
P̂ combining multiple segmentations and P̃ using 5 reference frames (c).
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Parameter Settings
Feature h λ m0 P (lx) log Acc
CSP 0.66 10 0.4 PSF 1 91.86
CSP 0.5 1 0.4 PSF 0 91.76
CSP 0.5 10 0.3 PSF 1 91.75
CSP 0.66 10 0.4 PSF 0 91.72
CSP 0.5 1 0.3 PSF 0 91.71
CSP 0.75 10 0.4 PSF 1 91.69
CSP 0.5 0.5 0.3 PSF 0 91.67
CSP 0.5 10 0.2 PSF 1 91.56
CSP 1 10 0.4 PSF 1 91.50
CSP 0.5 5 0.1 PSF 1 91.43

Table 3: Evaluation of different parameter settings for the segmentation process.
The pixel-wise accuracy of the 10 best performing settings are presented. Compare
with the accuracy of thresholding P̃ (the initialization for the segmentations) at
0.5 : 90.64.

contribution of Ierr measure, we report the performance of SHm-ahm and compare
it to a logistic regression based on all three measures ISHm-ahm with an AP of 70.4.
We expect features with more information to have more contribution to the perfor-
mance of ISHm-ahm. Therefore, the results suggest that the Herr measure contains
more information than the other two: AP of 68.5 for ISm-ahm compared to 69.9 for
SHm-ahm and 69.1 for IHm-ahm. For the rest of the evaluations, we use the entire
feature pool (78 dimensions) unless stated otherwise.

Figure 6(b) shows the results of using a different number of reference frames to
compute P̃ . Using only one reference frame (one pairwise comparison) results in an
AP of 43.9 while increasing the number of reference frames increases performance.
Due to computational issues we do not consider using more than 5 reference frames
(AP of 70.4) but the figure suggests that increasing the "memory" of the system
i.e. by increasing the number of reference images compared to a query image, the
performance of the system increases.

3.3 The Segmentation Method

Table 3 shows quantitative evaluation of the segmentation step using the 10 best
performing parameter settings from the 50 we tried where best is defined relative
to the pixel-wise accuracy measure. From the results the following observations
can be made. All the three feature measurement types used in the KDE likelihood
computations have a positive role in improving the segmentation. One should avoid
using information from uncertain regions (m0 > 0) when initializing the likelihood
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model and that PSF performs better than the other two priors imposed on the pixel
label.

It should be emphasized here that our annotations do not match the data ex-
actly. Large brush strokes were used to manually label the novelties, therefore our
annotations over-estimate the extent of the true novelties. Our annotations there-
fore agree more with smoother and slightly over extended estimations. Therefore,
by fitting boundaries of the segmentation to their exact locations, we have probably
decreased the accuracy measure compared to a slightly over extended estimation!
This probably accounts for the small quantitative improvements in accuracy and
AP measures over the estimations achieved by thresholding P̃ .

3.4 Combining Multiple Segmentations

Figure 6(c) shows a quantitative evaluation of the combination of multiple seg-
mentations approach. The figure presents the results for combinations of P̃ with
different segmentations using different priors. The L2 [26] refers to an L2 regu-
larized logistic regression fitted to 25 of the best performing parameters, L2 G[x]
to the greedy selection of x out of the best 8 and L1 [x] to an automatic feature
selection of x features using L1 regularization.

It can be observed that the suggested approach efficiently combines different
segmentations (compare P̃ with the rest) and that L1 regularization based feature
selection outperforms the greedy approach for the same level of sparsity in the
solution (compare L1 [8] and L1 [9] with L2 G[8] and L2 G[6]). In summary, we
can achieve more than 3.5 percent increments on the AP measure by combining
multiple segmentations. However, the argument we made earlier about the over-
extension of the ground truth labelling still holds here and therefore, we believe the
true gain to be greater than is reflected in these numbers.

4 Discussions and Conclusions

Figure 7 shows some qualitative results of our method. While most of the results
are quite compelling and convincing, some depict the limitations of the method.
In particular, as is the case with any correspondence method, large homogeneous
regions cause problems as they are ambiguous to register. While our method can
overcome incorrect established correspondences to a reasonable extent, the algo-
rithm will have difficulty in detecting novel textureless segments occluding texture-
less background regions if the wrong correspondences are established consistently
across different reference images. This probably accounts for most of the missed
novelties.

Although our method is robust to illumination and moderate view point changes,
it cannot cope with large changes in the appearance such as strong textures induced
by strong shadows. However, as more reference images are added to the system
e.g. with the passage of time in wearable systems, scenes will be represented under
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Figure 7: Qualitative results of our algorithm. The first three rows show one result
per different place that we have collected data (12 places in total). The last row
shows some failure cases where most likely either parts of objects are missed or
strong changes in appearance (e.g. strong shadows) are detected as novelties.

various illumination conditions and view points and this issue will become less
important. Figure 6 (middle) provides evidence for this argument.

In conclusion, we presented a system which uses multiple images of the same
environment captured at different times, viewpoints and lighting conditions to im-
plicitly learn a background model and segment out the novel objects. As for future
work, it would be interesting to also consider temporal information and to con-
sider an extra constraint of consistency across different view points. Using such
an approach, we would be able to explicitly learn the underlying 3D model and its
projection in each view point, which would allow us to make a dense 3D model of
the environment and to automatically remove the novelties, and fill them in with
the learnt background model.
Acknowledgements: We want to thank Jan-Olof Eklundh for his constructive
comments about the segmentation process. This work has been funded by the
Swedish Foundation for Strategic Research (SSF); within the project VINST.
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Supplementary Materials

4.1 Data Set

Figure 8 shows 7 examples of one of the places in our data set. Despite the fact that
we had more than these number of images per place, in this paper, we did not use all of
them: we used 4 images for training/cross validation and 3 for testing purposes. Note
that using 4 images for training means that we have 4 ×

(6
5
)

= 24 different choices for
training using 5 reference images, and similarly, 3 ×

(6
5
)

= 18 different choices for the
testing purposes per place, which is more than sufficient for training / testing purposes.
The main reason for this is the combinatorial costs in increasing the maximum number
of images e.g. considering 8 images per place in total and dividing it into 4 training and
4 testing images, we would have had 4 ×

(7
5
)

= 84 choices for training and the same for
testing - per place. This number increases to 6 ×

(12
5
)

= 4752 in case of using all the 12
images and 5 reference images which would have been much more expensive to deal with.
For other numbers of reference images we randomly picked the same number of training
and testing cases (24, 18) e.g. in case of 3 reference images - from the possible 4×

(6
3
)

= 80
training cases - we randomly picked 24.

Figure 8: 7 images of one of the places from our data set and the manually defined
ground truth for each image
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Figure 9: More qualitative results on the first 3 columns. The last column depicts
the segmentation of the 3rd column imposed on the ground truth: black and green
represent correctly detected background and novelty, and red and blue represent
background detected as novelty and novelty detected as background respectively.
Note the over extended definition of novelties in our ground truth. Best viewed
electronically.

4.2 More Qualitative Results

Figure 9 depicts more qualitative results. The same behavior as in the results in the paper
can be observed: In addition to the general appealing behavior of the algorithm, we have
some occasional missing novelties and false detections. We expect the results to improve
if temporal information is additionally considered or a true multi view registration - which
satisfies the projective geometry in all the views simultaneously - is formulated and solved
for.

The last column in Figure 9 compares the segmentations in the 3rd column to our
manually labelled ground truth. Note the over extension of the manual labellings with
respect to the exact boundaries of novelties.
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4.3 Technical Details
Here, we clarify the meaning of the “log” column in Table 3 in the paper. It is 1 if the
negative log of the posterior was used in the data term of the energy function (similar to
Equations 4, 6 and 8 in the paper) and 0 if the posterior itself was used. From the table it
is evident that good solutions can be found without the use of the sensitive log operator if
proper priors are considered to convert likelihoods to posteriors and if proper bandwidths
are used in the likelihood estimations. However, as expected, large bandwidths leading
to very smooth likelihoods e.g. h > 0.66, require the sensitive log operator to be able
to discriminate between the novelties and the background i.e. to guide the segmentation
to converge to the desired solutions. As smaller bandwidths can prevent over-smooth
likelihood maps, they can be discriminative without relying on the log operator.

4.3.1 Feature Vectors Used in P̃

Algorithm 2 shows the feature extraction process for P̃ .

Algorithm 2 Feature Extraction Algorithm for P̃
INPUT: Iq, R = {Ir1 , ..., Irn}, R→q = {Ir1→q, ..., Irn→q},Σa = {σa1 , ..., σana},
Σs = {σs1 , ..., σsns}, σSF
OUTPUT: Fq
for Ir ∈ R do
F̄q,r ← ∅
for σa ∈ Σa do
F̄q,r = F̄q,r ×Gσa ∗ ‖S

(σSF )
q − (S(σSF )

r )→q‖
F̄q,r = F̄q,r ×Gσa ∗ ‖Iq − Ir→q‖
for σs ∈ Σs do
F̄q,r = F̄q,r ×Gσa ∗ ‖S

(σs)
q − S(σs)

r→q‖
end for

end for
for σs ∈ Σs do
F̄q,r = F̄q,r ×

∑
c
QCA0.5

(
H

(σs)
SI (Iq, ., c), H(σs)

SI (Ir→q, ., c)
)

F̄q,r = F̄q,r ×
∑
c
QCA0.5

(
H

(σs)
SV (Iq, ., c), H(σs)

SV (Ir→q, ., c)
)

end for
end for
FAMq = 1

|R|
∑
r
F̄q,r

FHMq = |R|∑
r

1
F̄q,r

FMq = min
r
F̄q,r

Fq = FAMq × FHMq × FMq

where
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Figure 10: Evaluation of P̃ when trained on the data using different reference
image numbers and tested on the corresponding testing set (left) and (right) when
trained using the train data with 5 reference images and tested on testing data with
different number of reference images.

• we used F1 × F2 to refer to the concatenation of feature vectors F1 and F2 ,
• Gσa ∗X refers to the convolution of X with a Gaussian kernel with standard devi-

ation σa,
• σSF is the scale the SIFT feature vectors in Sift Flow were computed on,
• A is the similarity matrix for Quadratic Chi kernel. We used the following band

limited similarity matrix Ai,j = 1
1+|i−j| [|i − j| < 4] where the [] is the Iverson

bracket,
• H

(s)
SI and H(s)

SV denote the shift invariant and shift variant histograms - of intensities
inside a square region of size (2s+ 1)× (2s+ 1) - respectively,

• Σa and Σs define window sizes (standard deviations for Gaussian windows and
window length for histogram computations) for spatial aggregation and scale com-
putations respectively,

• Ssq defines the sift vector on scale s computed on Iq.
We used Σa = {2, 4, 8, 16} and Σs = {2, 4, 8} in the paper which results in 3|Σa| = 12
dimensions for Ierr, 3|Σa|(1 + |Σs|) = 48 dimensions for Serr and 3|Σs|2 = 18 for Herr

feature (a total of 78 dimensions). Note the superior performance of the NBS feature (Herr)
compared to the rest of the Sift based features (Serr) despites its lower dimensionality
(Figure 6 (left) in the paper).

4.3.2 Normalized Bagged Similarity

The computation of NBS can be made very efficient using Integral Histograms. Normaliz-
ing channels between [0, 1] and quantizing each channel into N = 32 bins and using linear
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interpolation, we compute the IH of the image and compute the histogram of a given
width centered around a given point by 2 histogram additions and 2 subtractions.

In order to build invariance into NBS, we compute the statistics of the regions on
which the histograms are obtained (from the histograms themselves)

µ(H) ≈ E[i] =
∑

i P (i) ≈
∑N−1

n=0
n

N−1H(n)
σ2(H) ≈ E[(i− E[i])2] =

∑
(i− µ)2 P (i) ≈

∑N−1
n=0

(
n

N−1 − µ(H)
)2
H(n)

(9)
where E[i] denotes the first moment of the intensities of the pixels inside a region described
by the histogram H. To make NBS Shift Invariant, we shift (each bin of) the histogram
by the approximated first moment (µ(H)) and interpolate the target - in the re-sampled
bin locations from [−1, 1] - by linear interpolation. The same approach is used for the
affine invariant version but, the target is normalized by the second moment as well and the
bins are then re-sampled from [−3, 3]3. However, as the discriminativeness of the measure
becomes less as the invariance level increases, we did not include affine invariant version of
NBS in the computation of P̃ and instead, we used both Shift Invariant and Shift Variant
versions of the NBS in the feature pool. We also experimentally found out that the shift
variant version is more discriminative and suits our problem more.

It is also possible to exhaustively search for a shift in one of the histograms that
minimizes a distance measure between the two. However, we found such an approach
to be computationally more demanding - specially if the distance measure is expensive
to evaluate e.g. non diagonal similarity matrices in Quadratic Chi kernels - without any
specific advantages.

4.3.3 Estimating P̃

Figure 10(a) shows the results of training the logistic regression function using different
number of reference images (the same as Figure 6(b) in the paper) and Figure 10(b) shows
the result of the logistic function learnt using the training set with 5 reference images but
evaluated on the test sets using different number of reference images. It can be seen that
the decrements in the performance gets smaller and smaller when the number of reference
images are increased (3.9, 2.4, 0.8, 0.1) which suggests that

• The logistic function being learnt gets more and more independent of the training
data as the reference image set size increases.

• The regression process is perhaps converging to an optimal function irrespective of
the number of reference images (in training and testing times) as enough data is
provided to the method. The figure provides strong support for this idea.

3with the assumption of Gaussian distribution of intensities, 3 standard deviation covers 0.997
of the space.
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Abstract

The non-linear decision boundary between object and background classes
- due to large intra-class variations - needs to be modelled by any classifier
wishing to achieve good results. While a mixture of linear classifiers is capable
of modelling this non-linearity, learning this mixture from weakly annotated
data is non-trivial and is the paper’s focus. Our approach is to identify
the modes in the distribution of our positive examples by clustering, and
to utilize this clustering in a latent SVM formulation to learn the mixture
model. The clustering relies on a robust measure of visual similarity which
suppresses uninformative clutter by using a novel representation based on the
exemplar SVM. This subtle clustering of the data leads to learning better
mixture models, as is demonstrated via extensive evaluations on Pascal VOC
2007. The final classifier, using a HOG representation of the global image
patch, achieves performance comparable to the state-of-the-art while being
more efficient at detection time.

1 Introduction

Object class detection and recognition is a major challenge within computer vision.
It has been most successfully tackled with the approach: learn a discriminant func-
tion from labelled data sets of positive and negative examples [5]. The decisions
about the form of this discriminant function and how it should be learnt are critical.
These decisions require one to consider that the appearance of images of the same
object class can vary significantly due to clutter, lighting, view-point of the camera
and intra-class variation. There is also a strong bias imposed by photographers
with their preferences for specific viewpoints and illuminations. These variations
and biases lead to a multi-modal distribution of the positive class irrespective of
representation. Combined with the almost uniform distribution of the negative
class, this results in non-linear decision boundaries. This paper addresses this non-
linearity with a mixture of discriminative functions which exploit the multi-modal
nature of the positive class.
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In order to be able to scale the method to large data set and reduce memory and
computational costs of both the training and the testing phases, instead of using
non-linear mappings of the data [16, 19, 17] or utilizing the invariances inherent
in more complex representations e.g. [6], we focus on the use of mixture of linear
discriminants. Here each classifier effectively distinguishes one mode of the positive
class distribution from the background[5, 9]. This framework is attractive as the
simplicity of the component classifiers serve to regularize the overall classifier and
avoid over-fitting.

However, learning such mixture of classifiers is not trivial when the association
of each positive training example to a mode of its class distribution is unknown,
the case when one only has weakly annotated data. How to achieve this learning
robustly in this scenario is the main motivation of this paper. One can try to
perform an optimization which simultaneously finds the assignment of each positive
training example to a mixture and learns each discriminative classifier. But this
is a non-convex and expensive optimization problem bedeviled by local minima.
Instead we propose to de-couple the association of the positive examples to the
mixture components and the discriminative learning of the classifiers.

