
Generic Object Class Detection using Boosted
Configurations of Oriented Edges

Oscar Danielsson and Stefan Carlsson
{osda02,stefanc}@csc.kth.se

School of Computer Science and Communications
Royal Inst. of Technology, Stockholm, Sweden

Abstract. In this paper we introduce a new representation for shape-
based object class detection. This representation is based on very sparse
and slightly flexible configurations of oriented edges. An ensemble of such
configurations is learnt in a boosting framework. Each edge configura-
tion can capture some local or global shape property of the target class
and the representation is thus not limited to representing and detecting
visual classes that have distinctive local structures. The representation
is also able to handle significant intra-class variation. The representation
allows for very efficient detection and can be learnt automatically from
weakly labelled training images of the target class. The main drawback
of the method is that, since its inductive bias is rather weak, it needs a
comparatively large training set. We evaluate on a standard database [1]
and when using a slightly extended training set, our method outperforms
state of the art [2] on four out of five classes.

1 Introduction

Generic shape-based detection of object classes is a difficult problem because
there is often significant intra-class variation. This means that the class cannot
be well described by a simple representation, such as a template or some sort
of mean shape. If templates are used, typically a very large number of them
is required [3]. Another way of handling intra-class variation is to use more
meaningful distance measures than the Euclidean or Chamfer distances typi-
cally used to match templates to images. Then, the category can potentially
be represented by a substantially smaller number of templates/prototypes [4].
A meaningful distance measure, for example based on thin-plate spline defor-
mation, generally requires correspondences between the model and the image
[4–6]. Although many good papers have been devoted to computing shape based
correspondences [7, 4], this is still a very difficult problem under realistic condi-
tions. Existing methods are known to be sensitive to clutter and are typically
computed using an iterative process of high computational complexity.

Another common way of achieving a compact description of an object cat-
egory is to decompose the class into a set of parts and then model each part
independently. For shape classes, the parts are typically contour segments [8,

2 Oscar Danielsson and Stefan Carlsson

9, 5], making such methods practical mainly for object classes with locally dis-
criminative contours. However, many object classes lack such contour features.
These classes might be better described by global contour properties or by image
gradient structures that are not on the contour at all, as illustrated in figure 1.

Fig. 1. Intra-class shape variation too large for efficient template-based representation.
No discriminative local features are shared among the exemplars of the class. However,
exemplars share discriminative edge configurations.

In this paper we present an object representation that achieves a compact
description of the target class without assuming the presence of discriminative
local shape or appearance features. The main components of this representation
are sparse and slightly flexible configurations of oriented edge features, built
incrementally in a greedy error minimization scheme. We will refer to these con-
figurations as weak classifiers. The final strong classifier is a linear combination
of weak classifiers learnt using AdaBoost [10]. We also stress that the method
can be trivially extended to include other types of features (for example corners
or appearance features) when applicable. We use the attentional cascade of Vi-
ola and Jones for selection of relevant negative training examples and for fast
rejection of negative test examples [11]. For detection we evaluate the sliding-
window approach and we also point out the possibility of a hierarchical search
strategy. Feature values are in both cases computed efficiently using the distance
transform [12]. We achieve detection performance comparable to state-of-the-art
methods.

Our main contributions are: (i) a generic, shape-based object class repre-
sentation that can be learnt automatically in a discriminative framework from
weakly labelled training examples, (ii) an efficient detection algorithm that com-
bines an attentional cascade with efficient feature value computation and (iii)
an evaluation showing very promising results on a standard dataset.

In the following section we review other methods that use similar object
representations. The rest of the paper is organized as follows. In section 3 we
describe how our method represents the object category. In section 4 we describe
the edge features and their computation. In sections 5 and 6 we describe the
algorithms for learning and detection in detail. In sections 7 and 8 we present an
experimental evaluation. Finally, in sections 9, 10 and 11, we analyze the results,
suggest directions for future study and draw conclusions.

