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Abstract

We propose a system for the automatic segmentation of
novelties from the background in scenarios where multiple
images of the same environment are available e.g. obtained
by wearable visual cameras. Our method finds the pixels
in a query image corresponding to the underlying back-
ground environment by comparing it to reference images of
the same scene. This is achieved despite the fact that all the
images may have different viewpoints , significantly differ-
ent illumination conditions and contain different objects -
cars, people, bicycles, etc. - occluding the background. We
estimate the probability of each pixel, in the query image,
belonging to the background by computing its appearance
inconsistency to the multiple reference images. We then,
produce multiple segmentations of the query image using
an iterated graph cuts algorithm, initializing from these es-
timated probabilities and consecutively combine these seg-
mentations to come up with a final segmentation of the back-
ground. Detection of the background in turn highlights the
novel pixels. We demonstrate the effectiveness of our ap-
proach on a challenging outdoors data set.

1. Introduction
A mobile surveillance system or a person with a wear-

able camera often moves in a geographically limited envi-
ronment over extended time periods. The problem of iden-
tifying the background pixels of a scene from this environ-
ment is an interesting and challenging one especially as the
background will vary and be partially occluded by differ-
ent temporary objects each time it is viewed. However,
the ability to perform such background/novelty detection
would greatly facilitate visual memory processing of wear-
able camera footage and the monitoring of areas with mo-
bile surveillance systems. In this paper we focus on wear-
able camera footage and propose a system for detecting
these temporary/novel objects in locations repeatedly vis-
ited by a person wearing a camera.

We consider images captured over time periods of days
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Figure 1. Our system takes as input a query image and multiple
reference images. We assume all these images are of the same
environment taken from approximately the same view point but at
different times. The algorithm segments out objects in the query
image which are not part of the environment. The bottom right
figure shows the computed segmentation.

and during this time both substantial nuisance and interest-
ing variations can occur in the environment. Given a query
image captured from a specific location on a certain day and
reference images captured from previous days at approx-
imately the same location, we aim to distinguish between
the novel and background pixels in the query image.

This is not a trivial task. All the images examined are
captured on different days and will have a potentially large
variation in their illumination and shading in combination
with relatively large variations in their viewpoints. And
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also in each image there will be different temporary objects
occluding the background. Therefore, it is not feasible to
build one clean background image and perform background
subtraction. We instead associate background pixels with
those which can be consistently and reliably matched to the
reference images. Our system has two main steps. The
first probabilistically classifies each pixel in query image
as background or not from appearance consistency features
extracted from dense correspondences to the reference im-
ages. While the second stage is two-class segmentation of
the query image guided by the output of the background
classification and consistency of image appearance. Note
that the system implicitly relies on the geometric constraints
that the query and stored images are captured from approx-
imately the same location.

This problem differs significantly from traditional prob-
lems of foreground background segmentation with station-
ary surveillance cameras where the main source of back-
ground variation is changes in illumination. Since we use
static images widely separated in time we cannot exploit
camera motion constraints as in [4]. Contrary to [14], our
images neither allow 3D modelling of the background nor
detailed geometric analysis [17] to be used. Our reliance
on appearance matching and two class segmentation allows
for robust exploitation of our highly varying background
images. The use of multiple static images contrasts with
segmentation methods using optical flow [1, 16] and al-
lows us to segment out novelty that is not necessarily fore-
ground with high disparity. Co-segmentation approaches
[7], though related, are not suitable due to the significant
appearance variations in the background - the object of con-
stant appearance for co-segmentation - across the images.

The main contribution of the paper is a robust and
generic novelty detection algorithm whose parameters are
automatically learnt from annotated data. This allows for
the detection of many time-varying scene components such
as people, cars... in a robust way that mimics the perfor-
mance of specifically designed object detection algorithms.

The organization of the paper is: In section 2 we intro-
duce our method for novelty/background segmentation, in
section 3 we quantitatively and qualitatively evaluate the
proposed method and we conclude the paper in section 4.

2. Foreground/Background Segmentation
As previously stated we have a set of reference images

and a query image taken of the same scene. All these images
have been captured at different times and relatively different
viewpoints. Our goal is to identify background pixels in the
query image. This is achieved by summarizing comparisons
of the query image to each reference image as follows:

1. Estimate the probability of each pixel not belonging
to background which we term the probability of nov-

elty from the dense correspondences found between
the query image and each reference image.