We regard the problem as consisting of two stages. The first is associating each
example with a mode - for which we use the term Mixture Component Identification
(MCI) - while the second is learning the mixture of classifiers given the associations
which we refer to as Mixture Component Learning (MCL). Figure 1 illustrates our
approach: we group visually similar positive samples of a class together and learn
linear classifiers for each group of samples.

We show in the experimental section that such a grouping results in learning
better classifiers per cluster which in turn improves the performance of a detection
system. Extensive experiments are performed on the Pascal VOC-2007 data set
where the configuration settings of our algorithm are thoroughly tested. The con-
tributions of this work are: 1) to promote the use of unsupervised clustering - based
on visual similarities - in mixture modeling, for the purpose of visual recognition
and 2) to propose a new robust visual similarity measure using a representation
derived from exemplar SVMs[11].

Following a review of the related work, the organization of the rest of the paper
is: section 2 introduces our method, our experiments and results are described and
interpreted in section 3 and the paper is concluded in section 4.

Related work

Related to our work are all the works which address different sources of variations
such as view point [15, 10], articulation [18] and sub-categories [1]. We aim to
address the sources of variations without explicitly modelling any and without using
any extra supervision, in a way that leads to better performance in the detection
task. Therefore, we implement a discriminative framework - to perform well in
the detection task - combined with a rather generative reasoning - to address the
variations - for careful initialization of the discriminative model. A rather similar
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Figure 1: The high level overview of our approach. We group visually
similar positive instances together and for each cluster, learn a linear classifier
which separates the cluster from all negative data. Each color represents a different
cluster.

argument can be found in [7] and a similar approach for a different problem is taken
in [12].

Previous works have often utilized mixture models and - either explicitly or
implicitly - dedicated mixture components to modes of the aforementioned multi-
modal distributions e.g. [8, 9, 7, 5]. Unlike the greedy optimization steps in boosting
based approaches, we use the latent SVM formulation of [5] - which is essentially a
mixture of linear SVMs - for our MCL step. The latent SVM formulation minimizes
a convex objective once the latent variables, which include the data-component
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associations, are fixed. However, once the latent variables are allowed to vary, the
problem is non-convex and is referred to as semi-convex [5]. This non-convexity
makes the latent SVM initialization-dependent.

Most similar to our work is [7], which - in the unsupervised case - initializes
a latent SVM using a clustering of the positive examples. In comparison to our
work: 1) the similarity measure in [7] does not perform any feature selection and
therefore is clutter sensitive, 2) the focus of [7] is view-point classification and
therefore, very little experiment is done in the direction of object recognition, 3)
the objective being minimized in [7] is slightly different: `2 regularization for large
number of components leads to over-regularization for the same cache size; therefore
the variables CNeg and CPos are included in (3) of [7] which probably require extra
cross-validation while Cs in our case are fixed for different number of components,
thanks to the max regularization.

Unsupervised MCI is possible either by explicitly using a generative model or
by unsupervised clustering of the positive data. Current approaches in the second
direction include the clustering according to the Aspect Ratio of the bounding
boxes [5], a combination of HOG and AR similarity [7] and the recent ensemble
of exemplar SVM approach [11] which essentially treats each positive sample as
a mixture component. The AR clustering is a very crude estimate of the visual
similarity of the data and therefore, clusters based on aspect ratio do not necessarily
contain visually similar samples. HOG based similarity - without feature selection
- is sensitive to clutter, as it will be shown later in sections 2 and 3. Therefore,
linear combination of the two - as suggested in [7] - cannot overcome the mentioned
shortcommings. On the other hand, MCL based on one positive sample inherently
cannot generalize well. We now describe how to measure and utilize visual similarity
to group the positive data and learn a mixture model with one linear classifier per
cluster which discriminates better than the former and generalizes better than the
latter.

2 Visual Similarity Based Mixture Model Learning

2.1 Mixture Learning Framework

Our learning framework consists of two de-coupled steps: MCI and MCL. The MCI
step, given a desired number of components c, assigns to each training example, xi,
a mixture component number mi ∈ {1, . . . , c}. We further describe the elements of
the MCI step in sub-sections 2.3 and 2.2.

The MCL step, given the data-component associations, learns a model for each
component using a latent SVM [5] formulation. The training data in this step
consists of the following. There is a set of positive examples and their associated
mixture components Dp = {(x1,m1), . . . , (xN ,mN )}, a set Dn = {x′1, . . . , x′N ′} of
negative examples and finally a set Z(x) containing all the candidate bounding
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boxes which overlap more than 50% with the annotated bounding box of x1.
Let Φ(x, z) denote the modified HOG [2] feature vector of [5] extracted from

the bounding box z. The MCL step learns the parameters β = (β1, . . . ,βc) by
minimizing the objective function:

L(β) = 1
2max

i
‖βi‖2 + C

N∑
i=1

max
(
0, 1− f+

β (xi,mi)
)

+ C

N′∑
i=1

max
(
0, 1 + f−β (x′i)

)
(1)

where the scalar C controls the relative weight of the regularization with respect
to the hinge loss and

f+
β (x,m) = max

z∈Z(x)
βm · Φ(x, z), f−β (x) = max

m
f+

β (x,m). (2)

In (2), the data-mixture component associations (“mi” s ) for positive samples
were fixed to those found in the MCI step. The “mi” s can also be treated as latent
variables. This increases the non-linearity of the objective function which in turn
increases the number of local minima. However, we expect a careful initialization
to result in better minima. This is empirically validated later in section 3.

We use a slightly modified version of [4] to optimize (1) and unless stated oth-
erwise, we use the same parameters as in the original implementation.

2.2 Measuring Visual Similarity
To perform successful clustering one must have a good way of measuring similarity
between examples. This is a tricky task as background and foreground clutter affect
the appearance of an object instance within its bounding box. Hence, to robustly
measure the visual similarity between two examples from the same visual class one
needs to disregard the irrelevant clutter.

We use the recently developed exemplar SVM [11] to suppress this clutter.
The aim of the exemplar SVM is to learn a classifier which best separates a single
positive example from the large set of negative examples. The classifier learnt based
on this premise effectively performs feature selection on that particular example.
It suppresses the uninformative detail inside the bounding box, see figure 3, which
is not useful when discriminating it from the negative class. The exact details of
how we robustly measure visual similarity now follow.

Let {wi | i = 1, . . . , n} be the set of n sparse basis filters (in this paper these
filters correspond to the weights of the exemplar SVMs learnt for each training
example). Each one is applied linearly to the feature extracted from the image
patch in x defined by the bounding box z as wi · Φ(x, z). A calibration process is
then required to ensure the scores from the different basis filters are comparable.
This is achieved with the sigmoid function and we define our basis functions as

Fi(x, z) = 1
1 + exp(−αi(wi · Φ(x, z)− γi))

(3)

1Here, the set of valid bounding boxes should be a function of the dimensionality of the
corresponding filter. This was neglected in the notations for the sake of brevity.



C8
MIXTURE COMPONENT IDENTIFICATION AND LEARNING FOR VISUAL

RECOGNITION

‘car’ class

‘person’ class

Query

Image

1st NN 2nd NN 3rd NN 4th NN 5th NN

Figure 2: Nearest neighbors produced by different visual similarity mea-
sures. The similarity measures within each block, from top to bottom are: HOG
similarity without feature selection, KE , KE

MI and KE
MMI. The leftmost column

shows the image with highest similarity to its 10 nearest neighbors and to its right
are its 5 nearest neighbors. Note how feature selection based on exemplar SVM
results in better measures of visual similarity.
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where αi and γi are the calibration parameters learnt as in [11]2 and wi is the i-th
sparse basis filter. Let Ei(x) be the maximum score of Fi(., .) over the valid latent
positions of x:

Ei(x) = max
z∈Z(x)

Fi(x, z) (4)

This maximization process corresponds to finding the best alignment over scale and
translation, the search is over bounding boxes of different size and position, of the
sparse filter with the test image patch and can be found via convolution.

If there is a one-to-one association between the basis functions and the positive
training examples, which is the case if an exemplar SVM is trained for each posi-
tive example, we can directly use the bases to evaluate visual structural similarity
between the i-th and j-th positive training instance. Assuming the same order for
the bases and the positive examples in this case, we can define

KE(xi, xj) = 1
2 (Ei(xj) + Ej(xi)) (5)

where symmetry is achieved by averaging between two model responses. However,
if a one-to-one association between the bases and the positive training samples
does not exist or cannot be established, other measures need to be utilized as the
KE measure cannot be evaluated on such cases. Let Ex = (E1(x), . . . , En(x))
be the vector of all basis functions aligned and evaluated on x. With this new
fixed length representation of x, we can utilize any kernel to measure similarity
between two instances without directly associating either of the instances with the
bases. Applying the Intersection Kernel on this representation, the visual similarity
between two image patches becomes:

KE
MI(x, y) =

n∑
i=1

min (Ei(x), Ei(y)) (6)

As a specific example is usually visually similar to only a limited number of ex-
amples, averaging (mean pooling) the intersection measure on all the bases will
unnecessarily smoothen out the responses. Therefore, if the responses of the bases
are calibrated with respect to each other3, we can make use of measures which
are more sensitive to the responses of the bases. Therefore, we utilize `∞ on the
intersection measures and define the KE

MMI as the max pooling of the intersections:

KE
MMI(x, y) = max

i
min (Ei(x), Ei(y)) (7)

Figure 2 shows the top nearest neighbors using each similarity measure evaluated
on several classes. Similar to the results reported in [11], feature selection according

2We used the models provided by the authors.
3We need to emphasize here that while the exemplar SVMs in [11] are not calibrated with

respect to each other, we found out the independent calibrations to be sufficiently accurate to be
used in KE

MMI (7).
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to the exemplar SVMs results in better visual similarity measures which in turn
leads to visually more appealing nearest neighbors. It is evident from the figure that
unlike KE

MMI which is sensitive to subtle variations in basis responses, the averaging
behavior of KE

MI does not result in visually appealing nearest neighbors if the class
exhibits high variations.

Let L = 1
N

∑
x∈Dp |Z(x)| be the average number of latent positions over the

positive training set and D be the average dimensionality of the linear weights
of the basis filters . The computational complexity of evaluating a full affinity
matrix using KE is O(Dn2L). Assuming the same number of bases as positives i.e.
N = n, the computational complexity of evaluating a full affinity matrix using KE

MI
and KE

MMI is O(Dn2L + n3). However, as usually DL � n, the dominating factor
is still the convolutions which makes the computational complexity of all measures
equivalent. We now describe how these similarity measures can be used to identify
mixture components.

2.3 Mixture Component Identification via Unsupervised
Clustering

With our similarity measure K, we can cluster our positive data using spectral
clustering [13]. We construct fully connected similarity graphs and use the similarity
measure as the affinity measure s.t. W = (wij) and wij = K(xi, xj). Let Lsym
denote the symmetric normalized Laplacian:

Lsym = I−D−
1
2 WD−

1
2 (8)

where D is the degree matrix - a diagonal matrix with diagonal entries dii =∑
j wij . In order to identify c components, we compute the first c + 1 eigen-

vectors ū0, ū1, . . . , ūc of Lsym and ignoring the first eigenvector, construct Ū =
(ū1, . . . , ūc). Let U be the matrix obtained by normalizing the rows of Ū: uij =
ūij/

(∑
k ū

2
ik

) 1
2 . We refer to the i-th row of U ∈ Rn×c as ui and the mapping -

according to K and c - from xi to ui as the (c,K)-spectral projection.
The `2 distance is well suited to the spectral projection (u) representation and

therefore, as suggested in [13], k-means on this representation gives a good clus-
tering of the data. The 2D coordinates of the instances in Figure 1 depict the
(2,KE

MMI)-spectral projection of a subset of the car examples. It can be observed
that the `2 distance on this representation reflects the visual similarity between
instances: points close in this space are expected to be visually similar. Because of
this fact, we can measure the quality of a cluster by computing the average distance
between two samples in the cluster. The colors in Figure 1 reflect the association
of samples to the top 4 clusters from the 5 clusters produced by k-means on the
(5,KE

MMI)-spectral projection of the data. The 5th cluster had a high average dis-
tance measure as it mainly contained everything which was not visually similar to
samples of any of the other clusters and therefore, it was omitted for visualization
purposes.
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Figure 5: Rank analysis of KE and KE
MMI: average of the (oredered) eigenvalues

of Lsym (d̄) and its derivative (∆d̄) when using KE and KE
MMI as visual similarity

measures.

Example clusters found using the KE
MMI similarity measure are shown in figure

4. Shown are the top 5 samples of the top 4 from the 5 clusters for four classes and
the filters (the β1, . . . ,βc from equation (1)) learned for each cluster. Here, the top
sample refers to samples with the highest average visual similarity, using KE

MMI, to
all instances associated with the same component. The top cluster is considered as
the cluster with the highest average visual similarity between the samples assigned
to the cluster. It can be observed that the MCI step groups together examples that
are visually similar.

It is worth noting that while the KE and KE
MMI visual similarity measures are

not kernels i.e. they do not result in positive definite affinity matrices, they can be
utilized in the spectral clustering as the spectral projection utilizes (the normalized
version of) the largest eigenvalues of the affinity matrix. Let d̃ refer to the vector of
ordered eigenvalues of the Lsym and d̄ refer to the average d̃ values over all classes
in Pascal VOC 2007. Figure 5 shows d̄ and its derivative when using KE and KE

MMI
as similarity measures. It can be observed that KE results in higher rank affinity
matrices leading to lower rank normalized Laplacians; which means that KE

MMI is
potentially preferable for coarser clusterings (less number of clusters). This is also
experimentally validated later in Figure 6.

3 Experiments

Data set: We evaluate our method on the Pascal VOC 2007 [3] data set, training
on the train + validation set, and testing on the test set and using the Average
Precision (AP) and mean Average Precision (mAP) as performance measures. We
report the performance of the MCI + MCL framework based on different visual
similarity measures and different number of mixture components. Therefore we
review the visual similarity measures considered and our acronyms for them : 1)
aspect ratio (AR) as a very crude measure of visual similarity, 2) visual similarity
without feature selection (HOG): linear kernel on HOG feature vectors with latency
on the position and scale and 3) visual similarity with feature selection (KE , KE

MI
and KE

MMI). A ‘+L’ in the results denotes an MCL step with latent data-component
association, initialized from the data-component associations of the MCI step.
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Performance vs number of components: Figure 6 (top) shows the mAP vs the
number of mixture components when different visual similarity measures are used in
the MCI step. We point out the following observations: 1) Clustering based on AR
performs well only for low numbers of components i.e. 3 and 5 components. Unlike
other visual similarity measures however, it fails to provide good initializations when
the non-linearity of the objective increases. 2) Latent (positive) data-component
association is beneficial almost consistently (with the exception of AR:5). The extra
non-linearity introduced to the objective via this latent formulation is initialization
dependent (compare KE

MMI+L and AR+L). 3) Feature selection in visual similarity
measure improves the performance (compare HOG with KE

X). 4) The performance
tends to improve when more mixture components are utilized in combination with
MCI based on visual similarities.

We did not experiment with higher number of mixture components mainly be-
cause of the computational expense. We observed, though, that the performance of
KE

MMI - which outperforms all other measures consistently up to and including 10
mixture components - degrades after 10 components while the smoother measures
KE and KE

MI continue to benefit from more mixture components. The main reason
of failure in these cases is the domination of the `2 distance in the k-means clus-
tering (after the spectral projection step) by the eigenvectors associated with large
eigenvalues of the normalized Laplacian (small eigenvalues of the affinity matrix
which tend to be noisy). Addressing this issue is out of the scope of this work but,
a potential solution is to use less eigenvectors than the desired number of clusters,
in the spectral clustering step.

Performance vs Model Complexity: Figure 6 (bottom) shows the performance
of the MCI + MCL framework vs the models’ parameters (averaged over the 20
classes) using KE

MMI (magneta) and AR (green) visual similarities and for models
with 3, 5 and 10 mixture components. In the figure, a ‘-F’ refers to a model without
the flip heuristic4 and a ‘+S’ refers to a finer (2 scale) HOG representation instead
of a coarse representation (the same scale as the root filters in [4]). Additionally, the
performance of the model is shown if an oracle were available to tell the model the
optimal number of mixture components for each class (assign each class a number
ci ∈ {3, 5, 10}); shown with a ‘+O’ in the legend entries.

