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» Quality of the training set — Test performance of classifiers

» Correlation of the measured moments to the reference methods

Low Quality Training Set High Quality Training Set f D4 D5/RT/RT10! E |CF[LHSL mean| min
ns 71 70 71 75 68 71 68 | 705 67.5
1 -715-73 -74 -80 |-74 -75 -71  -74.6 -71.1
11,88 8586 90 |90 86 85 | 87.2  85.0
up 9089 89 93 '90/90 87 89.6 87.1

» Test performance prediction based on all reference methods

Criterion \ v.m; ms mg mp mp; mgg ms; mgp mysgp, n | 1
103RMSE 79 86 77 63|64 80 80 ©2 65 171 159
Corrto AP 87 84 89/88/ 89 88 86 92 92 -82 -97

iction using global measures
[APPred] mae to RT=4, LH=4, CF=4, RT10=4, D4=5, D5=7, E=7

» Test performance prec

» This work attempts to quantify the quality of the training set |
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Visual Structural Similarity

» Pairwise Visual Structural Similarity measure (Ky i [1])
Ky (x; ) = max min (E;(x), Ei(y))

max {]. + eXP(_Oéi(Wi ' (D(Xa Z) o /yi))}_l
z€Z(x)

» Feature selection via discriminative reasoning

E,‘(X)

_ o o _ S | » Test performance prediction specific to each reference method
» Measuring affinity of positives — negatives modelled implicitly via

discriminative reasoning : D4 D5 RT RT100 E | CF LHSL
10c- MAE 45 53 35 33 42 36 4.0
Corr 189.7/92.3/93.3/ 93.6 89.5 93.7 89.6

Multi Scale Data Describing Measures

» Sampling according to Local Connectivity

» Local scale: measures similarity to nearest neighbors Low Connectivity High

1
=75 2_ie maxp s K(pis pj)
» Semi-Global scale: measures similarity between all positive pairs
ps =5 > o> K(pi, p))

» Global scale: links multiple local steps to measure global similarity
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> Construct a full graph with w; =1 — K(p;, p;) and find the shortest path
between all pairs

> De(pi, pj) and Pg(pi, pj): cost and length of the shortest path.

> 16 = 3 i1 21 Delpiypy) and pp = 25 371 370 Pe(pi, pj)

» Semantics of the first order moments
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Predicting Test Performance

Conclusions

» T he data describing measures quantify the quality of the training set

raditional training+test procedure:
AP = 7 (M(Crg), Crs7)

» Assumption: training set and test set are outcomes of the same distribution
» Let 1(C7®) describe the training set:

AP\ = f\, (u("m)) + €7

» Big Connected Data might rectify the effects of intra-class variation
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» Assume a sigmoid shape for f-

fr(wr;v) = (1 +exp {—W7Tz"})_1

» Learn the parameters of fz via regression
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