2. Produce multiple segmentations of the query image,
given the probabilities of novelty, by varying the pa-
rameter settings of the segmentation process.

3. Combine all the segmentations probabilistically to pro-
duce a final classification of the query image pixels.

We now describe each step in more detail.

2.1. Estimating the probability of novelty

Crucial to our algorithm’s success is the computation of
dense correspondences between the query image and each
reference image. Establishing such correspondences, when
each image has different parts of the scene occluded, is a
hard problem. In fact establishing correspondences and oc-
clusion estimation are closely related tasks - knowledge of
the image correspondences makes estimation of the occlu-
sions easier and vice versa.

Some authors have exploited this relationship by explic-
itly including occlusion estimation into their algorithms for
finding image correspondences [12]. As such formulations
usually rely on expectation-maximization like procedures,
they are usually more susceptible to local minima. There-
fore, occlusion estimation is usually ignored and more em-
phasis is instead put on imposing priors - such as smooth
displacement fields - when calculating correspondences.

In this work, we do not aim to solve for both occlusions
(which in our problem are mainly novelties) and the cor-
respondences simultaneously. Instead, we aim to deduce
the background pixels given some noisy correspondences
between images. We use SIFT Flow [9] to establish such
correspondences as we found it more robust to illumination
changes, occlusions and large displacements compared to
the methods we tried.

We first establish correspondences between the query
image Iq and each reference image Ir ∈ R where R is the
set of reference images. Then, we compute the following
features on each pixel of Iq using each Ir in turn:

Ierr
q,r,x = ‖Iq,x − Ir→q,x‖
Serr
q,r,x = ‖Sq,x − Sr→q,x‖ (1)

Herr
q,r,x =

∑
c

QCA
0.5 (H(Iq, x, c), H(Ir→q, x, c))

where

• Ii,x is the color (CIE Lab) of pixel x in image Ii,

• Si,x is the SIFT [10] computed at pixel x of Ii,

• H(Ii, x, c) is the histogram of channel c intensity val-
ues of the pixels inside a rectangular region centered



Properties of the Feature

Feature Source Neigh. Corr. Sens. Illum Inv.

Ierr Color 0 1 0
Serr Sift 1 1 1
Herr Hist 1 0 0,1

Table 1. Features used in the estimation of the probability of nov-
elty and their properties. Neigh. is 1 if the feature captures in-
formation in the neighborhood of a pixel. Corr. Sens. is 1 if the
feature is affected considerably by small errors in the correspon-
dences. Illum Inv. is 1 if the feature is invariant to illumination
changes. Different normalizations of Herr can make it sensitive or
invariant to illumination changes.

at pixel x in Ii and QCA
m(., .) is the distance between

two histograms computed using the Quadratic Chi ker-
nel with respect to the parameter m and the similarity
matrix A [13],

• Ir→q denotes image Ir warped towards Iq .

The measure Herr dubbed Normalized Bagged Similarity
measures neighborhood similarity of pixels similar to Nor-
malized Cross Correlation while unlike NCC it is invariant
to the ordering of the pixels and also, it can be made in-
variant to nonlinear transformations of the intensities using
proper histogram normalization techniques and proper sim-
ilarity matrices (see supplementary material). NBS can be
computed very efficiently by the use of Integral Histograms
and its computations can be parallelized very efficiently by
the use of GPUs. Table 1 describes the properties of the
features and Figure 2 shows the features evaluated on an
example case.

We compute these three measurement types at multiple
scales and stack the resulting feature vectors into F̄q,r,x. We
then compute for each pixel x at a fixed scale, the algebraic
mean, harmonic mean and minimum of each response in
F̄q,r,x with respect to the reference images Ir. The result-
ing feature vector, Fq,x, for each pixel in Iq is 78 dimen-
sional. This feature vector is used to estimate the probabil-
ity of novelty as follows.

We use logistic regression to map a pixel’s feature vec-
tor, Fq,x, to a scalar between 0 and 1 estimating the pixel’s
posterior probability of being not background. The parame-
ters of this regression function are learnt from our manually
annotated ground truth data (see Section 3) which provides
many pixel feature vectors and their associated labelling as
background or not. L2 regularization is imposed during
learning and LibLinear [6] is used to ensure training takes
a reasonable time given the large number of training ex-
amples examined (approximately 3 million) which are col-
lected by sub sampling the data every 6th pixel in each di-
rection. In the rest of this paper, we refer to the results of

this logistic regression (the probability of novelty) evaluated
at pixel x in the image i with P̃i(x). Figure 4 (top left) de-
picts a typical evaluation of P̃ on a query image.