The analysis of the figure is as follows: 1) Models with the flip heuristic outper-
form equally complex models based on the same similarity measure and without the
flip heuristic (compare KE

MMI+L+S-F with the rest of models based on KE
MMI). The

reason for this is probably the reduced degrees of freedom imposed on the model
using the flip heuristic which prevents model from over-fitting. 2) The use of an
oracle (the ‘+O’ entries) improves the performance of a coarse representation by

4In [4], for each mixture component by default two filters are learnt that are flipped horizontally
with respect to each other i.e. a 3 component mixture contains 6 (root) filters. This constraint
essentially reduces the degrees of freedom in comparison to a model with the same number of
filters without the flip constraint.
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Figure 6: The performance of the MCI + MCL framework using different visual
similarity measures on Pascal VOC 2007 classes. Top: results achieved by varying
the number of components for each visual similarity measure. Bottom: perfor-
mances vs model complexity for 3, 5 and 10 component mixture models in different
configurations(see text for details).
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approximately 0.01 mAP and that of a fine representation by approximately 0.02
mAP in case of KE

MMI and by 0.015 mAP and 0.012 mAP in case of AR. These are
encouraging results for future work on adapting/estimating the number of mixture
components and at the same time emphasize on the use of subtle visual similarity
measures: KE

MMI+L+O and KE
MMI+L+S+O perform 0.03 mAP and 0.02 mAP bet-

ter than their AR based counterparts. 3) Fine scale representation improves the
performance of KE

MMI by approximately 0.01, but improves that of AR by 0.025 in
case of 3 components and 0.035 in case of 5 components. Nevertheless, AR+L+S+O
is only 0.003 better thanKE

MMI+L+O, while it is more than 4.1 times more complex!

Performance vs Intra-Class variation: In order to analyze the performance of
our models in presence of different bias and variation levels of the positive classes,
we need to be able to approximate the intra-class variation5. In the following,
we assumed the intra-class variation is negatively correlated with the performance
of KE

MMI+L+O and we made our arguments reasonably invariant to the actual
measure we used to approximates intra-class variation by considering the ordering
of the classes instead of the exact measured values. This makes the estimates
invariant to any monotonic transformation of the measure. It is worth mentioning
that similar overall conclusions can be drawn using other reasonable measures e.g.
the performance of a one component latent SVM model or the results of AR+L:3,
leads to similar overall conclusions.

Figure 7 (top) shows how the performance of KE
MMI+L decreases when intra-

class variation increases. The solid lines are fitted to the actual data depicted by
dashed lines via linear regression. Higher bias (simpler) models are expected to
work better when intra-class variation is large and sufficient data is not available
for the classifier to efficiently learn the discriminative structures. As expected,
more complex models perform worse in presence of larger intra-class variation:
slope of the lines increases when more mixture components are utilized and also,
a 5 component model performs better than a 10 component model on classes with
more intra-class variation than ‘diningtable’. At the same time 1 and 3 component
models are almost consistently outperformed by 5 and 10 components; except the
last 3 classes: bird, dog and plant which probably require other representations,
more data or more supervision.

Figure 7 (bottom) shows how KE
MMI+L compares with AR+L:3. It can be

observed that in all cases, the gain has a positive slope i.e. improvement gets more
as intra-class variation increases. However, the slope decreases when the complexity
of the model increases. Considering the slope and intercept, we can conclude that
KE

MMI+L with 5 and 10 components almost consistently outperform AR+L:3.

Comparison to related works: Table 1 shows the performance of the MCI+MCL
framework using 2 configuration settings on each class of the data set compared
to the ESVM approach and 3 part based models. It can be observed that without

5Here, we neglect the effect of the inter-class variations.
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Figure 7: Performance (of KE
MMI) vs approximate intra-class variation level on (top)

and AP gains in comparison to AR+L:3 (bottom).

using parts, we outperform the state-of-the-art part based models - based on the
HOG representation - in 2 classes and outperform 2 part based models in mean
AP. It should be noted that although the training process is expensive for a visual
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similarity based MCI step, the testing phase consists of convolutions of linear filters
learnt in the MCL step; without any dynamic programming step to account for de-
formation of the parts. This, without requiring a cascade or hierarchical model, is
cheaper and better paralellizable compared to part based models and more sophisti-
cated approaches such as [16]. Furthermore, the same framework can potentially be
utilized to train better root filters for any part-based model and to provide better
initialization for their non-convex optimization.
Acknowledgements: This work has been funded by the Swedish Foundation for
Strategic Research (SSF); within the project VINST (Wearable Visual Information
Systems) and by the European Commission KIC: EIT ICT labs. We thank PDC
for letting us use their supercomputers, without which the thorough experiments
presented in this work were impossible to perform. We also would like to thank
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4 Conclusions

In this paper, we introduced the MCI + MCL mixture learning framework and
promoted the use of visual similarity measures for the MCI step. We performed
extensive evaluations of the proposed framework based on different visual similarity
measures on the Pascal VOC 2007 data set. The framework achieved very promising
results, outperforming the bases we used - the exemplar SVMs - in the detection
task and 2 part based models without using parts.

Future work includes estimating the optimal number of clusters for each class,
automatic refinement of the “junk” clusters - clusters which contain samples not
similar to those of any other cluster’s; but not sharing any structural similarities,
investigating the use of other methods for the purpose of feature selection, and
learning the mixture of discriminants with methods other than the latent SVM.
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Supplementary Materials

Figures 8 - 11 depict the (2,KE
MMI)-Spectral Projection of the aeroplane 8, bicycle9, bus

10 and person 11 classes. The figures are acquired using the same approach as for Fig.
1 in the paper: 2D coordinates are acquired by (2,KE

MMI)-Spectral Projection and colors
represent associations to top 4 out of 5 clusters (acquired by k-means on the (5,KE

MMI)-
Spectral Projection representation). Here, similar to the paper, “top clusters” are those
which have highest average kernel similarity between samples assigned to them.

Figure 8: Visualization of (2,KE
MMI)-Spectral Projection of the aeroplane class.

It can be observed that for the classes with small intra class variation e.g. mainly
viewpoint variation, the 1 dimensional degree of freedom in (2,KE

MMI)-Spectral Projection
representation (angle) captures the variation in the underlying variation source. However,
if the class has high intra class variation e.g. in case of person: articulation and sub-
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Figure 9: Visualization of (2,KE
MMI)-Spectral Projection of the bicycle class.
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Figure 10: Visualization of (2,KE
MMI)-Spectral Projection of the bus class.

category (standing, riding a bike, sitting, etc), the 1 dimensional degree of freedom is
basically not sufficient to capture a smooth transition between variations. However, by
projecting the data to higher dimensions e.g. {(5,KE

MMI), (10,KE
MMI)}-Spectral Projection

(used for clustering), the `2 distance becomes a good approximation of the visual similarity.
This can be verified by looking at the cluster centers and the learnt filters for each cluster
(see Figures 18 and 19). The same fact can be observed for other classes: aeroplane (12,
13), bicycle (14, 15) and bus (16, 17). In Figures 12 - 19, “top image of a cluster” refers
to images associated with a cluster that have highest average kernel similarity to other
images associated with the same cluster.



C24
MIXTURE COMPONENT IDENTIFICATION AND LEARNING FOR VISUAL

RECOGNITION

Figure 11: Visualization of (2,KE
MMI)-Spectral Projection of the person class.
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Figure 12: Filters learnt for aeroplane class in the MCL step with 5 components
(first row). Below each component, the top two images associated with the compo-
nent are depicted.
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Figure 13: Filters learnt for aeroplane class in the MCL step with 10 components
(first and fourth rows). Below each component, the top two images associated with
the component are depicted.
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Figure 14: Filters learnt for bicycle class in the MCL step with 5 components (first
row). Below each component, the top two images associated with the component
are depicted.
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Figure 15: Filters learnt for bicycle class in the MCL step with 10 components (first
and fourth rows). Below each component, the top two images associated with the
component are depicted.
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Figure 16: Filters learnt for bus class in the MCL step with 5 components (first
row). Below each component, the top two images associated with the component
are depicted.
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Figure 17: Filters learnt for bus class in the MCL step with 10 components (first
and fourth rows). Below each component, the top two images associated with the
component are depicted.
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Figure 18: Filters learnt for person class in the MCL step with 5 components (first
row). Below each component, the top two images associated with the component
are depicted.
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Figure 19: Filters learnt for person class in the MCL step with 10 components (first
and fourth rows). Below each component, the top two images associated with the
component are depicted.
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Abstract

It has been shown that the performance of classifiers depends not only
on the number of training samples, but also on the quality of the training
set [20, 18]. The purpose of this paper is to 1) provide quantitative measures
that determine the quality of the training set, and 2) provide the relation
between the test performance and the proposed measures. We introduce
data-describing measures that are derived from pairwise affinities between
training exemplars of the positive class, and have a generative nature. We
show that the performance of the state of the art methods, on the test set,
can be reasonably predicted based on the values of the proposed measures on
the training set. These measures open up a range of potential applications
for visual recognition, enabling us to analyze the behavior of the learning
algorithms w.r.t the properties of the training data. This will in turn enable
us to devise rules for automatic selection of training data that maximize
the quantified quality of the training set and thereby improve recognition
performance.

1 Introduction

The most important component in the construction of modern classification algo-
rithms has proved to be the data supplied, especially in terms of quantity [8]. While
computer vision has benefited from more data over the years, as pointed out in [20],
data has not had the same impact on computer vision field as on other fields such
as text and speech. The main reason for this is believed to be the large intra-class
variability of visual classes resulting from the variation in conditions under which
images are created. However, no measure of intra-class variation has been proposed
that can relate to the performance of classifiers.

Intra-class variation results in complex distributions of the data, which in turn
result in non-linear decision boundaries between the classes. The overlap between
these distributions, together with the assumptions of models about the data, re-
sults in non-separability of the classes. We have observed many advancements in
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Feature

Training Set

Testing Set Test Performance

Train Classifier

Sample Selection

Performance Prediction

Proposed Measures

Classifier Family

Low Quality Training Set High Quality Training Set

Figure 1: Top: illustration of the proposed procedure. The direction of arrows
reflects the information flow and the dependencies. The red boxes comprise the
traditional training/testing procedure while the green boxes are proposed in this
paper. Bottom: (right) illustration of automatic sample selection (the blue box)
using the HOG feature. The low quality set (left) is intentionally generated for
comparison. Both set are automatically generated from the “car” class of Pascal
VOC 2007, using the measures proposed in this paper.



1. INTRODUCTION D5

modelling the non-linearity of the decision boundaries [19, 7, 16, 1]. However, iden-
tifying and alleviating the effect of outliers has not got the same attention – at
least in SVM based formulations. Models are expected to automatically identify
and ignore the resulting outliers – as optimizing the 0-1 loss would naturally do –
despite the fact that the popular hinge loss is affected by gross outliers [20].

It has generally been assumed that increasing the size of the training set would
overcome these problems. Some observations however seem to contradict this. [20]
challenges the idea that more training data always leads to better performance. For
a selection of state of the art (s.o.a.) classifiers, it is demonstrated that performance
can decrease, which is attributed to the increased inclusion of outliers that distort
the classification decision boundary. It is then suggested that “clean” data is crucial
for current s.o.a learning algorithms, but no automatic way of obtaining clean data
was proposed.

Related to this is the fact that performance of classification in benchmark tests
such as Pascal-VOC is highly dependent on class and does not correlate well with
the amount of data. The question then arises: What properties of the distribution
of the exemplars in these classes are responsible for this? Is it possible to come
up with measures based on the distributions that would predict the classification
performance?

The fact that the distribution of training data can influence the performance of
classification has been demonstrated in a dramatic way in [18] where it is pointed
out that most data sets are biased in the sense that classifiers trained on a specific
data set do not perform as well on other data sets. This is often a consequence of
the fact that these data sets were collected with a specific objective in mind, but
even the sets designed for the specific purpose of evaluating classification algorithms
such as Pascal-VOC suffer from this. The authors propose cross-data set recognition
performance as a measure of the bias of a data set. Such a measure will reflect the
similarity between the distributions of samples in the training set of the source
data set and that of the test set of the target data set. Despite the plausibility
of such a measure, it has a few shortcomings. Firstly, it is model dependent in
that a specific model needs to be trained and tested across data sets and unless
this is to be exploited directly [10], it is not a desirable property. Secondly, the
discriminative measure does not provide guidelines for automatic sample selection
in order to avoid such biases.

It is therefore the objective of this paper to

1. quantify the properties of the training data such as intra-class variation

2. analyze how performance of s.o.a. classifiers vary with such measures and
provide insight on the interplay between properties of training sets and the
performance of classifiers.

This approach is generative in the sense that it makes predictions based on its
descriptions of the positive training set. Such a generative approach – in contrast
to the discriminative approach of [18] – will naturally and automatically determine
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what [20] refers to with “cleanness” of the data. In a longer perspective, it will
allow us to devise rules of selection of data and classifier models that will maximize
classification performance. In other words, we propose to consider data selection
procedures as an active tool for the construction of classifiers. Figure 1 visualizes
this.

The rest of this paper is organized as follows. A review of related works is given
in section 1.1. Section 2 describes the model we use to quantify the quality of the
training set, and the assumptions the model makes about the data. In section 3
we propose to use this model to improve the training set. Experimental setup and
results are given in section 4. We discuss the proposed model, its assumptions and
limitations in section 5. Section 6 concludes this paper.

1.1 Related Works

It is generally realized that there is a strong relation between intra-class variation
and classification performance. Many works have been proposed that more or
less trade coverage of the visual class for recognition performance. Modelling sub-
classes, e.g. ‘frontal car’ instead of the entire ‘car’ class, reduces the intra-class
variation and results in better classification / localization performance.

Poselets [2] have been proposed which model specific body parts in specific
configurations, which are tight in the image appearance and consequently result
in modelling very little intra-class variation. Similarly, visual phrases [17] were
shown to improve the recognition performance of classifiers which modelled two
or more classes in a specific relation, in comparison to modelling the two classes
independently. This specific relation between two or more classes, e.g. ‘person
riding a bike’ or ‘person lying in beach’, restricts the intra-class variation of the
modelling process; hence the observed improvements in the recognition. Relational
phraselets [5] is closely related to visual phrases and benefits from the same facts. In
[15], it was shown that avoiding the modelling of ‘cat’ and ‘dog’ bodies – and only
modelling their faces – results in significantly superior recognition performances.
Such a procedure reduces the intra-class variation, and consequently results in
better test performances.

Despite all these efforts, no automatic way has been proposed to identify a pro-
cedure which automatically reduces intra-class variation. The main reason for this
has to do with the fact that no measure has been proposed to quantify intra-class
variation in relation to classification performance. Latent mixture models [7] has
been proposed that dedicate mixture components to tight clusters, each modelling
a part of intra-class variation [1]. Such an approach is model-dependent and ini-
tialization sensitive [1]. Furthermore, while it is copes with intra-class variation
better than a single component SVM [4], it does not rectify the effects of intra-class
variation.

Also related to our work is how algorithms deal with outliers. Boosting based
approaches, unless a non-convex loss function which is robust to outliers is utilized,
are sensitive to outliers [11]. SVM based approaches were argued to be affected
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by gross outliers [20], unless a proper non-convex loss is utilized. Latent mixture
models [7] were argued to be able to assign outliers to a ‘junk component’, and
leaving the rest of the components unaffected by them [1, 20]. However, the same
argument as for the intra-class variation applies here.

We propose a model based approach for measuring intra-class variation and de-
tecting gross-outliers. However, in contrast to existing approaches, the definition of
intra-class variation and gross-outliers in our approach does not depend on specific
classifier models. In other words, our model defines outliers in relation to other
exemplars in a set, in contrast to defining outliers as those which cannot be ex-
plained by particular classifiers. Consequently, our approach does not need to train
classifiers for every set, and verify explainability of exemplars through the trained
classifiers. The result is a more efficient and more flexible way of analyzing training
sets and determining outliers.

