

Properties of Datasets Predict the Performance of Classifiers

Omid Aghazadeh Stefan Carlsson

Computer Vision and Active Perception laboratory, Stockholm, Sweden

Introduction

 \blacktriangleright Quality of the training set \rightarrow Test performance of classifiers

Results

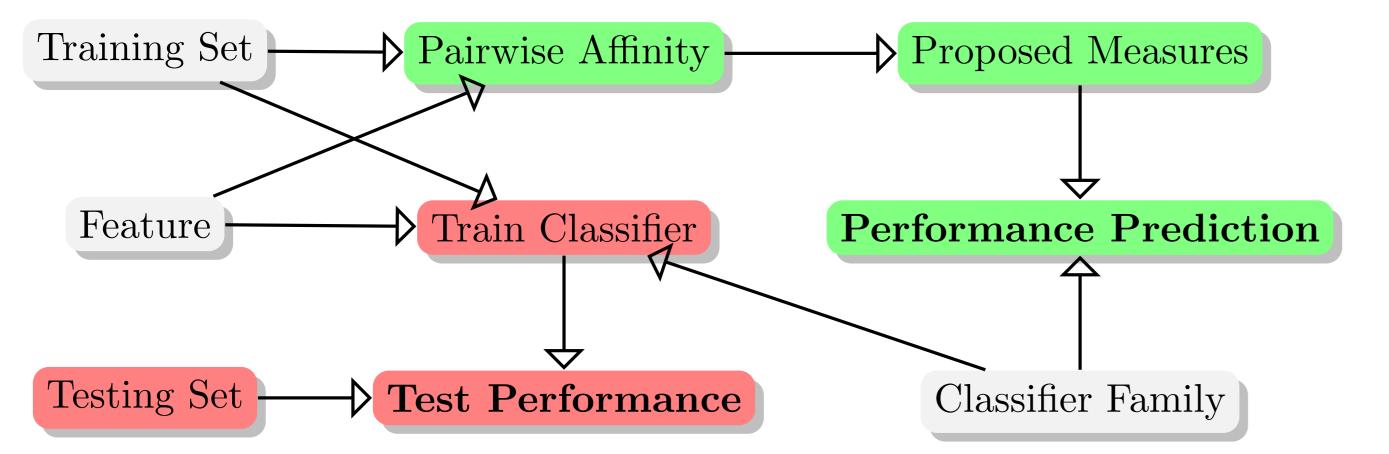
Correlation of the measured moments to the reference methods

f	D4	D5	RT	RT10	Е	CF	LHSL	mean	min
μ_{S}	71	70	71	75	68	71	68	70.5	67.5
μ_{G}	-75	-73	-74	-80	-74	-75	-71	-74.6	-71.1
μ_L	88	85	86	90	90	86	85	87.2	85.0
μ_P	90	89	89	93	90	90	87	89.6	87.1

Test performance prediction based on all reference methods

$Criterion \setminus \mathbf{v}$	mL	m <i>s</i>	m _G	\mathbf{m}_P	m _{PL}	m _{SG}	m _{SL}	m _{GP}	m _{LSGP}	п	1
10 ³ RMSE	79	86	77	63	64	80	80	62	65	171	159
Corr to AP	87	84	89	88	89	88	86	92	92	-82	-97