2.2. Segmenting out the background

Using the estimated probability of novelty P̃ , we iter-
ate between segmentation of the query image’s pixels into
background and novel regions and updating our models de-
scribing the features associated with the background and
novel pixels. We do this in a manner similar to Grab Cut
[15]. An important difference, though, is that we initialize
our foreground and background models automatically from
the probability maps indicated by P̃ . This iterative process
can be viewed as a variant of Expectation Maximization.

For the maximization step, we use an energy minimiza-
tion approach to segment the images into novelty and back-
ground regions. We use Graph cuts [8, 2, 3] to perform the
minimization as we use an appropriate energy function in
the popular form of a sum of unary and pairwise terms.

E(l) =
∑
x∈X

Dx(lx) + λ
∑

(x,y)∈N

Vx,y(lx, ly) (2)

where l is a binary labelling assigning each pixel x ∈ X a
label lx ∈ {0, 1}. Here Dx(lx) is the data term and deter-
mines the cost of assigning the label lx to pixel x in image
I . N is the set of pairs of neighbouring pixels (8 connectiv-
ities) and Vx,y(lx, ly) is the pairwise smoothness (regular-
ization) term and determines the cost of assigning different
labels to neighbouring pixels x and y.

A popular choice of the smoothness term is the Ising
prior weighted by some dissimilarity measure to relax the
smoothness constraint at image discontinuities. We utilize
a similar approach and use a parallelized version [5] of the
gPb detector [11] - which utilizes GPUs to estimate the
boundaries of objects in natural images - to encourage the
cut to go through those boundaries. Therefore, our pairwise
term is

Vx,y(lx, ly) =
1

‖x− y‖
[lx 6= ly] e−

|IB(x)−IB(y)|2

2σ2 (3)

where [.] is the Iverson bracket and IB(x) denotes the re-
sponse of the gPb detector at pixel x.

We define the data term to be

Dx(lx) = − logP (lx | fx) (4)

where fx is a feature descriptor of the pixel x and P (lx | fx)
represents the posterior probability of label lx (novelty or
background) conditioned on observing feature fx. More de-
tails of how we estimate this posterior probability are now
given.

Let l(t) represent the current best estimate of the pixel
labellings. Define X (t)

k = {x | l(t)x = k} for k ∈ {0, 1} to
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Figure 2. The features used to calculate the probability of novelty P̃ for pixels in the query image Iq when compared to a reference image
Ir . Ir→q is Ir warped towards Iq using SIFT Flow. The corresponding pixels of Iq and Ir are then compared via Ir→q as in equation (1).

be the set of pixels with label k according to labelling l(t).
For the expectation step, we collect some statistics about the
distribution of some features in Iq conditioned on the cur-
rent estimate of the segmentation1. The features we use for
the segmentation are (a subset of) the color, a dimension-
ality reduced version of the sift feature vector (to 3 dimen-
sions) and the position of each pixel. We use Kernel Density
Estimation to estimate the likelihood P (fx | lx)

P (fx | lx) =
1

|X (t)
lx
|hd

∑
y∈X (t)

lx

K

(
fx − fy

h

)
(5)

where d is the dimensionality of the fx (8 in case of all 3
features), h is the bandwidth(window width) and K(µ) is
the multivariate Gaussian density function with identity co-
variance matrix evaluated at µ. Whitening the feature data
is performed before any likelihood computations are made.
We sub-sample the pixels on a fixed grid, evaluate a homo-
geneous KDE on the same subset of pixels and use bilinear
interpolation to estimate the likelihood maps on all pixels.
The KDE evaluation is quadratic in the number of (sub sam-
pled) pixels and can be parallelized very efficiently by the
use of GPUs. Evaluating the likelihood maps at each itera-
tion takes around 1 second on an NVIDIA GTX 470 for a
sub sampling of once every 3 pixels in both directions.