2 Quantifying the Quality of a Training Set

In this section we describe the proposed procedure. We start by motivating the
use of local pairwise similarity measures and emphasizing the necessity of feature
selection in section 2.1. Section 2.2 describes how to measure statistical properties
of the training set at multiple scales. We elaborate on how these measures can be
linked to the quality of the training set – and thus to test performance – in section
2.3.

2.1 Measuring Visual Structural Similarity via Discriminative
Feature Selection

Ideally, in order to characterize the statistical properties of a visual class, one
would like to measure the distribution of a feature vector that contains information
relevant only to the class and discards all kinds of clutter contained in an image.
This would however require a perfect method of feature selection which is not
available. The best alternative is to assess local properties of the manifold of image
exemplars within the class. Global properties then have to be inferred from the
integration of these local characterizations. We will show later, in the experiments
section, that the integration of these local properties does not amplify “noise”, and
it results in analysis more robust than it is solely based on the local properties.

The local analysis can be performed via the use of e.g. local pairwise affinities
between exemplars in the data set. A similarity measure can be said to be local
when it returns a high value if an only if the structure is sufficiently and significantly
similar between the two exemplars. The RBF kernel is an example of a local
similarity measure that does not perform feature selection.

Similarity should ideally refer to similarity at the level of visual class which
requires a complete localization and extraction of the image content related to the
class under consideration. This is an extremely complex task by itself, and we will
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restrict ourselves to a more limited objective that aims to enhance the contribution
of visual class to the similarity measure.

The class specific visual similarity measures introduced in [1] use the calibrated
exemplar SVMs [12] to perform feature selection when evaluating similarities. The
measures are based on the modified version of the HOG feature [4] introduced in
[7]. The exemplar SVM weights tend to “push the positive example as far away
from the negative data as possible”; thus reasoning out the background, clutter and
the noise in the HOG representation. Due to the specific type of feature selection
in the similarity measures of [1], namely the projection of y onto the exemplar
SVM weight of x, the distance between x and y is lost in a locality preserving way.
Such visual similarity measures tend to have a high value if and only if x and y
both have the same structure, hence the name visual structural similarity and the
locality preserving property.

Using such visual similarity measures, the search for correspondences can be re-
stricted in an unsupervised manner in contrast to the supervised framework of [20].
Consequently, we make use of the KE

MMI(., .) measure [1] and exploit the aforemen-
tioned properties of the similarity measure. We have made the evaluated similarity
measure on Pascal VOC 2007 publically available at http://www.csc.kth.se/
~omida/wearable/MMOR/Clustering_NN_Results_ESVM_HOGL_MI_MMI.html.

2.2 Multi-Scale Analysis of the Data

Discriminative analysis requires specification of a positive and a negative set. The
discriminative feature selection embedded in the class specific similarity measure -
through the use of exemplar SVMs - already knows what does not belong to classes,
locally in the space. As a result, by measuring only the (locally) discriminative
properties of the positive set, we will implicitly model the properties of the negative
set. Therefore, in the rest of this paper, we will concentrate on the properties and
descriptions of the positive set, and only implicitly model the negative set.

Given a class C with n positive samples C = {p1, ..., pn} and a pairwise similarity
measure K(C)(., .) ∈ [0, 1] we analyze the data on local, semi-local and global scales.
On each scale, we measure the first and second order statistics – mean and variance
– of different quantities that are described below. For the sake of brevity, we drop
the superscript (C) in the following whenever possible.

2.2.1 Local Scale

On the local scale, the quantity in question is the similarity of a sample to its
nearest neighbor where the nearest neighbor is defined as the most similar sample.
Formally, we define

KL(pi) = max
pj 6=pi

K(pi, pj) (1)

http://www.csc.kth.se/~omida/wearable/MMOR/Clustering_NN_Results_ESVM_HOGL_MI_MMI.html
http://www.csc.kth.se/~omida/wearable/MMOR/Clustering_NN_Results_ESVM_HOGL_MI_MMI.html
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to be a measure of local connectivity of pi to its nearest neighbor. Therefore, the
first and second moments on this scale

µL = 1
n

∑n
i=1 KL(pi)

σ2
L = 1

n

∑n
i=1 KL(pi)2 − µ2

L
(2)

roughly measure the average connectivity and average variation of connectivity
around positive samples.

2.2.2 Semi-Global Scale

The moments on the semi-global scale collect statistics of the pairwise similarity
values. Therefore, the moments

µS = 1
n2

∑n
i=1
∑n
j=1 K(pi, pj)

σ2
S = 1

n2

∑n
i=1
∑n
j=1 K(pi, pj)2 − µ2

S
(3)

compute global statistics of all the pairwise (local) similarity values; hence the name
semi-global. The further the points are from each other, the smaller these measures
become. Hence, what is measured on this scale is the (lack of) intra-class variation.

2.2.3 Global Scale

On this scale, the goal is to measure how points are distributed globally w.r.t each
other. This involves measuring the distance between points that might be far away.
Due to the locality property, the similarity measure loses information about large
distances between points. Therefore, we have to resort to multiple local steps to
approximate the global distance. We suggest the following procedure to compute
the geodesics distance, on the manifold of the positive training exemplars, without
explicitly specifying the manifold.

We construct a full graph with each node corresponding to one positive training
exemplar. An edge between pi and pj in the graph are weighted according to

wij = DL(pi, pj) = 1−K(pi, pj) (4)

When pi and pj are very similar, the weight between them is going to be very small
and the shortest path will be the one directly from pi to pj . However, when points
are far away, the direct path has a large value, and is unlikely to be the shortest path
between the two. In such cases, the shortest path will take multiple steps, using
low-valued edges which correspond to highly similar exemplar. Consequently, the
shortest path between points on such a graph approximates the geodesics distances
on an implicit manifold of image exemplars.

Let P(pi, pj) refer to the set of all paths between pi and pj . The global distance
between the two points as determined by p ∈ P(pi, pj) is

DP (p) =
dim p∑
k=2

DL(pk−1,pk) (5)
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Measure Scale Semantic
µL Local Connectivity
µS Semi-Global Lack of Variation
µG Global Intra-Class Variation
µP Global Connected Variation

Table 1: Semantics of the first order moments.

Let s(pi, pj) refer to the shortest path between pi and pj :

s(pi, pj) = arg min
p∈P(pi,pj)

DP (p) (6)

Also let PG(pi, pj) refer to the length of s(pi, pj), and DG(pi, pj) refer to the global
distance between pi and pj – as approximated by the shortest path:

PG(pi, pj) = dim s(pi, pj)− 1
DG(pi, pj) = DP (s(pi, pj))

(7)

The moments

µG = 1
n2

∑n
i=1
∑n
j=1 DG(pi, pj)

σ2
G = 1

n2

∑n
i=1
∑n
j=1 DG(pi, pj)2 − µ2

G
(8)

measure how far the points are away from each other. As a result, they measure
intra-class variation.

Similarly, the moments

µP = 1
n2

∑n
i=1
∑n
j=1 PG(pi, pj)

σ2
P = 1

n2

∑n
i=1
∑n
j=1 PG(pi, pj)2 − µ2

P
(9)

measure the number of linked local steps between pairs of points. Two factors affect
these measures:

1. global distances between pairs of points

2. the number of exemplars which help linking multiple local steps to decrease
the global distance between points

Consequently, these measures reflect ‘connected intra-class variation’.
Table 1 summarizes the mentioned semantics. Figures 2 and 3 depicts two set

for each first order moment; one with a high value and one with a low value. The
contrast between these pairs of sets qualitatively verifies the assigned semantics.
We will describe later in section 3 how to generate such sets automatically.
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Figure 2: Demonstrations of sets with low and high first order connectivity mea-
sures. The measures are scaled by a factor of 102 for better readability.
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Figure 3: Demonstrations of sets with low and high semi-global and global variation.
The measures are scaled by a factor of 102 for better readability.
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Figure 4: The training-testing process (red boxes) and the proposed test perfor-
mance prediction process (green boxes). The direction of arrows determines the
flow of information and also the dependencies. Both procedures are dependent on
the white boxes.

2.3 Test Performance Prediction by Analyzing the Training Set
In this section, starting from a formalization of the usual training-testing process,
we will derive an expression which will relate a description of the training set to
the test performance. We then use the measured moments as descriptions of the
training sets and establish the relation between the proposed measures and the test
performance. Figure 4 visualizes this.

Consider a family of modelsM e.g. the DPM of [7]. LetM(C) ∈M refer to the
process of training a model from the family M on the set C. Also let the process
of testing such a model on a test set CTST – resulting in average precision AP (C)

M –
be described by

AP
(C)
M = τ (M(CTR), CTST ) (10)

where τ(M, C) evaluates the modelM on C i.e. the detection process. Let µ(C) ∈ R8

be the vector of moments computed on a set C. If a function f̂M(., .) can be found
that is associated with a small approximating errors in

AP
(C)
M = f̂M

(
M(CTR), µ(CTST )

)
+ εf̂M (11)

then we can say that µ(CTST ) is a good description of the test set.
The trained model M(CTR) ∈ M depends on the training set CTR and the

classifier familyM – observable also in figure 4. Replacing the dependency on the
training set with a description of the training set we get

AP
(C)
M = fM

(
µ(CTR), µ(CTST )

)
+ εfM (12)

Both fM(µ(CTR), µ(CTST )) and f̂M(M(CTR), µ(CTST )) have the same dependencies
as they both already depend onM.
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Assuming what the empirical risk minimization approaches assume – that the
training set and the test set are drawn from the same distribution – we approximate
the description of the test set by that of the training set i.e. µ(CTST ) ≈ µ(CTR).

Hence, we can say that if there exists f̃M : R8 → [0, 1] such that the prediction
error |εf̃M | is sufficiently small for a variety of classes where

AP
(C)
M = f̃M

(
µ(CTR)

)
+ εf̃M (13)

then:

1. µ(C) is a reasonably accurate description of C.

2. f̃M(.) establishes the relation between test performance and the proposed
measures.

Let R = {M1, ...,Mr} denote a set of family of models and

v(C) =
(
f

(C)
1 , . . . , f

(C)
nv

)T
; f (C)

i : R8 → R be a vector of nv predictors where each
predictor is a function of the 8 measured moments.

We now search for f̄R : Rnv → R which minimizes the average L2 norm of the
prediction errors εf̃R

1. We assume a sigmoid structure for f̄R which is linear in v

f̄R(wR; v) =
(
1 + exp

{
−wT

Rv
})−1 (14)

Given a data set D = {C1, . . . , CD}, we solve for w(CCV )
R = arg minw L(w, CCV )

where

L(w, CCV ) =λ‖w‖2

+
∑
M∈R

∑
C∈D\{CCV }

‖AP (C)
M − f̄R(w; v(C))‖2 (15)

Afterwards, w(CCV )
R is used to predict the test performance for CCV and this cross-

validating procedure is performed for all D = 20 classes of Pascal VOC 2007 [6].
We also add a bias term to (15) – which was omitted here for the sake of clarity –
and found λ = 10−3 to be optimal after centering and normalizing the predictors.

3 Constrained Dataset Selection

In this section, we consider data selecting procedures based on the measures pro-
posed in section 2.2.

1The reason for the R subscript – instead of M in (13) – is the dependency of the function
f̄R(.) on a set of families of models R rather than one particular familyM.
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3.1 Greedy Set Selection
Let µ(S) refer to a vector of 8 moments evaluated on the set S ⊆ C. Given a desired
criterion g : R8 → R, we search for the set S which optimizes

s(S) = g
(
µ(S)

)
(16)

The optimization is combinatorial, and therefore we resort to greedy optimization
procedures. In each step of optimization, we can either add exemplars to or delete
exemplars from S. We consider two types of scenarios, each with a specific type of
constraint:

1. Fixed Cardinality: the goal is to optimize

SF = arg max
S⊆C

s(S)

s.t. |S| = nf
(17)

The optimization process in this case is initialized with a small set, and ex-
emplars are greedily added to the set according to

S(k+1)
A = S(k)

A ∪

arg max
i∈C\S(k)

A

s
(
S(k)
A ∪ {i}

) (18)

As most measures require at least 3 samples, we initialize S(2)
A with the two

samples with maximal KL(.)s (1). S(nf )
A determines the solution to the fixed

cardinality problem.

2. Largest Set: the goal is to optimize

SL = arg max
S⊆C

|S|

s.t. s(S) ≥ τ
(19)

The optimization process in this case is initialized with S(n)
R = C, and exem-

plars are greedily removed from the set according to

S(k−1)
R = S(k)

R \

arg max
i∈S(k)

R

s
(
S(k)
R \{i}

) (20)

The biggest k for which s(S(k)
R ) ≥ τ is satisfied determines the solution S(k)

R

to the largest set problem.

For example, figures 2 and 3 were generated using fixed cardinality optimization
procedure.
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3.2 Subsets that Maximize Test Performance

The relation between test performance, training set and test sets were formalized in
section 2.3 (12). We assumed similar distributions of the exemplars in the training
set and the test set, which resulted in (13). This assumption is less correct as the
training set becomes more dissimilar to the test set. This will usually be the case
when the training set is modified and the test set is kept fixed. Therefore, two
scenarios can happen in general:

1. The testing set is modified in the same manner as the training set. The
assumption is valid and (13) can be used.

2. The testing set is kept fixed. It has to be modelled e.g. by (12), in order to
be able to select a training set which suits it.

The first scenario has a trivial solution in absence of extra constraints: the less
variation in the training set, the more the predicted performance. Therefore, we
consider the second scenario.

Given a training set CTR, the goal here is to find a subset which improves the
test performance. Let SP ⊆ CTR refer to the desired subset. Similar to section 2.3
we assume µ(CTR) ≈ µ(CTST ). If a function such as fM(., .) (12) is available which
relates the generalization performance of a description of a set to another one’s, we
could find the subset via

SP = arg max
S⊆CTR

fM

(
µ(S), µ(CTR)

)
(21)

In absence of such a function, we propose an alternative approach. If the de-
scription of the training set is similar to the description of the subset, that is if
µ(CTR) ≈ µ(S), we can replace the dependency on µ(CTR) and model the test per-
formance as a function of the description of the evolving set:

SP = arg max
S⊆CTR

f̃M
(
µ(S))

s.t. ‖µ(CTR) − µ(S)‖ ≤ εµ
(22)

Obviously, such an approach will be valid only when SP and CTR are similar i.e.
when εµ ≈ 0. In other words, extrapolations based on this approximate approach
becomes more and more uncertain as εµ becomes bigger. Therefore, we restrict the
study to small changes in the training set. A small change in the training set can be
encoded by a constraint on the cardinality of SP , or via a constraint on the change
in the predicted test performance. We choose the latter and optimize for

SP = arg max
S⊆CTR

f̄R
(
w̃R; v(S))

s.t. f̄R
(
w̃R; v(S))− f̄R (w̃R; v(CTR)) ≤ εP (23)
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where – similar to section 2.3 – v(C) : R8 → Rnv is a vector of predictors describing
C, and

w̃R = arg min
w

λ‖w‖2 +
∑
M∈R

∑
C∈D
‖AP (C)

M − f̄R(w; v(C))‖2 (24)

We solve (23) via a largest set greedy optimization (section 3.1) with

τ = f̄R

(
w̃R; v(CTR)

)
+ εP

g
(
µ(S)

)
= f̄R

(
w̃R; v(S)

) (25)

4 Experiments

We provide regression and correlation analysis which determine the relation be-
tween the proposed measures and the test performance. We use Spearman’s rank
correlation coefficient (Spearman’s ρ) [13] as it is non-parametric and thus, invari-
ant to any monotonic transformation of the variables. This makes Spearman’s ρ
particularly useful for highlighting non-linear dependencies.

4.1 Reference Methods

The reference methods we have considered are the following:

1. (D4): deformable part based model of [7]. The results are of release 4 of the
software without bounding box prediction and context re-scoring.

2. (D5): release 5 of DPM [7] with bounding box prediction and contextual
re-scoring.

