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Introduction

I Quality of the training set → Test performance of classifiers

Low Quality Training Set High Quality Training Set

I This work attempts to quantify the quality of the training set
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Visual Structural Similarity

I Pairwise Visual Structural Similarity measure (K E
MMI [1])

K E
MMI(x , y) = max

i
min (Ei(x),Ei(y))

Ei(x) = max
z∈Z(x)

{1 + exp(−αi(wi · Φ(x , z)− γi))}−1

I Feature selection via discriminative reasoning
I Measuring affinity of positives → negatives modelled implicitly via

discriminative reasoning

Multi Scale Data Describing Measures

I Local scale: measures similarity to nearest neighbors
µL = 1

n

∑n
i=1 maxpj 6=pi K (pi , pj)

I Semi-Global scale: measures similarity between all positive pairs
µS = 1

n2

∑n
i=1

∑n
j=1 K (pi , pj)

I Global scale: links multiple local steps to measure global similarity
. Construct a full graph with wij = 1− K (pi , pj) and find the shortest path

between all pairs
. DG(pi , pj) and PG(pi , pj): cost and length of the shortest path.
. µG = 1

n2

∑n
i=1

∑n
j=1 DG(pi , pj) and µP = 1

n2

∑n
i=1

∑n
j=1 PG(pi , pj)

I Semantics of the first order moments

Measure Scale Semantic Measure Scale Semantic
µL Local Connectivity µS Semi-Global Lack of Variation
µG Global Intra-Class Variation µP Global Connected Variation

Predicting Test Performance

I Traditional training+test procedure:

AP
(C)
M = τ (M(CTR), CTST)

I Assumption: training set and test set are outcomes of the same distribution
I Let µ(CTR) describe the training set:

AP
(C)
M = f̃M

(
µ(CTR)

)
+ εf̃M

I Assume a sigmoid shape for f̃ :

f̄R(wR; v) =
(

1 + exp
{
−wT

Rv
})−1

I Learn the parameters of f̄R via regression

Results

I Correlation of the measured moments to the reference methods

f D4 D5 RT RT10 E CF LHSL mean min
µS 71 70 71 75 68 71 68 70.5 67.5
µG -75 -73 -74 -80 -74 -75 -71 -74.6 -71.1
µL 88 85 86 90 90 86 85 87.2 85.0
µP 90 89 89 93 90 90 87 89.6 87.1

I Test performance prediction based on all reference methods

Criterion \ v mL mS mG mP mPL mSG mSL mGP mLSGP n 1
103 RMSE 79 86 77 63 64 80 80 62 65 171 159
Corr to AP 87 84 89 88 89 88 86 92 92 -82 -97

I Test performance prediction using global measures
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I Test performance prediction specific to each reference method

D4 D5 RT RT10 E CF LHSL
102 MAE 4.5 5.3 3.5 3.3 4.2 3.6 4.0

Corr 89.7 92.3 93.3 93.6 89.5 93.7 89.6

I Sampling according to Local Connectivity

Low Connectivity High Connectivity Low Connectivity High Connectivity

Conclusions

I The data describing measures quantify the quality of the training set
I Big Connected Data might rectify the effects of intra-class variation
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