Object Class Detection using Boosted Configurations of Oriented Edges 3

2 Related Work

In the proposed approach the target object category is represented by sparse,
flexible configurations of oriented edges. Several other works have relied on sim-
ilar representations. For example, Fleuret and Geman learn a disjunction of ori-
ented edge configurations, where all oriented edges of at least one configuration
are required to be present within a user-specified tolerance in order for detection
to occur [13]. Wu et al. learn a configuration of Gabor basis functions, where
each basis function is allowed to move within a user-specified distance from its
preferred position in order to maximize its response [14]. The most similar rep-
resentation is probably from Danielsson et al. [15], who use a combination of
sparse configurations of oriented edges in a voting scheme for object detection.
In their work, however, the number of configurations used to represent a class,
the number of edges in each configuration and the flexibility tolerance of edges
are all defined by the user and not learned automatically. They also use different
methods for learning and detection.

We argue that our representation essentially generalizes these representa-
tions. For example, by constraining the weak classifiers to use only a single edge
feature we get a representation similar to that of Wu et al [14]. The proposed
approach also extends the mentioned methods because the tolerance in edge
location is learnt rather than defined by the user. Furthermore, being discrim-
inative rather than generative, it can naturally learn tolerance thresholds with
negative as well as positive parity, ie. it can also encode that an edge of a certain
orientation is unlikely to be within a certain region.

The use of a cascade of increasingly complex classifiers to quickly reject
obvious negatives was pioneered by Viola and Jones [16, 11]. The cascade also
provides a means of focusing the negative training set on relevant examples
during training. Each stage in the cascade contains an AdaBoost classifier, which
is a linear combination of weak classifiers. Viola and Jones constructed weak
classifiers by thresholding single Haar features, whereas our weak classifiers are
flexible configurations of oriented edge features.

3 Object Class Representation

The key component of the object representation is the weak classifiers. A weak
classifier can be regarded as a conjunction of a set of single feature classifiers,
where a single feature classifier is defined by an edge feature (a location and
orientation) along with a tolerance threshold and its parity. A single feature
classifier returns true if the distance from the specified location to the closest
edge with the specified orientation is within tolerance (i.e. it should be sufficiently
small if the parity is positive and sufficiently large if the parity is negative). A
weak classifier returns true if all its constituent single feature classifiers return
true. A strong classifier is then formed by boosting the weak classifiers. Figure
2 illustrates how the output of the strong classifier is computed for two different
examples of the target class. The output of the strong classifier is thresholded

4 Oscar Danielsson and Stefan Carlsson

to determine class membership. The edge features will be described in the next
section and the weak classifiers in section 5.1.

= w1+w2+w4

= w1+w3+w4

w1 w2 w4

w3 w4w1

+++

++ +

Fig. 2. An object class is represented by a strong classifier, which is a linear combina-
tion of weak classifiers. Each weak classifier is a conjunction of single feature classifiers.
Each single feature classifier is described by a feature (bars), a distance threshold (cir-
cles) and a parity of the threshold (green = pos. parity, red = neg. parity). The output
of the strong classifier is the sum of the weights corresponding to the “active” weak
classifiers, as illustrated for two different examples in the figure.

4 Edge Features

An edge feature defines a single feature classifier together with a threshold and
its parity. In this section we define the edge feature and the feature value. We
also describe how to compute feature values efficiently.

An edge feature Fk = (xk, θk) is defined by a location xk and orientation
θk in a normalized coordinate system. The feature value, fk, is the (normalized)
distance to the closest image edge with similar orientation (two orientations are
defined as similar if they differ by less than a threshold, tθ). In order to emphasize
that feature values are computed by aligning the normalized feature coordinate
system with an image, I, using translation t and scaling s, we write fk (I, t, s).
See figure 3 for an illustration.

In order to define fk (I, t, s), let E(I) = {. . . , (p′, θ′) , . . .} be the set of ori-
ented edge elements (or edgels) in image I (E(I) is simply computed by taking
the output of any edge detector and appending the edge orientation at each
edge point) and let Eθ(I) =

{
(p′, θ′) ∈ E(I)

∣∣ |cos(θ′ − θ)| ≥ cos(tθ)
}

be the set
of edgels with orientation similar to θ. We can then define fk (I, t, s) as:

fk (I, t, s) =
1
s
· min
(p′,θ′)∈Eθk (I)

||s · xk + t− p′|| (1)

Typically we define a set of features F by constructing a uniformly spaced
grid in the normalized coordinate system, i.e. F = X ×Y ×Θ, where X , Y and
Θ are uniformly spaced points.