3. (RT): KE
MMI+L+S+O [1] – a two scale mixture of rigid templates which relies

on an oracle for the optimal number of fixed templates.

4. (RT10): KE
MMI:10+L [1] – a single scale mixture of 10 rigid templates.

5. (E): exemplar SVM(ESVM) [12]. The co-occurrence re-calibration results are
reported.

6. (CF): the coarse to fine part based model [16].

7. (LHSL): the latent 3-scale part based model of [19].

The average performance of the reference set based on 7 methods is 0.2899. Table
2 shows the test performance of the reference methods and figure 5 shows the
correlation between their test performances.
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Figure 5: Correlations between test performance of reference methods. The average
Spearman’s correlation is 0.948 while the average Pearson’s correlation is 0.967.

4.2 The Measured Moments
Figure 6 shows the Spearman’s correlation and Pearson’s correlation between the
measures. It can be observed that the measures are correlated and that the de-
pendencies are mostly linear. Particularly, the semi-global and global measures
seem to be significantly correlated. We provide the following explanation for this
observation.

Low global connectivity implies low-length shortest paths, which results in sim-
ilarity of semi-global and global measures. In the extreme case – where the shortest
paths are all of length 1 – global measures and semi-global measures will become
the same. This mainly reflects the overall low global connectivity of the Pascal
VOC 20072. The strong correlation between local and global connectivity (µL and
µP ), (µS and µG) and (σS and σG) supports this hypothesis.

Table 3 shows the ordering that each measure induces on the classes of Pascal
VOC 2007. It can be observed that the measured moments tend to more or less
agree on the quality of the training set. For example, ‘bird’ is the class with the
least local and global connectivity (µL and µP ), and it exhibits the most intra-class
variation (1−µS and µG). On the contrary, ‘car’ has the best one-nearest neighbors
(local connectivity) and is ranked second in global connectivity (multiple nearest
neighbors). It exhibits the least intra-class variation.

Table 4 shows the correlation between the performance of the reference methods
and the proposed measures. It can be seen that the only factor that has a negative
correlation with the objective, is the intra-class variation (µG). In absence of any
other information, local and global connectivity (µL and µP ) seem to have stronger
effects on the test performance than bias or intra-class variation. Moreover, the

2We augmented Pascal VOC 2007 with its left-right flipped version. This essentially doubled
the size of the dataset, and increased the connectivity measures. The conclusion regarding the
overall low global connectivity would be even stronger without this modification.
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Figure 6: Spearman’s Correlation and Pearson’s Correlation between the measures.
The average Spearman’s correlation between the measures is 84.3 while the average
Pearson’s correlation is 82.9.

f D4 D5 RT RT10 E CF LHSL mean min
µS 71 70 71 75 68 71 68 70.5 67.5
µG -75 -73 -74 -80 -74 -75 -71 -74.6 -71.1
σL 78 76 78 82 84 79 76 79.0 75.9
µL 88 85 86 90 90 86 85 87.2 85.0
σS 83 84 87 90 93 91 83 87.4 82.6
µP 90 89 89 93 90 90 87 89.6 87.1
σG 88 88 91 92 91 93 88 90.0 87.6
σP 92 90 92 94 91 92 88 91.3 88.3

Table 4: Correlation of the measures with the performance of the reference methods.

second order moments seem to be more crucial to analyze than the first order
ones. σP in absence of any other information is the best predictor of how much
contemporary algorithms can learn from a class.

4.3 Test Performance Prediction by Analyzing the Training Set
Table 5 demonstrates the results of the approach proposed in section 2.3 using
different predictors, shown on the top row. In the table, mX refers to a vector
of first and second order moments at scale X, together with their inverses. For
example,

mGP =
(
µG, µP , σG, σP , µ

−1
G , µ−1

P , σ−1
G , σ−1

P

)T
Also in the table, v = n refers to the number of positive training sample for each
class used as a predictor of the test performance, and v = 1 predicts the test
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performance of a class by averaging the other 19 observed test performances. The
middle row shows the scaled root mean squared error (RMSE), while the average
correlation to the performance of the reference methods is reflected in the bottom.

It can be observed that the size of the training set is a poor predictor of its qual-
ity. That the use of data-describing measures significantly improves the predictions,
suggests that 1) the quality of the training set determines the test performance with
a reasonable accuracy, and 2) f̄R(.) (14) quantifies the quality of the training data.

That the size of the training set does not quantify the quality of the training
set, suggests that “big data” should meet some quality requirements in order to be
useful for visual recognition – at least in case of HOG feature and linear classifiers.
The same has been concluded in [20] where the “cleanness of data” was empha-
sized. Among the proposed measures, those based on the global scale analysis –
connectivity and variation – seem to be able to explain the majority of the observed
performances. As an evidence for this hypothesis we point out the superiority of
the predictions based on the global measures – mGP in table 5, and the strong
correlation of these measures with the test performance of reference methods –
as reflected in table 4. This hypothesis consequently suggests that “big connected
data” will satisfy the quality constraints on “big data”.

Furthermore, the global connectivity measures correlate stronger with the test
performances and predict them better than the rest of the measures – observable
in tables 4 and 5 . This suggests that the effects of intra-class variation can be
rectified by ensuring good connectivity between samples. This also promotes the
“big connected data” hypothesis.

Figure 7 shows the predicted test performances and the mean absolute error
(MAE) of the predictions, using the mGP predictor. While the relevance of the
predicted performances is evident, there are variations in test performances that
the predictions do not quite capture. Example of such cases are the D5 – the de-
formable part based model based on contextual re-scoring, and E – the exemplar
SVM approach based on co-occurrence re-calibrations, which also utilizes contex-
tual re-scoring. Part of this is due to the differences in how reference methods
utilize training data. Table 6 shows model specific prediction of test performances
where the same procedure as in section 2.3 is repeated for each reference method
independently. As expected, dependency of each method on the data is best learnt
by studying how the performance of the method itself depends on the data, in
contrast to studying a reference set. On average, 0.04 AP of the test performances
are not explained by the current procedure. More discussion on this is deferred to
section 5.

4.4 Dataset Selection

Evaluating global measures on a set scales cubically with the cardinality of the set.
Consequently, the use of global measures on largest set problems is prohibitive.
The local measures were shown to be able to approximate the global measures
reasonably well, in tables 4 and 5. Therefore, we base the analysis in this section
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Criterion \ v mL mS mG mP mPL mSG mSL mGP mLSGP

103 RMSE 79 86 77 63 64 80 80 62 65
Corr to AP 87 84 89 88 89 88 86 92 92

Criterion \ v n 1
103 RMSE 171 159
Corr to AP -82 -97

Table 5: Evaluation of test performance prediction based on all reference methods.

D4 D5 RT RT10 E CF LHSL
MAE 4.5 5.3 3.5 3.3 4.2 3.6 4.0
Corr 89.7 92.3 93.3 93.6 89.5 93.7 89.6

Table 6: Evaluation of test performance prediction specific to each reference
method. Both measures are scaled by 102 for better readability.

on the use of local measures, which scale quadratically with the size of the training
set.

The use of local measures results in a cubic overall complexity of each iteration of
the largest set optimization and is still prohibitive for the ‘person’ class with 9380
samples. Hence, we sub-sample from the person class a total of 2500 randomly
chosen samples. This inevitably violates the assumption about small modifications
of the original training set, unless the randomly selected 2500 samples represent
the test set as accurately as the 9380 samples.

Figures 8 and 9 (right) depict the dataset selection procedure for εP = 0.01.
For comparison, the same figures (left) depict exemplars which upon removal from
the training set result in 1% decrement in predicted test performances. It can be
observed that gross outliers and strong inliers can be identified by this approach,
without training and testing specific models. Qualitatively, most gross outliers
either

1. are significantly truncated

2. are significantly occluded

3. are taken from a significantly low quality image, are noisy or too small

4. have been captured from viewpoints which do not have enough “support” in
the training set.

The latter is related to photographer and selection biases discussed in [18].
Figure 10 shows the changes the automatic dataset selection induces on the

training set. ∆|C| refers to the number of exemplars removed from the training
set, and ∆AP (G) refers to the predicted change in the test performance when all
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Figure 7: Test Performance Prediction of Pascal-VOC 2007 classes (‘APPred’) and
the performance of the reference methods. Best viewed electronically and in color.

the measures are used as predictors. According to the predictions made by local
measures, on average 55 samples have to be removed from the training sets to
achieve 1% improvements in AP. According to not only the local measures, but
also the semi-local and global ones, the actual change is going to be 0.7%. It can
be observed that the selected subsets consistently result in better local and global
connectivity (µL and µP ), and less semi-global and global intra-class variation (µS
and µG).

Decrements in intra-class variation are to be expected when exemplars are re-
moved from training set. Exemplars which are not connected (linked) to the rest
of the training set decrease global connectivity µP . Consequently, the strong cor-
relation between connected variation µP and test performance suggests removal of
such exemplars from the training set. The same can be concluded from figures 10,
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(Worst Outliers) (Best Inliers)
Remove to gain 1% AP Remove to lose 1% AP

(Remove 25) APPred=59, AppxAPPred=52 (Remove 15) APPred=58, AppxAPPred=50

(Remove 97) APPred=56, AppxAPPred=55 (Remove 72) APPred=55, AppxAPPred=53

Figure 8: Demonstration of Automatic Dataset Selection. For the two classes with
best global connectivity µP , that are ‘bicycle’ and ‘car’, exemplars are shown which
upon removal from the training set result in 1% change in the test performance.
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(Worst Outliers) (Best Inliers)
Remove to gain 1% AP Remove to lose 1% AP

(Remove 27) APPred=55, AppxAPPred=45 (Remove 10) APPred=54, AppxAPPred=42

(Remove 25) APPred=45, AppxAPPred=43 (Remove 9) APPred=44, AppxAPPred=41

Figure 9: Demonstration of Automatic Dataset Selection (continued). For the next
classes with best global connectivity µP , that are ‘horse’ and ‘motorbike’, exemplars
are shown which upon removal from the training set result in 1% change in the test
performance.
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Figure 10: Changes to the training set induced by automatic dataset selection. See
text for analysis. Best viewed electronically and in color.

8, and 9.

5 Discussion

5.1 Towards modelling the interplay between features,
classifiers, training data, and test performance

As pointed out in section 4.3, the predicted test performances in some cases do not
quite match the actual outcomes. This might be due to

1. factors that affect the test performance but are not related to the quality of
the training set e.g. a significant difference between the distribution of the
training set and that of the test set
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Feature

Training Set Pairwise Affinity Proposed Measures

Performance Prediction

Classifier Family

Figure 11: Our model of the dependencies between features, classifier families,
training data, and test performance. The test set is assumed to have a distribution
similar to that of the training set’s.

2. variations in the similarity values which do not reflect similarity in the class
level

3. a source of variability in the training set that the proposed measures do not
model e.g. contextual information

While measuring the extent of correctness of each of these hypotheses is outside
the scope of this study, investigating them is a promising and important direction
for future works.

The assumption that the training set and test set have identical, or at least very
similar, distributions is the core assumption of many learning algorithms. It will be
interesting to verify to what extent for different classes this core assumption holds
by measuring the properties of the test set and comparing it to those of the training
set. This will automatically determine if a training set is a fair representation of a
test set.

In the paper, we mostly focused on analyzing how the test performance varies
with properties of the training data while keeping the feature, the similarity mea-
sure, the proposed measures and the classifier families fixed. However, the same
methodology allows us to model the complete interplay between these factors.

Figure 11 demonstrates the dependencies between features, classifier families,
training data and test performance. By modelling all dependencies at the same
time, that is by modelling the predicted performance as a function of all these
variables, one could attempt to “optimize” all the variables involved. By varying
one or more factors and keeping the rest fixed, one could “optimize” the varying
variables (boxes in the figure). Here “optimization” refers to a search process
which results in more accurate predictions of test performances. For example,
the same proposed procedures can be utilized to select, among a set of similarity
measures, the one which results in more accurate test performance predictions,
while all other factors – the feature, training set, test set, classifier families, and
the proposed measures – are kept fixed. As another example, given all the factors
but the feature, one could select, from a set of possible features, the one which
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maximizes the predicted test performances, without actually training any classifiers
using that feature. Similarly, given a feature, similarity measure,... one should
be able to propose the optimal classifier 3. This would be a first systematic
approach toward automatic selection of the optimal feature, classifier family, and
the training set. Hence, this seems the most promising direction to explore further.

Investigating these directions will enable us to model the part of performance
variations that currently our model cannot explain.

5.2 Scalability
The most expensive part of our analysis is the evaluation of the pairwise similarity
measure. The computational cost of KE

MMI [1] was reported to be cubic, given
the trained and calibrated exemplar SVMs. The expensive training process of
exemplar SVMs [12] could be avoided by using the recent ‘who’ features [9] based
on LDA instead of an SVM formulation. The LDA analysis assumes a global
Gaussian shape for the negative set, which is less flexible than local approach of
the exemplar SVM. We expect this flexibility to result in less accurate selection
of discriminative features, which consequently results in less accurate similarity
measures. Nevertheless, this trade-off would be inevitable in large scale scenarios.

Global measures were shown to be the most informative ones. We used the
Floyd-Warshall’s algorithm [3] to find the shortest path between all pairs of samples,
which has a cubic computational complexity. Using sparse graphs instead of the
full ones we utilized, and using the Johnson’s algorithm [3] instead of the Floyd-
Warshall algorithm, can reduce the complexity to a super-quadratic one. However,
as the moments are affected by the structure of the graph, and as optimizing the
computational complexity has not been the focus of this study, we have not tried
such an approach. Similarly, Laplacian embedding [14] can result in a sub-cubic,
super-quadratic complexity but with an additional advantage; that is avoiding the
heuristic definition of the distances based on similarity values (4). Unfortunately,
such an approach is restricted to positive semi-definite similarity measures, which
is not the case with the indefinite similarity measure we utilized.

As we demonstrated earlier in tables 4 and 5, local measures can approximate
global measures with reasonable accuracy. Approximating the global measures
with local and semi-global ones, and by using a similarity measure with quadratic
complexity, cheaper but reasonable approximations to the proposed procedures can
be achieved.

5.3 Dataset Selection
In this paper, we mostly analyzed test performance as a function of intra-class
variation and connectivity of the training set. We assumed similar distributions for
training and test sets and build upon this assumption. This assumption essentially

3Automatically proposing the optimal classifier in case of the HOG feature and Pascal VOC
2007 seems not particularly challenging at the moment(see table 2).
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avoids addressing the bias problem. While in [18] cross dataset biases are analyzed,
we argue that the selection biases affect the same dataset, although not as strongly
as cross dataset biases. The set bias is inevitably a function of two sets, and a more
elaborate model which considers two sets, e.g. (12), is required to address it. While
this work avoided doing so, the model we propose can be extended to consider two
sets.

A model based on two sets not only will be beneficial for modelling and mea-
suring set biases, but it also will allow more significant modifications in the set
selection scenario (section 3.2). However, training such models requires more data
than a model based on one set requires. Here, proper data would involve different
reference methods trained on different training sets, and each trained model tested
on different sets. This is another promising direction to explore further in future.

The dataset selection procedure described in section 3 has been proposed mainly
as proof of concepts. Qualitatively, results match our expectations and intuitions.
Quantitatively, the accuracy of the predictions have to be verified. This involves
a significant amount of training and testing steps, which will be very expensive if
a wide range of family of models is considered. Therefore, it was avoided in this
paper. It seems that the data required for training a two-set-based model would be
sufficient to verify these predictions quantitatively.