This work attempts to quantify the quality of the training set

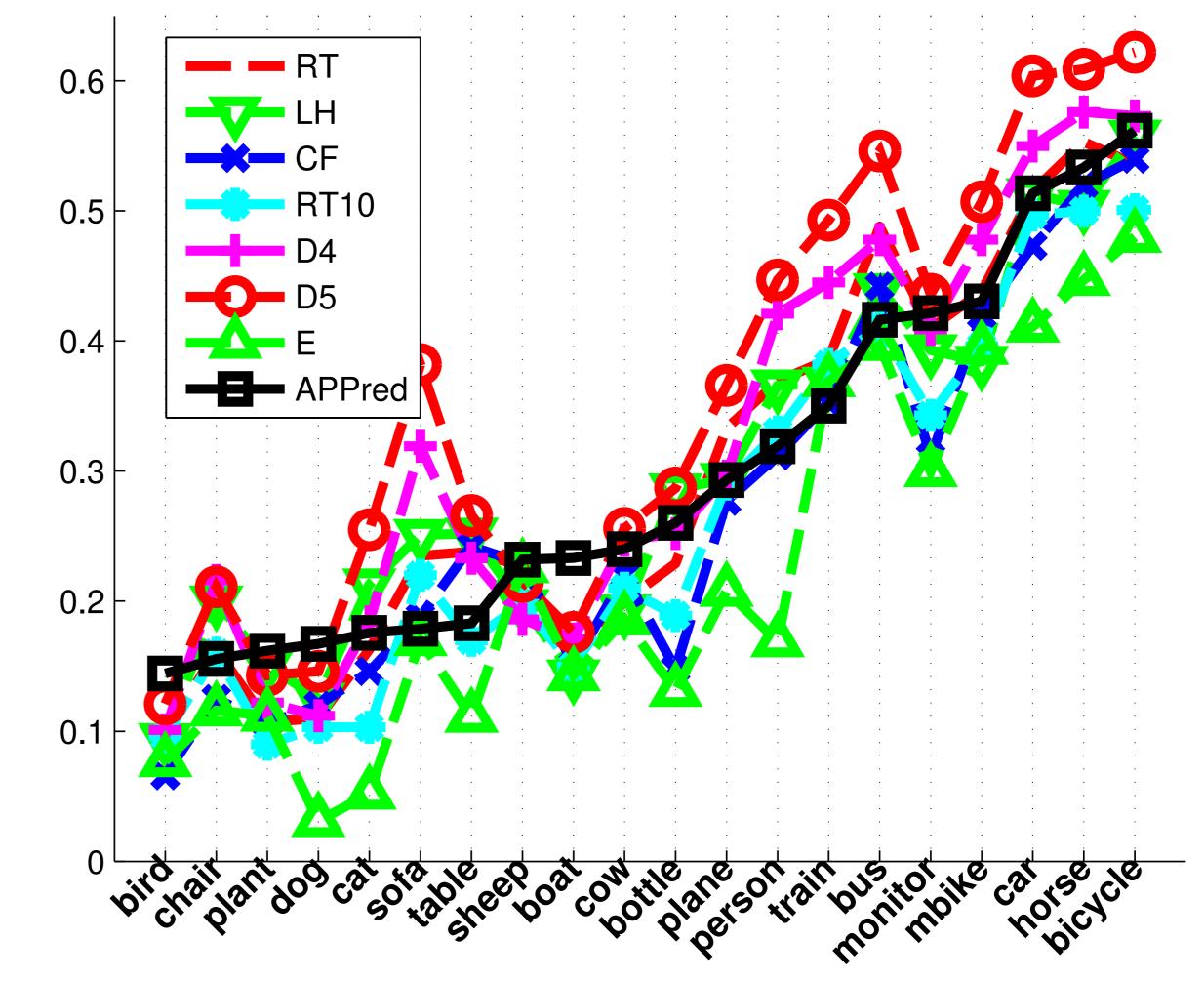


Visual Structural Similarity

- Pairwise Visual Structural Similarity measure (K^E_{MMI} [1]) $K_{\text{MMI}}^{E}(x, y) = \max \min (E_{i}(x), E_{i}(y))$ $E_i(x) = \max_{z \in \mathcal{Z}(x)} \left\{ 1 + \exp(-\alpha_i (\mathbf{w}_i \cdot \Phi(x, z) - \gamma_i)) \right\}^{-1}$ Feature selection via discriminative reasoning

Test performance prediction using global measures

[APPred] mae to RT=4, LH=4, CF=4, RT10=4, D4=5, D5=7, E=7



- Test performance prediction specific to each reference method
- \blacktriangleright Measuring affinity of positives \rightarrow negatives modelled implicitly via discriminative reasoning

Multi Scale Data Describing Measures

- Local scale: measures similarity to nearest neighbors $\mu_L = \frac{1}{n} \sum_{i=1}^n \max_{p_i \neq p_i} K(p_i, p_j)$
- Semi-Global scale: measures similarity between all positive pairs $\mu_{S} = \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} K(p_{i}, p_{j})$
- Global scale: links multiple local steps to measure global similarity \triangleright Construct a full graph with $w_{ii} = 1 - K(p_i, p_i)$ and find the shortest path between all pairs
- $\triangleright D_G(p_i, p_j)$ and $P_G(p_i, p_j)$: cost and length of the shortest path. $\triangleright \mu_G = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n D_G(p_i, p_j) \text{ and } \mu_P = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n P_G(p_i, p_j)$ Semantics of the first order moments

Measure	Scale	Semantic	Measure	Scale	Semantic
μ_L	Local	Connectivity	$\mu_{\mathcal{S}}$	Semi-Global	Lack of Variation
$\mu_{{\sf G}}$	Global	Intra-Class Variation	μ_{P}	Global	Connected Variation

	D4	D5	RT	RT10	E	CF	LHSL
10 ² MAE	4.5	5.3	3.5	3.3	4.2	3.6	4.0
Corr	89.7	92.3	93.3	93.6	89.5	93.7	89.6

Sampling according to Local Connectivity

Low Connectivity High Connectivity Low Connectivity High Connectivity

Predicting Test Performance

Traditional training+test procedure:

 $AP_{\mathcal{M}}^{(\mathcal{C})} = \tau \left(M(\mathcal{C}_{TR}), \mathcal{C}_{TST} \right)$

Assumption: training set and test set are outcomes of the same distribution Let $\mu^{(\mathcal{C}_{TR})}$ describe the training set:

$$\mathsf{AP}_{\mathcal{M}}^{(\mathcal{C})} = \tilde{f}_{\mathcal{M}}\left(\mu^{(\mathcal{C}_{TR})}\right) + \epsilon_{\tilde{f}_{\mathcal{M}}}$$

Assume a sigmoid shape for \tilde{f} :

$$ar{f}_{\mathcal{R}}(\mathbf{w}_{\mathcal{R}};\mathbf{v}) = ig(1 + \expig\{-\mathbf{w}_{\mathcal{R}}^{\mathcal{T}}\mathbf{v}ig\}ig)^{-1}$$

 \blacktriangleright Learn the parameters of $f_{\mathcal{R}}$ via regression

Conclusions

The data describing measures quantify the quality of the training set Big Connected Data might rectify the effects of intra-class variation

References

O. Aghazadeh, H. Azizpour, J. Sullivan and S. Carlsson. Mixture Component Identification and Learning for Visual Recognition, ECCV, 2012.

A. Torralba and A. A. Efros. Unbiased Look at Dataset Bias, CVPR, 2011.

X. Zhu, C. Vondrick, D. Ramanan and C. C. Fowlkes. Do we need more training data or better models for object detection? BMVC, 2012.

This work was supported by the Swedish Foundation for Strategic Research and by the European Commission KIC: EIT ICT labs.