Object Class Detection using Boosted Configurations of Oriented Edges 5

f1

f2

f3
F1
F2

F3

t

ε(I)

s

.s

.s

.s

Fig. 3. Feature values fk (I, t, s) are computed by translating (t) and scaling (s) features
Fk = (xk, θk) and taking the (normalized) distances to the closest edges with similar
orientations in the image.

4.1 Efficient Computation of Feature Values

The feature value fk (I, t, s) defined in the previous section can be computed
using only a single array reference and a few elementary operations. The required
preprocessing is as follows.

Start by extracting edges E(I) from the input image I. This involves running
an edge detector on the image and then computing the orientation of each edge
point. The orientation is orthogonal to the image gradient and unsigned, i.e.
defined modulo π. For edge points belonging to an edge segment, we compute
the orientation by fitting a line to nearby points on the segment. We call the
elements of E(I) edgels (edge elements).

The second step of preprocessing involves splitting the edgels into several
overlapping subsets Eθ(I), one subset for each orientation θ ∈ Θ (as defined in
the previous section). Then compute the distance transform dθ(I,p) on each
subset [12]:

dθ(I,p) = min
(p′,θ′)∈Eθ(I)

||p− p′|| (2)

This step is illustrated in figure 4; in the first column of the figure the subsets
corresponding to horizontal and vertical orientations are displayed as feature
maps and in the last column the corresponding distance transforms dθ(I,p) are
shown. Feature values can be efficiently computed as: fk (I, t, s) = dθk(I, s ·xk +
t)/s. This requires only one array reference and a few elementary operations.

5 Learning

The basic component of our object representation is the weak classifier (section
5.1). It is boosted to form a strong classifier (section 5.2). Finally, a cascade of
strong classifiers is built (section 5.3).

6 Oscar Danielsson and Stefan Carlsson

I

εθ(I) θ(I,p)d

ε(I)

1 2

3

3

Fig. 4. Images are preprocessed as follows: (1) extract a set of oriented edges E(I),
(2) split E(I) into (overlapping) subsets Eθ(I) and (3) compute the distance transforms
dθ(I,p).

5.1 Learning the Weak Classifiers

In this section we describe how to learn a weak classifier given a weighted set
of training examples. The goal of the learner is to find a weak classifier with
minimal (weighted) classification error on the training set.

The input to the training algorithm is a set of training examples {Ij |j ∈ J }
with target class cj ∈ {0, 1} and a weight distribution, {dj |j ∈ J },

∑
j∈J dj = 1,

over these examples. Each training image is annotated with the centroid tj and
scale sj of the object in the image.

A weak classifier is the conjunction of a set of single feature classifiers. A
single feature classifier is defined by a feature, Fk, a threshold, t, and a par-
ity, p ∈ {−1, 1}. The single feature classifier has the classification function
g (I, t, s) = p · fk (I, t, s) ≤ p · t and the weak classifier thus has the classi-
fication function h (I, t, s) =

∧N
i=1 gi (I, t, s) =

∧N
i=1 (pi · fki (I, t, s) ≤ pi · ti).

The number of single feature classifiers, N , is learnt automatically.
We want to find the weak classifier that minimizes the classification error, e,

wrt. the current importance distribution:

e = Pj∼d (h (Ij , tj , sj) 6= cj) =
∑

dj
{j∈J |h(Ij ,tj,sj)6=cj}

(3)

We use a greedy algorithm to incrementally construct a weak classifier. In
order to define this algorithm, let hn (I, t, s) =

∧n
i=1 gi (I, t, s) be the conjunction

of the first n single feature classifiers. Then let Jn = {j ∈ J |hn (Ij , tj, sj) = 1}
be the indices of all training examples classified as positive by hn and let en be
the classification error of hn:

en =
∑

dj
{j∈J |hn(Ij ,tj,sj)6=cj}

(4)