6 Conclusions

This study proposes data-describing measures that link the quality of the training
set to the test performance of classifiers. This essentially quantifies the claim on
“Unreasonable effectiveness of data” [8] for s.o.a classifiers, and makes it possible
to automatically measure the “cleanness of data” [20]. This implies that it should
be possible to devise rules for automatic selection of training data that maximize
the quality of the training set and consequently increase the test performance. Fur-
thermore, the strong impact of the connectivity measure on the test performances
suggests that “big connected data” might rectify the effects of intra-class variation.
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Abstract

Despite the success of the popular kernelized support vector machines,
they have two major limitations: they are restricted to Positive Semi-Definite
(PSD) kernels, and their training complexity scales at least quadratically with
the size of the data. Many natural measures of similarity between pairs of
samples are not PSD e.g. invariant kernels, and those that are implicitly or
explicitly defined by latent variable models. In this paper, we investigate
scalable approaches for using indefinite similarity measures in large margin
frameworks. In particular we show that a normalization of similarity to a sub-
set of the data points constitutes a representation suitable for linear classifiers.
The result is a classifier which is competitive to kernelized SVM in terms of
accuracy, despite having better training and test time complexities. Exper-
imental results demonstrate that on CIFAR-10 dataset, the model equipped
with similarity measures invariant to rigid and non-rigid deformations, can be
made more than 5 times sparser while being more accurate than kernelized
SVM using RBF kernels.

1 Introduction

Linear support vector machine (SVM) has become the classifier of choice for many
large scale classification problems. The main reasons for the success of linear SVM
are its max margin property achieved through a convex optimization, a training
time linear in the size of the training data, and a testing time independent of it.
Although the linear classifier operating on the input space is usually not very flex-
ible, a linear classifier operating on a mapping of the data to a higher dimensional
feature space can become arbitrarily complex.

Mixtures of linear classifiers has been proposed to increase the non-linearity of
linear classifiers [10, 1]; which can be seen as feature mappings augmented with
non-linear gating functions. The training of these mixture models usually scales
bilinearly with respect to the data and the number of mixtures. The drawback
is the non-convexity of the optimization procedures, and the need to know the
(maximum) number of components beforehand.
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Kernelized SVM maps the data to a possibly higher dimensional feature space,
maintains the convexity, and can become arbitrarily flexible depending on the choice
of the kernel function. The use of kernels, however, is limiting.

Firstly, kernelized SVM has significantly higher training and test time complexi-
ties when compared to linear SVM. As the number of support vectors grows approx-
imately linearly with the training data [22], the training complexity becomes ap-
proximately somwehere between O(n2) and O(n3). Testing time complexity scales
linearly with the number of support vectors, thus it is bounded by O(n).

Secondly, the positive (semi) definite (PSD) kernels are sometimes not expres-
sive enough to model various sources of variation in the data. A recent study [21]
argues that metric constraints are not necessarily optimal for recognition. For ex-
ample, in image classification problems, considering kernels as similarity measures,
they cannot align exemplars, or model deformations when measuring similarities.
As a response to this, invariant kernels were introduced [6] which are generally in-
definite. Indefinite similarity measures plugged in SVM solvers result in non-convex
optimizations, unless explicitly made PSD, mainly using eigen decomposition meth-
ods [3]. Alternatively, latent variable models have been proposed to address the
alignment problem e.g. [9, 25]. In these cases, the dependency of the latent vari-
ables on the parameters of the model being learnt mainly has two drawbacks: 1)
the optimization problem in such cases becomes (at best) semi-convex, which is a
form of non-convexity, and 2) the cost of training becomes much higher than the
case without the latent variables.

This paper aims to address these problems using explicit basis expansion. We
will show in section 2 that the resulting model: 1) has better training and test time
complexities than kernelized SVM models, 2) can make use of indefinite similarity
measures without any need for removal of the negative eigenvalues, which requires
the expensive eigen decomposition, 3) can make use of multiple similarity mea-
sures without losing convexity, and with a cost linear in the number of similarity
measures.

Our contributions are: 1) proposing and analyzing Basis Expanding SVM (BE-
SVM) regarding the aforementioned three properties, and 2) investigating the suit-
ability of particular forms of invariant similarity measures for large scale visual
recognition problems.

2 Basis Expanding Support Vector Machine

We review linear and kernelized SVM in section 2.1, and related approaches for
speeding up kernelized SVM in section 2.2. In section 2.3, we present the suggested
model and its properties.We present our indefinite invariant similarity measures in
section 2.4. We discuss the multi class formulation in section 2.5, and in section
2.6 we compare our approach to related work.
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2.1 Background: SVM

Given a dataset D = {(x1, y1), . . . , (xn, yn)|xi ∈ X , yi ∈ {−1, 1}} the SVM based
classifiers learn max margin binary classifiers. The SVM classifier is f(x) = 〈w, x〉 ≥
0 1. The w is learnt via minimizing 1

2 〈w,w〉+C
∑
i `H(yi, f(x)), where `H(y, x) =

max(0, 1−xy) is the Hinge loss. Any positive semi definite (PSD) kernel k : X×X →
R can be associated with a reproducing kernel hilbert space (RKHS) H, and vice
versa, that is 〈ψH(x), ψH(y)〉 = k(x, y), where ψH : X → H is the implicitly defined
feature mapping associated to H and consequently to k(., .). Representer theorem
states that in such a case, ψH(w) =

∑
i γik(., xi) where γi ∈ R ∀i.

For a particular case of k(., .), namely the linear kernel k(x,y) = x ·y associated
with an Euclidean space, linear SVM classifier is

fl(x) = wTx ≥ 0 (1)

where w is given by minimizing the primal SVM objective

1
2‖w‖

2 + C
∑
i

`H(yi, fl(xi)) (2)

More generally, given an arbitrary PSD kernel k(., .), the kernelized SVM clas-
sifier is

fk(x) =
∑
i

αik(x, xi) ≥ 0 (3)

where αis are learnt by minimizing the dual SVM objective

1
2α

TYKYα− ‖α‖1, 0 ≤ αi ≤ C, αTy = 0 (4)

where Y = diag (y).
The need for positiveness of k(., .) is evident from (4) where the quadratic reg-

ularizing term depends on the eigenvalues of Kij = k(xi, xj). In case of indefinite
k(., .)s, the problem becomes non-convex and the inner products need to be re-
defined, as there will be no associating RKHS to indefinite similarity measures.
Various workarounds for indefinite similarity measures exist, most of which involve
expensive eigen decomposition of the gram matrix [3]. A PSD kernel can be learnt
from the similarity matrix, with some constraints e.g. being close to the similar-
ity matrix where closeness is usually measured by the Frobenius norm. In case of
Frobenius norm, the closed form solution is spectrum clipping, namely setting the
negative eigenvalues of the gram matrix to 0 [3]. As pointed out in [4], there is
no guarantee that the resulting PSD kernels are optimal for classification. Nev-
ertheless, jointly optimizing for a PSD kernel and the classifier [4] is impractical
for large scale scenarios. We do not go into the details of possible re-formulations

1We omit the bias term for the sake of clarity.
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regarding indefinite similarity measures, but refer the reader to [19, 13, 3] for more
information.

Linear and Kernelized SVM have very different properties. Linear SVM has a
training cost of O(dxn) and a testing cost of O(dx) where dx is the dimensionality of
x . Kernelized SVM has a training complexity which is O(dk(nnsv)+n3

sv) [15] where
dk is the cost of evaluating the kernel for one pair of data, and nsv is the number
of resulting support vectors. The testing cost of kernelized SVM is O(dknsv).
Therefore, a significant body of research has been dedicated to reducing the training
and test costs of kernelized SVMs by approximating the original problem.

2.2 Speeding up Kernelized SVM
A common approach for approximating the kernelized SVM problem is to restrict
the feature mapping of w: ψH(w) ≈ ψR(w) =

∑J
j=1 βjψH(zj) where J < n. Meth-

ods in this direction either learn synthetic samples zj [24] or restrict zj to be on
the training data [15]. These methods essentially exploit low rank approximations
of the gram matrix K.

Low rank approximations of PD K � 0, result in speedups in training and test-
ing complexities of kernelized SVM. Methods that learn basis coordinates outside
the training data e.g. [24] usually involve intermediate optimization overheads, and
thus are prohibitive in large scale scenarios. On the contrary, the Nyström method
gives a low rank PSD approximation to K with a very low cost.

The Nyström method [23] approximates K using a randomly selected subset of
the data:

K ≈ KnmK−1
mmKmn (5)

where Kab refers to a sub matrix of K = Knn indexed by a = (a1, . . . , an)T, ai ∈
{0, 1}, and similarly by b. The approximation (5) is derived by defining eigenfunc-
tions of K(., .) as expansions of numerical eigenvectors of K. A consequence is that
the data can be embedded in an Euclidean space: K ≈ ΨT

mnΨmn, where Ψmn, the
Nyström feature space, is

Ψmn = K−
1
2

mmKmn (6)
Methods exist which either explicitly or implicitly exploit this e.g. [14] to reduce
both the training and test costs, by restricting the support vectors to be a subset
of the bases defined by m.

In case of indefinite similarity measures, K−
1
2

mm in (6) will not be real. In the
rest of the paper, we refer to an indefinite version of a similarity matrix K with
K̃. In order to get a PSD approximation of an indefinite K̃, the indefinite K̃mm
(5) needs to be made PSD. Spectrum clipping, spectrum flip, spectrum shift, and
spectrum square are possible solutions based on eigen decomposition of K̃mm. The
latter can be achieved without the eigen decomposition step: K̃T

mmK̃mm � 0.
If the goal is to find the PSD matrix closest to the original indefinite K̃ with

respect to the reduced basis set m, spectrum clip gives the closed form solution.
Therefore, when there are a few negative eigenvalues, the spectrum clip technique
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gives good low rank approximations to K̃mm which can be used by (5) to get a low
rank PSD approximation to K̃. However, when there are a considerable number
of negative eigenvalues, as it is the case with most of the similarity measures we
consider later on in section 2.4, there is no guarantee for the resulting PSD matrix
to be optimal for classification. This is true specially when eigenvectors associated
with negative eigenvalues contain discriminative information. We will experimen-
tally verify in section 3.3 that the negative eigenvalues do contain discriminative
information.

As an alternative, instead of aiming to approximate K̃ with a PSD matrix, we
aim to find a low rank PSD matrix which results in a linear discriminant that is
competitive with the one learnt in the Nyström feature space based on a spectrum
clip technique for making K̃mm PSD. In other words, we want to avoid modifying
the eigenvalues of K̃mm; which means that we want to avoid the normalization by
K̃−1

mm
2. For example, one can replace Kmm in (6) with the covariance of columns

of Kmn. We experimentally found out that a simple embedding: scaling K̄mm by
the average `2 norm of its columns where K̄mm is Kmm with its rows centered, is
competitive with the Nyström embedding (6) for PSD similarity measures, while
outperforming it in case of indefinite ones that we studied. The embedding is
presented in the next section; see (8).

2.3 Basis Expanding SVM

Basis Expanding SVM (BE-SVM) is a linear SVM classifier equipped with a nor-
malization of the following explicit feature map

ϕ̃(x) = [s(b1,x), . . . , s(bB ,x)]T (7)

where B = {b1, . . . ,bB} is an ordered basis set3 which is a subset of the training
data, and s(., .) is a pairwise similarity measure. The BE-SVM feature space defined
by

ϕ(x) = 1
EX [‖ϕ̃− EX [ϕ̃]‖] (ϕ̃(x)− EX [ϕ̃]) (8)

is similar to the Nyström feature space (6) with a different normalization scheme,
as pointed out in section 2.2. The centralization of ϕ̃(.) better conditions ϕ(.) for
a linear SVM solver, and normalization by the average `2 norm is most useful for
combining multiple similarity measures.

The BE-SVM classifier is

fB(x) = wTϕ(x) ≥ 0 (9)

2Throughout the text, we will refer to this normalization with K̃−1
mm with the Nyström nor-

malization.
3For the moment assume B is given. We experiment with different basis selection strategies

later in section 3.4).
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where w is solved by minimizing the primal BE-SVM objective

1
2‖w‖

2
2 + C

∑
i

`H(yi, fB(xi))2 (10)

An `1 regularizer results in sparser solutions, but with the cost of more expensive
optimization than an `2 regularization. Therefore, for large scale scenarios, an `2
regularization, combined with a reduced basis set B is preferred to an `1 regularizer
combined with a larger basis set.

Both kernelized SVM and BE-SVM are max margin classifiers in their feature
spaces. The feature space of kernelized SVM ψH(.) is implicitly defined via the
kernel function k(., .) while the feature space of the BE-SVM is explicitly defined.
In order to derive the margin as a function of the data, we first need to derive
the dual BE-SVM objective, where we assume a non-squared Hinge loss and un-
normalized feature mappings ϕ̃(.). Borrowing from the representer theorem and
considering the KKT conditions of the primal, one can derive w =

∑
i yiβiϕ̃(xi),

and consequently derive the BE-SVM dual objective which is similar to the dual
SVM objective (4) but with Kij = ϕ̃(xi)Tϕ̃(xj). Let SBX refer to the similarity of
the data to the bases. We can see that the margin of the BE-SVM, given the optimal
dual variables 0 ≤ βi ≤ C, is

(
βTYST

BXSBXYβ
)−1, as opposed to

(
αTYKYα

)−1

for the kernelized SVM, given the optimal dual variables 0 ≤ αi ≤ C. Further-
more, ST

BXSBX is PSD, and that is BE-SVM’s workaround for using indefinite
similarity measures. We provide more analysis regarding the margin of BE-SVM
in supplementary materials.

Using multiple similarity measures is straightforward in BE-SVM. The concate-
nated feature map ϕM (x) =

[
ϕ(1)(x)T, . . . , ϕ(M)(x)T]T encodes the values of the

M similarity measures evaluated on the corresponding bases B(1), . . . ,B(M). In
this work, we restrict the study to the case that the bases are shared among the M
similarity measures: i.e. B(1) = . . . = B(M). In such cases, it can be verified that
in case of unnormalized features ϕ̃(m)(.), the corresponding Gram matrix will be

K̃(xi,xj) =
∑M
m=1 K̃

(m)(xi,xj)
=
∑M
m=1 ϕ̃

(m)(xi)Tϕ̃(m)(xj)
=
∑M
m=1

∑B
b=1 s

(m)(bb,xi)s(m)(bb,xj)
(11)

where K̃(m)s are combined with equal weights, the value of each of which depends
(locally) on how the similarities of xi and xj correlate with respect to the bases.
In the case of normalized features, the centered values of each similarity measure is
weighted by (EX [‖ϕ̃− EX [ϕ̃]‖])−2 i.e. more global weight is put on (the centered
values of) the similarity measures with smaller variances in similarity values.

While the BE-SVM’s normalization of empirical kernel maps is not optimal for
discrimination, it can be seen as a reasonable prior for combining different simi-
larity measures. Utilizing such a prior, in combination with linear classifiers and
`P regularizers, has two important consequences: 1) the centering helps reduce the
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correlation between dimensions and the scaling helps balance the effect of regular-
ization on different similarity measures, irrespective of their overall norms, and 2)
such a scaling directly affects the parameter tuning for learning the linear classifiers:
for all the similarity measures (and combinations of similarity measures) with vari-
ous basis sizes, the same parameter: C = 1 was used to train the classifiers. While
cross-validation will still be a better option, cross-validating for different parameters
settings – and specially when combining multiple similarity measures – will be very
expensive and prohibitive. By using the BE-SVM’s normalization, we essentially
avoid searching for optimal combining weights for different similarity measures and
also tuning for the C parameter of the linear SVM training. The normalization of
BE-SVM is evaluated quantitatively in the supplementary materials.

2.4 Indefinite Similarity Measures for Visual Recognition
The lack of expressibility of the PSD kernels have been argued before e.g. in
[3, 4, 21]. For example, similarity measures which are not based on vectorial repre-
sentations of data are most likely to be indefinite. Particularly in computer vision,
considering latent information results in lack of a fixed vectorial representation of
instances, and therefore similarity measures based on latent information are most
likely to be indefinite4.

A few applications of indefinite similarity measures in computer vision are
pointed out below. [6] proposed (indefinite) jitter kernels for building desired in-
variances in classification problems. [1] used indefinite pairwise similarity measures
with latent positions of objects for clustering. [16] considers deformation models
for image matching. [7] defines an indefinite similarity measure based on explicit
correspondences between pairs of images for image classification.