To convert the estimated likelihoods to posteriors, based
on P̃ , we consider three types of class priors for each pixel:
a uniform prior (PH ) and two spatially varying priors (PSF

and PS). Table 2 shows the details of these priors. The prior
PSF allows more deviation from the relatively noisy prob-
ability estimates in P̃ compared to PS which strictly pro-
motes the segmentation suggested by P̃ . Note the way we
define the posterior is different to [1] as we do not marginal-
ize over model parameters but instead use a pixelwise prior
computed from P̃ . We then, use the negative log of the pos-
terior P (lx | fx) ∝ P (fx | lx)P (lx) as the data term:

Dx(lx) = − log (P (fx | lx)P (lx)) + logZx (6)

1In the first iteration, we collect statistics only from the pixels whose P̃
is more than a desired margin m0 away from 0.5. This way, we can collect
the initial statistics about segments with the desired level of certainty and
avoid collecting statistics from uncertain regions if m0 > 0.

Prior name P (lx = 1) ∝ P (lx = 0) ∝

PH
∑

x P̃ (x)
∑

x(1− P̃ (x))

PSF P̃ (x) 1

PS P̃ (x) 1− P̃ (x)

Table 2. The three types of priors used for the labelling of a pixel.

Figure 3. Segmentation results with different class priors: from top
left to bottom right: initializing with m0 = 0.1 and segmentation
results using PH , PSF and PS class priors. In the figure illus-
trating the initialization, regions inside blue and red boundaries
represent initial estimates of background and novelty regions. The
margin m0 = 0.1 > 0 on P̃ (refer to Figure 4) leads to gaps
between the regions.

where the normalization factor is

Zx =
∑

k∈{0,1}

P (fx | lx = k)P (lx = k) (7)

Figure 3 shows the different segmentations achieved using
the different priors PH , PSF and PS on the pixel labels.
In this example the parameters were set to m0 = 0.1, λ =
5, h = 0.5 and each fx was composed of pixel x’s color,
dimensionality reduced sift representation and its position.
We iterate between the expectation and maximization steps
until the solution converges for a maximum of 25 iterations.



2.3. Combining Multiple Segmentations

The segmentation process of the previous section will
converge to a stable segmentation. However, the final seg-
mentation achieved will greatly depend on the setting of the
explicit and implicit parameters in the energy function de-
fined in equation (2). The explicit parameter corresponds to
the regularization parameter λ, while the implicit parame-
ters include the initialization margin m0, the bandwidth of
the KDE h in the likelihood function P (fx | lx), the features
extracted to define fx and the prior used in the calculation
of the posterior P (lx | fx). For clarity let S = {λ, h, . . .}
denote the set of all the parameters which influence the seg-
mentation process and s a vector containing the values as-
signed to each parameter in S.

The question then is which s should we use when we seg-
ment a new image? We could potentially use the s which
optimizes performance on a validation set. However, the
choice made in this way will be highly influenced by the
images in the validation set and how performance is mea-
sured and also the best parameter setting can vary drasti-
cally across individual images. Ideally, we want to perform
multiple segmentations, corresponding to s1, . . . , sK , and
aggregate the results. One drawback of this approach is the
extra computational cost if K segmentations must be per-
formed and this becomes computationally impractical for a
large K. Another issue is how to aggregate the results.

We propose the following solution. We start with a large
pool {s1, . . . , sK} of parameter settings (K = 50 in the
experiments). Each image in our training set is segmented
K times, once for each sk. Then for a pixel x in a training
image we get a binary vector of length K whose kth en-
try is lx and lx is its labelling returned by the segmentation
process with parameter setting sk. We then, learn a logistic
regression function with L1 regularization which maps this
binary vector to a probabilistic estimate of its ground truth
labelling. The parameter controlling the regularization, in
the regression learning, is set to ensure a sparse solution is
found. An immediate consequence of this sparse solution is
that only a small proportion of the originalK segmentations
need to be computed when a novel image is encountered.
We denote the evaluation of this learnt logistic function on
image i at pixel x with P̂i(x). The top right image of 4
shows an example of a computed P̂ (x).

The final segmentation of the query image is found by
minimizing an energy function similar to 2 but with the data
term based on P̂ :

D̂x(lx) =

− log
(

1− P̂ (x)
)

if lx = 0

− log
(
P̂ (x)

)
if lx = 1

(8)

We use Graph Cuts to minimize this energy globally2. The

2This minimization step is not iterated as the data term is fixed.

