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Introduction

I Quality of the training set → Test performance of classifiers

Low Quality Training Set High Quality Training Set

Correspondences are much clearer in the ‘High Quality’ set

I This work discusses sample selection for ensuring a desired (quantified) quality of the
training set
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Training Data and Test Performance

I Traditional training+test procedure for class C and classifier family M:

AP
(C)
M = τ (M(CTR), CTST )

I Semantics of the first order data describing measures proposed in [1]:

Measure Scale Semantic Measure Scale Semantic
µL Local Connectivity µS Semi-Global Lack of Variation
µG Global Intra-Class Variation µP Global Connected Variation

I Let µ(C) be a vector of some measures describing a (training/testing) set C:

AP
(C)
M ≈ fM

(
µ(CTR), µ(CTST )

)
I When µ(CTR) ≈ µ(CTST )

AP
(C)
M ≈ f̃M

(
µ(CTR)

)
f̃M(.) quantifies the quality of the training data.

I Implications:

1. Possible to model and analyze the behavior of different families of classifiers as a
function of various aspects of the training data

2. Improve the quality of the training set → Improve the test performance

Sample Selection

I Given a desired criterion g(µ), search for S ⊆ C which optimizes

s(S) = g
(
µ(S)

)
I Combinatorial → Resort to greedy optimization
I Consider two types of problems:

1. Fixed Cardinality:
SF = arg max

S⊆C
s(S) s.t. |S| = nf

2. Largest Set:
SL = arg max

S⊆C
|S| s.t. s(S) ≥ τ

Subsets that Maximize the Predicted Test Performance

I The test set cannot be visited → have to assume µ(CTST ) ≈ µ(CTR)

I Simplifying assumption: µ(S) ≈ µ(CTR), i.e. small modifications to the training set
I Largest Set + constraint: the predicted test performance should improve by εP:

τ = f̃M
(
µ(CTR)

)
+ εP

g
(
µ(S)

)
= f̃M

(
µ(S)

)
I Large εP invalidates our simplifying assumption.
I The assumption can be avoided by using a richer estimator fM

(
µ(CTR), µ(CTST )

)

Experiments

I (Fixed Cardinality) µP on Pascal VOC 2007
High µP Low µP
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I (Largest Set) Predicted AP on Pascal VOC 2007
(Worst Outliers) (Best Inliers)

Remove to gain 1% AP Remove to loose 1% AP

(Remove 25) APPred=59, AppxAPPred=52 (Remove 15) APPred=58, AppxAPPred=50

(Remove 97) APPred=56, AppxAPPred=55 (Remove 72) APPred=55, AppxAPPred=53

I Qualitatively, most gross outliers are either:

1. significantly truncated
2. significantly occluded
3. taken from a significantly low quality image, are noisy or too small
4. captured from viewpoints without enough “support” in the training set.

The latter is related to photographer and selection biases discussed in [2].

Conclusion

I Modelling test performance as a function of the training data enables us to devise
rules for selection of training data.

I Exemplars without enough “support” in the training set decrease global connectivity
µP, which was shown to be strongly correlated to the test performance [1]. Removing
such exemplars can be expected to make the data ‘cleaner’ [3] thereby improving test
performance.

I “Big Data” is not necessarily connected. Connectivity of the training data seems to
be too significant to ignore.
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