In this work, we consider similarity measures with latent deformations:

s(xi, xj) = max
zi∈Z(xi), zj∈Z(xj)

KI(φ(xi, zi), φ(xj , zj)) +R(zi) +R(zj) (12)

where KI(., .) is a similarity measure (potentially a PD kernel), φ(x, z) is a rep-
resentation of x given the latent variable z, R(z) is a regularization term on the
latent variable z, and Z(x) is the set of possible latent variables associated with
x. Specifically, when R(.) = 0 and Z(x) involves latent positions, the similarity
measure becomes similar to that of [1]. When R(.) = 0 and Z(x) involves latent
positions and local deformations, it becomes similar to the zero order model of [16].
Finally, an MRF prior in combination with latent positions and local deformations
gives a similarity measure, similar to that of [7].

The proposed similarity measure (12) picks the latent variables which have the
maximal (regularized) similarity values KI(., .)s. This is in contrast to [6] where the

4Note that [25] and similar approaches use a PD kernel on fixed vectorial representation of
the data, given the latent information. The latent informations in turn are updated using an
alterantive minimization approach. This makes the optimization non-convex, and differs from
similarity measures which directly model latent informations.
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Training
Memory Computation

K SVM nMd̄φ + n2

C n2Md̄K + n3

C

BE-SVM nMd̄φ + nM |B| nC|B|Md̄K

Testing (per sample)
Memory Computation

K SVM nMd̄φ nCMd̄K
BE-SVM |B|Md̄φ |B|CMd̄K

Table 1: Complexity Analysis for kernelized SVM and BE-SVM. The number of
samples for each of the C classes was assumed to be equal to n

C . M is the number of
kernels/similarity measures, Md̄φ is the dimensionality of representations required
for evaluating M kernels/similarity measures, and Md̄K is the cost of evaluating
all M kernels/similarity measures.

latent variables were suggested to be those which minimize a metric distance based
on the kernel KI(., .). The advantage of a metric based latent variable selection is
not so clear, while some works argue against unnecessary restrictions to metrics [21].
Also, ifKI(., .) is not PSD, deriving a metric from it is at best expensive. Therefore,
the latent variables in (12) are selected according to the similarity values instead
of metric distances.

2.5 Multi Class Classification

SVMs are mostly known as binary classifiers. Two popular extensions to the multi-
class problems are one-v-res (1vR) and one-v-one (1v1). The two simple extentions
have been argued to perform as well as more sophisticated formulations [20]. In
particular, [20] concludes that in case of kernelized SVMs, in terms of accuracy
they are both competitive, while in terms of training and testing complexities 1v1
is superior. Therefore, we only consider 1v1 approach for kernelized SVM. In case of
linear SVMs however, 1v1 results in unnecessary overhead and 1vR is the algorithm
of choice. A 1vR BE-SVM can be expected to be both faster and to generalize better
than a 1v1 BE-SVM where bases from all classes are used in each of the binary
classifiers. In case of 1v1 BE-SVM where only bases from the two classes under
consideration are used in each binary classifier, there will be a clear advantage in
terms of training complexity. However, due to the reduction in the size of the basis
set, the algorithm generalizes less in comparison to a 1vR approach. Therefore,
we only consider 1vR formulation for BE-SVM. Table 1 summarizes the memory
and computational complexity analysis for 1v1 kernelized SVM and 1vR BE-SVM.
Shown are the upper bounds complexities where we have considered n to be the
upper bound on nsv.
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2.6 Related Work
There exists a body of work regarding the use of proximity data, similarity, or
dissimilarity measures in classification problems. [18] uses similarity to a fixed set
of samples as features for a kernel SVM classifier. [12] uses proximities to all the
data as features for a linear SVM classifier. [11] uses proximities to all the data as
features and proposes a linear program machine based on this representation. In
contrast, we use a normalization of the similarity of points to a subset of the data
as features for a (fast, approximate) linear SVM classifier.

3 Experiments

3.1 Dataset and Experimental Setup
We present our experimental results on CIFAR-10 dataset [17]. The dataset is
comprised of 60,000 tiny 32 × 32 RGB images, 6,000 images for each of the 10
classes involved, divided into 6 folds with inequal distribution of class labels per
fold. The first 5 folds are used for training and the 6th fold is used for testing. We
use a modified version of the HOG feature [5], described in [9]. For most of our
experiments, we use HOG cell sizes of 8 and 4, which result in 31× 32

8
2 = 496 and

31× 32
4

2 = 1984 dimensional representation of each of the images.
Due to the normalization of each of the HOG cells, namely normalizing by

gradient/contrast information of the neighboring cells, the HOG cells on border of
images are not normalized properly. We believe this to have a negative effect on
the results, but as the aim of this paper is not to get the best results possible out of
the model, we rely on the consistency of the normalization for all images to address
this problem. A possible fix is to e.g. up-sample images and ignore the HOG-cells
at the boundaries, but we do not provide the results for such fixes.

For all of the results in the paper, we center the HOG feature vector and scale
feature vectors inversely by the average `2 norm of the centered feature vectors,
similar to the normalization of BE-SVM (8). This results in easier selection of
parameters C and γ for SVM formulations. Unless stated otherwise, we fix C = 2
and γ = 1 for kernelized SVM with Gaussian RBF kernels, and C = 1 for the rest.
We use LibLinear [8] to optimize the primal linear SVM objectives with squared
Hinge loss, similar to (10). For kernelized SVM, we use LibSVM [2]. We report
multi-class classification results (0-1 loss) on the test set.

3.2 Baseline: SVM with Positive Definite Kernels
Figure 3 shows the performance of linear SVM (H4L and H8L) and kernelized SVM
with Gaussian RBF kernel (K4R and K8R) as a function of number of parameters in
the models. The number of parameters for linear SVM is the input dimensionality,
and for kernelized SVM it is the sum of nsv(dφ + 1) where dφ is the dimensionality
of the feature vector the corresponding kernel operates on. The 5 numbers for each
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model are the results of the model trained on 1, . . . , 5 folds of the training data
(each fold contains 10,000 samples). Figure 4 shows the performance kernelized
SVM as a function of support vectors when trained on 1, . . . , 5 folds. Except the
linear SVM with a HOG cell size of 8 pixels (496 dimensions) which saturates its
performance at 4 folds, all models consistently benefit from more training data.

3.3 BE-SVM with Invariant Similarity Measures
The general form of the invariant similarity measures we consider was given in
(12). In particular, we consider rigid and deformable similarity measures where the
smallest unit of deformation/translation is a HOG cell.

The rigid similarity measure models invariance to translations and is given by

KR(x, y) = max
zR∈ZR

∑
c∈C

φC(x, c)TφC(y, c + zR) (13)

where ZR = {(zx, zy)|zx, zy ∈ {−hR, . . . , hR}} allows a maximum of hR HOG cells
displacements in x, y directions, C = {(x, y)|x, y ∈ {h1, . . . , hH} is the set of indices
of hH HOG cells in each direction, and φC(x, c) is the 31 dimensional HOG cell of
x located at position c. φC(x, c) is zero for cells outside x (zero-padding). KR(x, y)
is the maximal cross correlation between φ(x) and φ(y).

The deformable similarity measure allows local deformations (displacements) of
each of the HOG cells, in addition to invariance to rigid deformations

KL(x, y) = max
zR∈ZR

∑
c∈C

max
zL∈ZL

φC(x, c)TφC(y, c + zR + zL) (14)

where ZL = {(zx, zy)|zx, zy ∈ {−hL, . . . , hL}} allows a maximum of hL HOG cell
local deformation for each of the HOG cells of y.

We consider a maximum deformation of 8 pixels e.g. 2 HOG cells for a HOG
cell size of 4 pixels. Regularizing global or local deformations is straightforward in
this formulation. However, we did not notice significant improvements for the set
of displacements we considered, which is probably related to the small size of the
latent set suitable for small images in CIFAR-10.

Figure 1 shows the performance of BE-SVM using different similarity measures,
when trained on the first fold. It can be seen that the invariant similarity measures
improve recognition performance. Particularly, in absence of any other information,
modelling rigid deformations (latent positions) seems to be much more beneficial
than modelling local deformations. An interesting observation is that aligning the
data in higher resolutions is much more crucial: all models (linear SVM, kernelized
SVM, and BE-SVM) suffer performace losses when the resolution is increased from
a HOG cell size of 8 pixels to 4 pixels. However, BE-SVM achieves significant
performance gains by aligning the data in higher resolutions: compare H4L with
H4(1,0) and H4(2,0), and H8L with H8(1,0).

We tried training linear and kernelized SVM models by jittering the feature vec-
tors, in the same manner that the invariant similarity measures do (13), (14); that is
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Figure 1: Performance of BE-SVM as a function of different similarity measures
when trained on the first fold. An H4 (H8) refers to a HOG cell size of 4 (8) pixels.
L and R refer to linear and Gaussian RBF kernels respectively, and (hR, hL) refers
to a similarity measure with hR rigid and hL local deformations (13), (14).

to jitter the HOG cells with zero-padding for cells outside images. This resulted in
significant performance losses for both linear SVM and kernelized SVM, while also
siginificantly increasing memory requirement and computation times. We believe
the reason for this to be the boundary effects; which are also mentioned in previous
work e.g. [6]. We also believe that jittering the input images, in combination with
some boundary heuristics (see section 3.1), will improve the test performance (while
significantly increasing training complexities), but we do not provide experimental
results for such cases.

3.4 Basis Selection

Figure 2 shows accuracy of BE-SVM using different similarity measures and differ-
ent basis selection strategies; for a basis size of B = 10 × 100 exemplars. In the
figure, ‘Rand’ refers to a random selection of the bases, ‘Indx’ refers to selection of
samples according to their indices, ‘K KMed’ refers to a kernel k-medoids approach
based on the similarity measure, and ‘Nystrom’ refers to selection of bases simi-
lar to the ‘Indx’ approach, but with the Nyström normalization, using a spectrum
clip fix for indefinite similarity measures(see section 2.2). The reported results for
‘Rand’ method is averaged over 5 trials; the variance was not significant. It can
be observed that all methods except the ‘Nystrom’ result in similar performances.
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Figure 2: Performance of various basis selection strategies for BE-SVM using vari-
ous similarity measures. See text for analysis.

We also tried other sophisticated sample selection criteria, but observed similar
behaviour. We attribute this to little variation in the quality of exemplars in the
CIFAR-10 dataset. Having observed this, for the rest of sub-sampling strategies,
we do not average over multiple random basis selection trials, but rather use the
deterministic ‘Indx’ approach.

The difference between normalization factors in BE-SVM and Nyström method
(see section 2.2) is evident from the figure. The BE-SVM normalization tends to
be superior consistently in case of indefinite similarity measures. For PSD kernels
(H4L, H8L, H4R, and H8R) , the Nyström normalization tends to be better in
lower resolutions (H8) and worse in higher resolutions (H4). We believe the main
reason for this is to be lack of significant similarity of bases in higher resolutions
in absence of any alignment. In such cases, the low rank assumption of K [23] is
violated, and normalization by a diagonally dominant Kmm will not capture any
useful information.

In order to analyze how the performance of BE-SVM depends on the eigenval-
ues of the similarity measures, we provide the following eigenvalue analysis. We
compute the similarity matrix of the bases to themselves – corresponding to Kmm
in (6)) – and perform an eigendecomposition of the resulting matrix. Table 2 shows
the ratio of negative eigenvalues: ‘NgRat’= 1

B

∑
i[λi < 0] , and the relative energy
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NgRat .0 .26 .18 .25 .16 .30 .20 .61
NgEng .00 .04 .05 .05 .04 .07 .33 .73

Table 2: Eigenvalue analysis of various similarity measures based on HOG cell size
4. See text for analysis.

of eigenvalues ‘NgEng’=
∑

i
|λi|[λi<0]∑
i
|λi|[λi>0]

as a function of various similarity measures
for B = 10×100 and a HOG cell size of 4. The last two columns, namely ‘CorNyst’
and ‘CorBE’ reflect the correlation of the measured entities – ‘NgRat’ and ‘NgEng’
– to the observed performance of BE-SVM using the Nyström normalization and
BE-SVM normalization. We used Pearson’s r to measure the extent of linear de-
pendence between the test performances and different normalization schemes. It
can be observed that: 1) both normalization schemes have a positive correlation
with both the ratio of negative eigenvalues and their relative energy, and 2) BE-
SVM normalization correlates more strongly with the observed entities. From this,
we conclude that negative eigenvectors contain discriminative information and that
BE-SVM’s normalization is more suitable for indefinite similarity measures. We
also experimented with spectrum flip and spectrum square methods for the Nys-
tröm normalization, but they generally provided slightly worse results in comparison
to the spectrum clip technique.

3.5 Multiple Similarity Measures

Different similarity measures contain complementary information. Fortunately, BE-
SVM can make use of multiple similarity measures by construction. To demonstrate
this, using one fold of training data and B = 10 × 50, we greediy and in an incre-
mental way augmented the similarity measures with the most contributing ones.
Using this approach, we found two (ordered) sets of similarity measures with com-
plementary information: 1) a low-resolution set M1 = {H8R,H8(1, 0), H8(0, 1)},
and 2) a two-resolution set M2 = {H8R,H4(2, 0), H4(0, 1), H8(1, 0)}. Surpris-
ingly, the two resolution sequence resembles those of the part based models [9], and
multi resolution rigid models [1] in that the information is processed at two levels:
a coarser rigid ‘root’ level and a finer scale deformable level.

We then trained BE-SVM models using these similarity measures for various
sizes of the basis set, and for various sizes of training data. Figures 3 and 4 show
these results, where the BE-SVM models are trained on all 5 folds. The shown
number of supporting exemplars (and consequently the number of parameters) for
BE-SVM are based on the size of the basis set. It can be seen that using a basis
size of B = 10 × 250, the performance of the BE-SVM using more than 3 two-
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Figure 3: Performance of BE-SVM vs model parameters for various sizes of the
basis set, using multiple similarity measures. Each curve for linear SVM (H4L,
H8L) and kernelized SVM (K4R, K8R) represents the result for training on 1, . . . , 5
folds of training data. Each curve for BE-SVM shows the result for training model
with a basis set of size B = 10 × {25, 50, 100, 250, 500} when trained on 5 folds of
the training data.

resolution similarity measures surpass that of the kernelized SVM trained on all
the data. Using low-resolution similarity measures, B = 10 × 500 outperforms
kernelized SVMs trained on up to 4 folds of the training data. Furthermore, it can
be observed that for the same model complexity, as measured either by the number
of supporting exemplars, or by model parametrs, BE-SVM performs better than
kernelized SVM.

Measured by model parameters, BE-SVM is roughly 8 times sparser than ker-
nelized SVM for the same accuracy. Measured by supporting exemplars, its sparsity
increases roughly to 30. We need to point out that different similarity measures
have different complexities e.g. H8(1,0) is more expensive to evaluate than K8R.
However, when the bases are shared for different similarity measures, CPU cache
can be utilized much more efficiently as there will be less memory access and more
(cached) computations.
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Figure 4: Performance of BE-SVM vs supporting exemplars/support vectors for
various sizes of the basis set, using multiple similarity measures. See text for anal-
ysis.

4 Conclusion

We analyzed scalable approaches for using indefinite similarity measures in large
margin scenarios. We showed that our model based on an explicit basis expansion
of the data according to arbitrary similarity measures can result in competitive
recognition performances, while scaling better with respect to the size of the data.
The model named Basis Expanding SVM was thoroughly analyzed and extensively
tested on CIFAR-10 dataset.

In this study, we did not explore basis selection strategies, mainly due to the
small intra-class variation of the dataset. We expect basis selection strategies to
play a crucial role in the performance of the resulting model on more challenging
datasets e.g. Pascal VOC or ImageNet. Therefore, an immediate future work is to
apply BE-SVM to larger scale and more challenging problems e.g. object detection,
in combination with data driven basis selection strategies.



E18
LARGE SCALE, LARGE MARGIN CLASSIFICATION USING INDEFINITE

SIMILARITY MEASURES

References

[1] Omid Aghazadeh, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Mix-
ture component identification and learning for visual recognition. In European Con-
ference on Computer Vision, 2012.