Figure 4. Evaluating the logistic regression function P̂ combining
multiple segmentation results and the final segmentation acquired
from P̂ . From top left to bottom right: P̃ , P̂ , final segmentation
and the ground truth labelling.

bottom left image of Figure 4 shows the final segmentation
found for a query image.

3. Experiments

3.1. Data Set

Our data set consists of 12 images of 12 different places
making a total of 12 × 12 = 144 images. Figure 5 shows
3 images of one of the places from our data set. Note that
as the images of the same place were captured on differ-
ent days, they contain significant (non-linear) changes in
lighting conditions - strong shadows and bright regions ap-
pear and disappear and occlusions and viewpoints change
between images.

The definition of novelty depends on the memory we pro-
vide the system i.e. which images are used as reference im-
ages to detect novelties in a query image. But it also, from
the design of our system, depends on the manual annota-
tions we provide for training. However, an accurate annota-
tion is very expensive to obtain manually and is subject to
choices made by the annotator. Annotators were not given
strict rules but were simply asked to annotate what they
thought was not a part of the environment in disjoint subsets
of images. They did not consider what actually changes in
the other images in our data set. Therefore, we do not have
entirely consistent annotations that strictly follow objective
rules: in some annotations, we have strong shadows labeled
as novelty while in some cases, some parts of the environ-
ment that appear multiple times at the same physical place
are labeled as novelty. While it is impossible for any algo-
rithm to agree completely with the ground truth, we expect a
reasonable algorithm to statistically agree with the majority
of the annotations.



Figure 5. Three images of the same place from our data set and the ground truth labeling of the last image. Note the variation in lighting
conditions, strong shadows, occlusions and changes in viewpoints.

In the following evaluations, we divide our images into
training and testing sets, use the training set to fit our models
and to cross validate its parameters and we report the results
on the testing set.

3.2. Estimating the probability of novelty

Figure 6 (left) shows the results of using different com-
bination of features in computing P̃ . The beginning capital
letters in the figure denote which features are used e.g. I
denotes the Ierr measure and ISH refers to the combination
of Ierr, Serr andHerr. The subsequent letter refers to a single
scale ”s” or a multi scale ”m” version of the mentioned fea-
tures. The final letters after the ”-” sign (”a”, ”h” and ”m”
) refer to the aggregation function applied to different pair-
wise error measures (the algebraic mean, harmonic mean
and the minimum respectively).

It can be observed that by taking the minimum of the
most basic measure, Ierr, over 5 different reference images
Is-m, the Average Precision (AP) of 41.2 can be achieved.
By including more aggregating functions, the harmonic and
algebraic means, the AP improves to 43.8 Is-ahm while
by considering the multi scale version of the same measure
Im-m, the AP improves considerably to 62.9. Using a multi
scale version of the same feature Ierr with multiple aggrega-
tion Im-ahm function achieves an AP of 66.8. Therefore,
we use multiple aggregations and multi-scale versions of
the features in the remaining part of the evaluations.

To evaluate the contribution of each feature, we report
the performance measure when the feature is removed from
the feature pool: in order to evaluate the contribution of
Ierr measure, we report the performance of SHm-ahm and
compare it to a logistic regression based on all three mea-
sures ISHm-ahm with an AP of 70.4. We expect features
with more information to have more contribution to the per-
formance of ISHm-ahm. Therefore, the results suggest
that the Herr measure contains more information than the
other two: AP of 68.5 for ISm-ahm compared to 69.9 for
SHm-ahm and 69.1 for IHm-ahm. For the rest of the evalu-
ations, we use the entire feature pool (78 dimensions) unless
stated otherwise.

Figure 6 (middle) shows the results of using a different
number of reference frames to compute P̃ . Using only one

Parameter Settings

Feature h λ m0 P (lx) log Acc

CSP 0.66 10 0.4 PSF 1 91.86
CSP 0.5 1 0.4 PSF 0 91.76
CSP 0.5 10 0.3 PSF 1 91.75
CSP 0.66 10 0.4 PSF 0 91.72
CSP 0.5 1 0.3 PSF 0 91.71
CSP 0.75 10 0.4 PSF 1 91.69
CSP 0.5 0.5 0.3 PSF 0 91.67
CSP 0.5 10 0.2 PSF 1 91.56
CSP 1 10 0.4 PSF 1 91.50
CSP 0.5 5 0.1 PSF 1 91.43