We can write en in terms of en−1 as:

Object Class Detection using Boosted Configurations of Oriented Edges 7

en = en−1 +
∑

dj
{j∈Jn−1|gn(Ij ,tj,sj) 6=cj}

−
∑

dj
{j∈Jn−1|cj=0}

(5)

This gives us a recipe for learning the nth single feature classifier:

gn = arg min
g

∑
dj

{j∈Jn−1|g(Ij ,tj,sj)6=cj}

(6)

We keep gn if en < en−1, which can be evaluated easily using equation 5,
otherwise we let N = n − 1 and stop. The process is illustrated in figure 5: in
a) the weak classifier is not sufficiently specific to delineate the class manifold
well, in b) the the weak classifier is too specific and thus inefficient and prone
to overfitting, whereas in c) the specificity of the weak classifier is tuned to the
task at hand.

(a) Too generic (b) Too specific

Jn-1

Jn

JN

(c) Optimal

Fig. 5. The number of single feature classifiers controls the specificity of a weak classi-
fier. a) Using too few yields weak classifiers that are too generic to delineate the class
manifold (gray). b) Using too many yields weak classifiers that are prone to overfitting
and that are inefficient at representing the class. c) We learn the optimal number of
single feature classifiers for each weak classifier (the notation is defined in the text).

Learning a Single Feature Classifier Learning a single feature classifier
involves selecting a feature Fk from a “dictionary” F , a threshold t from R+

and a parity p from {−1, 1}. An optimal single feature classifier, that minimizes
equation (6), can be found by evaluating a finite set of candidate classifiers [17].
However, typically a large number of candidate classifiers have to be evaluated,
leading to a time consuming learning process. Selecting the unconstrained opti-
mum might also lead to overfitting.

We have observed empirically that our feature values (being nonnegative)
tend to be exponentially distributed. This suggests selecting the threshold t for
a particular feature as the intersection of two exponential pdfs, where µ+ is the
(weighted) average of the feature values from the positive examples and µ− is
the (weighted) average from the negative examples.

t = ln
(
µ−

µ+

)
· µ−µ+

µ− − µ+
(7)

8 Oscar Danielsson and Stefan Carlsson

The parity is 1 if µ+ ≤ µ− and -1 otherwise. We thus have only one possible
classifier for each feature and can simply loop over all features and select the
classifier yielding the smallest value for equation (6). This method for single
feature classifier selection yielded good results in evaluation and we used it in
our experiments.

5.2 Learning the Strong Classifier

We use asymmetric AdaBoost for learning the strong classifiers at each stage
of the cascade [16]. This requires setting a parameter k specifying that false
negatives cost k times more than false positives. We empirically found k =
3n−/n+ to be a reasonable choice. Finally the detection threshold of the strong
classifier is adjusted to yield a true positive rate (tpr) close to one.

5.3 Learning the Cascade

The cascade is learnt according to Viola and Jones [11]. After the construction
of each stage we run the current cascade on a database of randomly selected
negative images to acquire a negative training set for the next stage. It is impor-
tant to use a large set of negative images and in our experiments we used about
300.

6 Detection

6.1 Sliding Window

The simplest and most direct search strategy is the sliding window approach in
scale-space. Since the feature values are computed quickly and we are using a
cascaded classifier, this approach yields an efficient detector. Typically we use a
multiplicative step-size of 1.25 in scale, so that si+1 = 1.25 · si, and an additive
step-size of 0.01 ·s in position, so that xi+1 = xi+0.01 ·s and yi+1 = yi+0.01 ·s.
Non-maximum suppression is used to remove overlapping detections.

There are some drawbacks with the sliding window approach: (i) all possible
windows have to be evaluated, (ii) the user is required to select a step-size
for each search space dimension, (iii) the detector has to be made invariant to
translations and scalings of at least half a step-size (typically by translating and
scaling all training exemplars) and (iv) the output detections have an error of
about half a step-size in each dimension of the search space (if the step-sizes are
sufficiently large to yield an efficient detector these errors typically translate to
significant errors in the estimated bounding box).