[2] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology, pages 27:1–27:27,
2011.

[3] Yihua Chen, Eric K. Garcia, Maya R. Gupta, Ali Rahimi, and Luca Cazzanti.
Similarity-based classification: Concepts and algorithms. Journal of Machine Learn-
ing Research, pages 747–776, 2009.

[4] Yihua Chen, Maya R. Gupta, and Benjamin Recht. Learning kernels from indefinite
similarities. In International Conference on Machine Learning, 2009.

[5] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In IEEE Conference on Computer Vision and Pattern Recognition, 2005.

[6] Dennis Decoste and Bernhard Schölkopf. Training invariant support vector machines.
Machine Learning, pages 161–190, 2002.

[7] Olivier Duchenne, Armand Joulin, and Jean Ponce. A Graph-matching Kernel for
Object Categorization. In IEEE International Conference on Computer Vision, 2011.

[8] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
LIBLINEAR: A library for large linear classification. Journal of Machine Learning
Research, 2008.

[9] Pedro F. Felzenszwalb, Ross B. Girshick, David A. McAllester, and Deva Ramanan.
Object detection with discriminatively trained part-based models. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 1627–1645, 2010.

[10] Zhouyu Fu, Antonio Robles-Kelly, and Jun Zhou. Mixing linear svms for nonlinear
classification. Neural Networks, pages 1963–1975, 2010.

[11] T. Graepel, R. Herbrich, Bernhard Schölkopf, A. Smola, P. Bartlett, K. Müller,
K. Obermayer, and R. Williamson. Classification on proximity data with lp-machines.
In Neural Information Processing Systems, 1999.

[12] Thore Graepel, Ralf Herbrich, Peter Bollmann-Sdorra, and Klaus Obermayer. Clas-
sification on pairwise proximity data. In Neural Information Processing Systems,
1998.

[13] Bernard Haasdonk. Feature space interpretation of svms with indefinite kernels.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005.

[14] Yuh jye Lee and Olvi L. Mangasarian. Rsvm: Reduced support vector machines.
In Data Mining Institute, Computer Sciences Department, University of Wisconsin,
2001.

[15] S. Sathiya Keerthi, Olivier Chapelle, and Dennis DeCoste. Building support vector
machines with reduced classifier complexity. Journal of Machine Learning Research,
pages 1493–1515, 2006.

[16] Daniel Keysers, Thomas Deselaers, Christian Gollan, and Hermann Ney. Deformation
models for image recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1422–1435, 2007.



REFERENCES E19

[17] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, 2009.

[18] Li Liao and William S. Noble. Combining Pairwise Sequence Similarity and Support
Vector Machines for Detecting Remote Protein Evolutionary and Structural Rela-
tionships. Journal of Computational Biology, pages 857–868, 2003.

[19] Cheng Soon Ong, Xavier Mary, Stéphane Canu, and Alexander J Smola. Learning
with non-positive kernels. In International Conference on Machine Learning, 2004.

[20] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Journal of
Machine Learning Research, pages 101–141, 2004.

[21] Walter J. Scheirer, Michael J. Wilber, Michael Eckmann, and Terrance E. Boult.
Good recognition is non-metric. CoRR, 2013.

[22] Ingo Steinwart. Sparseness of support vector machines – some asymptotically sharp
bounds. In Neural Information Processing Systems, 2004.

[23] Christopher Williams and Matthias Seeger. The effect of the input density distribu-
tion on kernel-based classifiers. In International Conference on Machine Learning,
2000.

[24] Mingrui Wu, Bernhard Schölkopf, and Gökhan Bakir. A direct method for building
sparse kernel learning algorithms. Journal of Machine Learning Research, pages 603–
624, 2006.

[25] Weilong Yang, Yang Wang, Arash Vahdat, and Greg Mori. Kernel latent svm for
visual recognition. In Neural Information Processing Systems, 2012.



E20
LARGE SCALE, LARGE MARGIN CLASSIFICATION USING INDEFINITE

SIMILARITY MEASURES

Supplementary Materials

Margin Analysis of Basis Expanding SVM

As pointed out in the paper, we analyze the margin of BE-SVM in case of unnormalized
features (ϕ̃(.) instead of ϕ(.))5 and a non-squared Hinge loss. Given the corresponding
dual variables, the margin of the BE-SVM was mentioned to be

MBE(β) =
(
βTYST

BXSBXYβ
)−1 (15)

as opposed to that of the kernelized SVM

MK(α) =
(
αTYKYα

)−1 (16)

For comparison, the margin of the Nyströmized method is

MN (α) =
(
αTYKXBK−1

BBKBXYα
)−1 (17)

BE-SVM vs Kernelized SVM: When s(., .) = k(., .) and all training exemplars are
used as bases, the margin of the BE-SVM will be

(
βTYK2Yβ

)−1. Comparing to the
margin of SVM, for the same parameter C and the same kernel, it can be said that the
solution (and thus the margin) of BE-SVM is even more derived by large eigenpairs, and
even less by small ones. It is straightforward to verify K2 =

∑
i
λ2
ivivT

i . Therefore, the
contribution of large eigenpairs, that are {(λi,vi)|λi > 1}, to K2 is amplified. Similarly,
the contribution of small eigenpairs, that are those with λi < 1, to K2 is dampened.
BE-SVM vs Nyströmized method: When s(., .) = k(., .) and a subset of train-
ing exemplars are used as bases (reduced settings), the resulting margin of BE-SVM
is
(
βTYKXBKBXYβ

)−1. Comparing to the margin of the Nyströmized method, we can
say that the most of the difference between the Nyströmized method and BE-SVM, is the
normalization by K−1

BB .
For covariance kernels, that the Nyströmized method is most suitable for, KBB is the

covariance of the basis set in the feature space. Therefore, it can be said that the normal-
ization by K−1

BB essentially de-correlates the bases in the feature space. Although this is
an appealing property, as pointed out in section 2.2 of the paper, there is no associating
RKHS with indefinite similarity measures and the de-correlation in such cases is non-
trivial. In case of covariance kernels, it can be said that BE-SVM assumes un-correlated
bases, while bases are always correlated in the feature space. As larger sets of bases usually
result in more (non-diagonal) covariances, the un-correlated assumption is more violated
with large set of bases. The consequence is that in such cases, that are covariance kernels
with large set of bases, BE-SVM can be expected to perform worse than the Nyströmized
method. However, for sufficiently small set of bases, or in case of indefinite similarity
measures, there is no reason for superiority of the Nyströmized method. In such cases and
in practice, BE-SVM is competitive or better than the Nyströmized method. We provide
quantitative analysis regarding this, later in section 4; in figure 8.

5Refer to equations (7) and (8) in section 2.3 of the paper.



SUPPLEMENTARY MATERIALS E21

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Kernel SVM, gamma=10,100, SVs: 224.9, CV acc: 84.9

(a) Kernelized SVM
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(b) BE-SVM dual objective
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(c) BE-SVM primal objective (approximate)
−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

BE SVM P, B=65, gamma=10,100, SVs: 65.0, CV acc: 85.4

(d) BE-SVM primal objective (reduced, approx-
imate)

Figure 5: Demonstration of kernelized SVM and BE-SVM using two Gaussian
RBF kernels with γ1 = 10, γ2 = 102 and C = 10. 5(a) is based on equally weighted
kernels. 5(b) is without normalization. 5(c) is with normalization. 5(d) is with nor-
malization on 10% of the data randomly selected as bases. 10 fold cross validation
accuracy and the number of support vectors are averaged over i = 1 : 20 scenarios
based on the same problem but with different spatial noises. The noise model for
ith scenario is a zero mean Gaussian with σi = 10−2i. The visualization is on the
noiseless data for clarity. Best viewed electronically.

Demonstration on 2D Toy data

Figure 5 visualizes the use of multiple Gaussian RBF kernels in BE-SVM and kernelized
SVM. We point out the following observations.

1) the BE-SVM primal objective (approximate) using an `2 regularization, does not



E22
LARGE SCALE, LARGE MARGIN CLASSIFICATION USING INDEFINITE

SIMILARITY MEASURES

result in sparse solutions: all exemplars in 5(c) are used as support vectors (non-zero
coefficients). However, based on the same objective, but in a reduced basis set setting
(5(d)), the solution will be sparse by construction.

2) the dual objective of BE-SVM (exact) tends to result in sparser solutions as mea-
sured by non-zero support vector coefficient (compare 5(a) with 5(b)). We believe the
main reason for this to be the modification of the eigenvalues as described in section 4.
Note however that in order to classify a new sample, its similarity to all training data
needs to be evaluated, irrespective of the sparsity of the BE-SVM solution (see equation
(11) in the paper). In this sense, the BE-SVM dual objective results in completely dense
solutions, similar to the primal BE-SVM objective. However, the solution can be made
sparse by construction, by reducing the basis set, similar to the case with the primal BE-
SVM objective. We do not demonstrate this here, mainly because our main focus is on
the (approximate) primal objective.

3) due to the definition of the (linear) kernel in BE-SVM (see equation (11) in the
paper), the solution of the BE-SVM has an inherent bias with respect to the (marginal)
distribution of class labels. In other words, the contribution of each class to the norm of
ϕ̃(.), and consequently to the value of K̃(., .), directly depends on the number of bases from
each class. Consequently, the decision boundary of BE-SVM is shifted towards the class
with less bases: compare the decision boundaries on the left sides of 5(a) and 5(b). The
centering step in normalization of BE-SVM (see equation (8) in the paper) helps alleviate
this to some extent (compare the decision boundaries in 5(b) and 5(c)). In experiments on
CIFAR-10 dataset, as the number of exemplars from different classes are roughly equal,
this did not play a crucial role.

We provide the following speculations for the observed difference between the perfor-
mance of kernelized SVM and BE-SVM. The solution of the kernelized SVM tends to
be more accurate for low noise scenarios (similar to the depicted case), where a smooth
function, as defined by the Gaussian RBF kernels, can separate the clean toy data with
a larger margin in comparison to the cases based on perturbed data. On the contrary, in
high noise scenarios, where the smoothness of the decision boundary is not particularly
optimal, BE-SVM tends to perform better. We observed this when experimenting with
the depicted 2D toy data. We need to point out that in higher dimensional cases, as is the
case with the HOG features with hundreds of dimensions, samples are further away from
each other, and the density is lower than it is in lower dimensional cases. In such cases,
kernelized SVM would result in better solutions than a BE-SVM based on a full basis set:
for a HOG cell size of 8 pixels, the performance of kernelized SVM based on one fold of
training set is .65 where BE-SVM results in an accuracy of .63 (see figures 1 and 4 in the
paper).

BE-SVM’s Normalizations

In this section, we quantitatively evaluate the normalization suggested for BE-SVM (8),
and compare it to a few other combinations. Particularly, we consider various normal-
izations of the HOG feature vectors, and similarly, various normalization schemes for the
empirical kernel map ϕ̃ (7). We consider the following normalizations:

• No normalization (Unnorm)
• Z-Scoring, namely centering and scaling each dimension by the inverse of its stan-

dard deviation (Z-Score)
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• BE-SVM normalization, namely centering and scaling all dimensions by the inverse
average `2 norm of the centered vectors (BE-SVM)

We report test performances for all combinations of normalizations for the feature vectors
and the empirical kernel maps, for two cases: 1) when C = 1, and 2) when the C parameter
is cross-validated from C = {10−1, 100, 101}. In both cases, |B| = 10 × 100 bases were
uniformly sub-sampled from the first fold of the training set (Indx basis selection described
in Section 3.4).

Figure 6 shows the performance of BE-SVM in combination with different normaliza-
tions of the feature vectors and empirical kernel maps, and for different similarity measures.
On top, reported numbers are for C = 1 while on the bottom, C is cross validated. It
can be observed that the BE-SVM’s normalization works best both for the feature and
empirical kernel map normalizations. Although z-scoring is more suitable for linear simi-
larity measures (compare BE-SVM + BE-SVM with Z-SCORE + BE-SVM in H4L, H8L,
H4(x,y) and H8(x,y)), overall BE-SVM’s normalization of the feature space works better
than the alternatives. Particularly, in single similarity measure cases, it seems that nor-
malizing the feature according to the BE-SVM’s normalization is more important than
normalizing the empirical kernel map. While the cross-validation of the C parameter
marginally affects the performance, it does not change the conclusions drawn from the
C = 1 case.

Figure 7 shows the performance of BE-SVM in combination with different normaliza-
tions of the feature vectors and empirical kernel maps, and for different combinations of
similarity measures (the sequence of greedily augmented similarity measuresM2: the set
of two resolution similarity measures described in Section 3.5). It can be observed that
BE-SVM’s normalization of the kernel map is much more important and effective when
combining multiple similarity measure (compare to Figure 6) .

These observations quantitatively motivate the use of BE-SVM’s normalization with
the following benefits, at least on the dataset we experimented on:

• It removes the need for cross-validation for tuning the C parameter, and mixing
weights for different similarity measures.

• As the feature vector is centered and properly scaled, the linear SVM solver con-
verges much faster than the unnormalized case, or when C >> 1.

• It results in robust learning of BE-SVM which can efficiently combine different sim-
ilarity measures i.e. RBF kernels (H8R), and linear deformable similarity measures
(H4(2,0), H4(0,1), H8(1,0)).

More Quantitative Analysis on CIFAR-10

Comparison of Nyström and BE-SVM Normalizations
Figure 8 shows accuracy of BE-SVM using different similarity measures and different basis
selection strategies; for various sizes of the basis set. It can be seen that the difference be-
tween the performances of Nyström and BE-SVM normalizations becomes less significant
for smaller basis set sizes, and more significant for larger ones. As argued in the paper,
the Nyström normalization tends to be better for low resolution PSD kernels (H8R and
H8L), but worse in other cases.
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Figure 6: Performance of BE-SVM for different normalization schemes of the feature
vector and the empirical kernel map, and different similarity measures. “F + K
(P)” in the legend reflects using F and K normalization schemes for the feature
vectors and the empirical kernel maps respectively, which results in the average
test performance of P (averaged over the similarity measures).
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Figure 7: Performance of BE-SVM for different normalization schemes of the fea-
ture vector and the empirical kernel map, and different combinations of similarity
measures. “F + K (P)” in the legend reflects using F and K normalization schemes
for the feature vectors and the empirical kernel maps respectively, which results
in the average test performance of P (averaged over the combinations of similarity
measures).
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Figure 8: Performance of various basis selection strategies for BE-SVM using var-
ious similarity measures for various sizes of the basis set. The figure is similar to
figure 2 in the paper, but with different basis set sizes.

Multiple Kernel Learning with PSD Kernels
We tried Multiple Kernel Learning (MKL) for kernelized SVM with PSD kernels. When
compared to sophisticated MKL methods, we found the following procedure to give com-
petitive performances, with much less training costs. Defining KC(., .) = αK1(., .) + (1−
α)K2(., .), our MKL approach consists of performing a line search for an optimal alpha
α ∈ {0, .1, . . . , 1} which results in best 5-fold cross validating performance. Using this
procedure, linear kernels were found not to contribute anything to Gaussian RBF kernels.
The optimal combination for high resolution and low resolution Gaussian RBF kernels
(K4R and K8R) resulted in a performance gain of less than 0.5% accuracy in comparison
to K8R. We founds this insignificant, and did not report its performance, considering the
fact that the number of parameters increases approximately 4 times using this approach.

Performance of Multiple Similarity Measures
Figure 9 shows the results of using multiple similarity measures with BE-SVM using the
same approach as described in section 3.5 of the paper. It can be observed that using
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Figure 9: Performance of BE-SVM using multiple similarity measures for various
sizes of the basis set. Results with dotted, dashed, and solid lines represent 1, 3,
and 5 folds worth of training data. See text for analysis.

(invariant) indefinite similarity measures can significantly increase the performance of
the model: compare the red curve with any other curve with the same line style. For
example, using all the training data and a two resolution deformable approach results in
8-10% improvements in accuracy in comparison to the best performing PSD kernel (H8R).
Furthermore, the two-resolution approach outperforms the single resolution approach by
approximately 3-4% accuracy (compare blue and black curves with the same line style).
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