Novelty Detection from Wearable Cameras

Omid Aghazadeh, Stefan Carlsson, Josephine Sullivan

Computer Vision Group, KTH Stockholm, Sweden

June 2012

Daily recordings from a wearable camera

Our captured dataset

Deviations from repeated daily activity (manual labelling)

Register Query sequence to a Reference sequence

Given a query sequence and a reference sequence:

- For each frame in the query sequence compute its similarity to all the frames in the reference frame.
- **2** Use a score based on *Bag Of Features* model.
- **3** Then use **dynamic time warping** to find the best temporal registration between the two sequences.

red curve is the minimum-cost temporal alignment

Register Query sequence to a Reference sequence

- BOF similarity score is not sufficiently strong to produce good results.
- 2 Better results if one uses a similarity score using inliers from epipolar matching. But this is too expensive.
- **3** Apply it to the *k*NN of each query frame in the reference sequences using BOF model.

Match costs and novelty detection

- Minimum match energy(top)
- Detected novelties (bottom)

Novelty detection result

- Minimum match energy(top)
- Detected novelties (bottom)

Novelty - Background separation

Register a reference and a query image using SIFT Flow

Query image: I_q

Reference image: I_r

Warped Reference image: $I_{r \rightarrow q}$

Compare registered images: Color

 I_q

 $I_{r \to q}$

 $I_{q,r,x}^{\mathsf{err}} = \left\| I_{q,x} - I_{r \to q,x} \right\|$

 $I_{i,x}$ is the color of pixel x in image i.

Compare registered images: **SIFT**

 $I_q \qquad \qquad I_{r \to q} \qquad \qquad S_{q,r,x}^{\rm err} = \|S_{q,x} - S_{r \to q,x}\|$

 $S_{i,x}$ is the SIFT feature vector computed at pixel x in image i.

Compare registered images: NBS

- $H_{i,c,x}$ is the histogram of channel c intensity values from a patch centred at pixel x in image i.
- $QC(\cdot, \cdot)$ is the Quadratic Chi distance between two histograms.

Compare registered images

For each pixel x in I_q (when compared with I_r) stack these features to get

$$F_{q,r,x} = \begin{pmatrix} I_{q,r,x}^{\text{err}} \\ S_{q,r,x}^{\text{err}} \\ H_{q,r,x}^{\text{err}} \end{pmatrix}$$

Compare Query Image to all Registered Images

- Have a set of reference images $\{I_r\}_{r=1}^R$.
- For each $I_{r \to q}$ compute $F_{q,r,x}$.
- At pixel x in I_q , aggregate the responses across different reference images by computing the
 - 1 algebraic mean
 - 2 harmonic mean
 - 3 minimum

of the responses, to obtain the feature vector $F_{q,x}$

Probability of Novelty

• Use Logistic Regression to learn a mapping

 $g: \mathbb{R}^d \to [0,1] \quad \text{s.t.} \quad g(F_{q,x}) \approx P(x \text{ is a novel pixel} \, | \, I_q, \{I_r\})$

• Mapping learnt from manually annotated ground truth data.

Probability of Novelty thresholded

Compute query image feature descriptors

For every pixel x in the image extract a feature f_x based on its

- colour
- SIFT descriptor (PCA to 3 dims)
- position

Improve the segmentation via Graph Cuts

• Given an initial segmentation $l^{(0)} = \{l_x^{(0)}\}$

use kernel density estimation to estimate $p(f_x|l_x)$ as $\hat{p}_0(f_x|l_x)$ for both the background and foreground cases.

Improve the segmentation via Graph Cuts

• Use graph cuts to optimize

$$E(l) = \sum_{x \in \mathcal{X}} D_x(l_x) + \lambda \sum_{(x,y) \in \mathcal{N}} V_{x,y}(l_x, l_y)$$

where

$$D_x(l_x) = -\log(\hat{p}_0(f_x|l_x)) - \log(P(l_x)) + \log Z_x$$

and

$$V_{x,y}(l_x, l_y) = \begin{cases} \frac{1}{\|x-y\|} e^{-(I_B(x) - I_B(y))^2/(2\sigma^2)} & \text{if } l_x \neq l_y \\ 0 & \text{if } l_x = l_y \end{cases}$$

Iterate until convergence

1 Perform the maximization step

$$l^{(i+1)} = \arg \max_{l} \sum_{x \in \mathcal{X}} D_x(l_x) + \lambda \sum_{(x,y) \in \mathcal{N}} V_{x,y}(l_x, l_y)$$

where

$$D_x(l_x) = -\log(\hat{p}_i(f_x|l_x)) - \log(P(l_x)) + \log Z_x$$

2 Update the kernel density estimates $\hat{p}_{i+1}(f_x|l_x)$ using the new labelling $l^{(i+1)}$.

Final Segmentation

Final Segmentation

Final Segmentation