Table 3. Evaluation of different parameter settings for the segmen-
tation process. The pixel-wise accuracy of the 10 best performing
settings are presented. Compare with the accuracy of thresholding
P̃ (the initialization for the segmentations) at 0.5 : 90.64.

reference frame (one pairwise comparison) results in an AP
of 43.9 while increasing the number of reference frames in-
creases performance. Due to computational issues we do
not consider using more than 5 reference frames (AP of
70.4) but the figure suggests that increasing the ”memory”
of the system i.e. by increasing the number of reference
images compared to a query image, the performance of the
system increases.

3.3. The Segmentation Method

Table 3 shows quantitative evaluation of the segmenta-
tion step using the 10 best performing parameter settings
from the 50 we tried where best is defined relative to the
pixel-wise accuracy measure. From the results the fol-
lowing observations can be made. All the three feature
measurement types used in the KDE likelihood computa-
tions have a positive role in improving the segmentation.
One should avoid using information from uncertain regions
(m0 > 0) when initializing the likelihood model and that
PSF performs better than the other two priors imposed on
the pixel label.

It should be emphasized here that our annotations do
not match the data exactly. Large brush strokes were used
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Figure 6. Quantitative evaluation of the individual pixel classifier. The effect of using different features and different combinations of
features (left), the effect of using a different number of reference frames (right) and the final probability measure P̂ combining multiple
segmentations and P̃ using 5 reference frames.

to manually label the novelties, therefore our annotations
over-estimate the extent of the true novelties. Our annota-
tions therefore agree more with smoother and slightly over
extended estimations. Therefore, by fitting boundaries of
the segmentation to their exact locations, we have proba-
bly decreased the accuracy measure compared to a slightly
over extended estimation! This probably accounts for the
small quantitative improvements in accuracy and AP mea-
sures over the estimations achieved by thresholding P̃ .

3.4. Combining Multiple Segmentations

Figure 6 (right) shows a quantitative evaluation of the
combination of multiple segmentations approach. The fig-
ure presents the results for combinations of P̃ with different
segmentations using different priors. The L2 [26] refers to
an L2 regularized logistic regression fitted to 25 of the best
performing parameters, L2 G[x] to the greedy selection of x
out of the best 8 and L1 [x] to an automatic feature selection
of x features using L1 regularization.

It can be observed that the suggested approach efficiently
combines different segmentations (compare P̃ with the rest)
and that L1 regularization based feature selection outper-
forms the greedy approach for the same level of sparsity
in the solution (compare L1 [8] and L1 [9] with L2 G[8]
and L2 G[6]). In summary, we can achieve more than 3.5
percent increments on the AP measure by combining mul-
tiple segmentations. However, the argument we made ear-
lier about the over-extension of the ground truth labelling
still holds here and therefore, we believe the true gain to be
greater than is reflected in these numbers.

4. Discussions and Conclusions
Figure 7 shows some qualitative results of our method.

While most of the results are quite compelling and convinc-
ing, some depict the limitations of the method. In partic-
ular, as is the case with any correspondence method, large
homogeneous regions cause problems as they are ambigu-

ous to register. While our method can overcome incorrect
established correspondences to a reasonable extent, the al-
gorithm will have difficulty in detecting novel textureless
segments occluding textureless background regions if the
wrong correspondences are established consistently across
different reference images. This probably accounts for most
of the missed novelties.

Although our method is robust to illumination and mod-
erate view point changes, it cannot cope with large changes
in the appearance such as strong textures induced by strong
shadows. However, as more reference images are added to
the system e.g. with the passage of time in wearable sys-
tems, scenes will be represented under various illumination
conditions and view points and this issue will become less
important. Figure 6 (middle) provides evidence for this ar-
gument.

In conclusion, we presented a system which uses mul-
tiple images of the same environment captured at differ-
ent times, viewpoints and lighting conditions to implicitly
learn a background model and segment out the novel ob-
jects. As for future work, it would be interesting to also
consider temporal information and to consider an extra con-
straint of consistency across different view points. Using
such an approach, we would be able to explicitly learn the
underlying 3D model and its projection in each view point,
which would allow us to make a dense 3D model of the en-
vironment and to automatically remove the novelties, and
fill them in with the learnt background model.
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