Since the feature values fk represent distances, we can easily compute bounds
f

(u)
k and f

(l)
k , given a region S in search space, such that f (l)

k ≤ fk (I, t, s) ≤
f

(u)
k ∀ (t, s) ∈ S. This can be used to for efficient search space culling and should

enable detectors with better precision at the same computational cost. We will
explore the issue of hierarchical search in future work.

Object Class Detection using Boosted Configurations of Oriented Edges 9

6.2 Estimating the Aspect Ratio

The detector scans the image over position and scale, but in order to produce
a good estimate of the bounding box of a detected object we also need the
aspect ratio (which typically varies significantly within an object class). We
estimate the aspect ratio of a detected object by finding one or a few similar
training exemplars and taking the average aspect ratio of these exemplars as the
estimate. We retrieve similar training exemplars using the weak classifiers that
are turned “on” by the detected object. Each weak classifier, hk, is “on” for a
subset of the positive training exemplars, Tk = {x|hk(x) = 1} and by requiring
several weak classifiers to be “on” we get the intersection of the corresponding
subsets: Tk1∩Tk2 = {x|hk1(x) = 1 ∧ hk2(x) = 1}. Thus we focus on a successively
smaller subset of training exemplars by selecting weak classifiers that fire on the
detected object, as illustrated in figure 6. We are searching for a non-empty
subset of minimal cardinality and the greedy approach at each iteration is to
specify the weak classifier that gives maximal reduction in the cardinality of the
“active” subset (under the constraint that the new “active” subset is non-empty).

h1
h2

h3a
h

i

g
jf

ed

c
b

(a)

h1
h2

h3a
h

i

g
jf

ed

c
b

(b)

h1
h2

h3a
h

i

g
jf

ed

c
b

(c)

Fig. 6. Retrieving similar training exemplars for a detected object (shown as a star).
a) Weak classifiers h2 and h3 fire on the detection. b) Weak classifier h3 is selected,
since it gives a smaller “active” subset than h2. c) Weak classifier h2 is selected. Since
no more weak classifiers can be selected, training exemplars “g” and “h” are returned.

7 Experiments and Dataset

We have evaluated object detection performance on the ETHZ Shape Classes
dataset [1]. This dataset is challenging due to large intra-class variation, clutter
and varying scales. Several other authors have evaluated their methods on this
dataset: in [5] a deformable shape model learnt from images is evaluated, while
hand drawn models are used in [18, 19, 1, 20]. More recent results are [21, 22, 2],
where [2] reports the best performance.

Experiments were performed on all classes in the dataset and results are
produced as in [5], using 5-fold cross-validation. We build 5 different detectors

10 Oscar Danielsson and Stefan Carlsson

for each class by randomly sampling 5 subsets of half the images of that class.
All other images in the dataset are used for testing. The dataset contains a total
of 255 images and the number of class images varies from 32 to 87. Thus, the
number of training images will vary from 16 to 43 and the test set will consist
of about 200 background images and 16 to 44 images containing occurrences of
the target object.

Quantitative results are presented as the detection rate (the number of true
positives divided by the number of occurrences of the target object in the test
set) versus the number of false positives per image (FPPI). We prefer using
FPPI, instead of precision, as a measure of error rate, since it is not biased by
the number of positive and negative examples in the test set. Precision would
for example be unsuitable for comparison to methods evaluated using a differ-
ent cross-validation scheme, since this might affect the number of positive test
examples. As in [5], a detection is counted as correct if the detected bounding
box overlaps more than 20 % with the ground truth bounding box. Bounding
box overlap is defined as the area of intersection divided by the area of union of
the bounding boxes.

8 Results

Quantitative results are plotted in figure 7. The results of the initial experiment
are shown by the blue (lower) curves. The problem is that there are very few
training examples (from 16 to 43). Since the presented method is statistical in
nature it is not expected to perform well when training on a too small training
set. Therefore we downloaded a set of extra training images from Google Images.
These images contained a total of 40 applelogos, 65 bottles, 160 giraffes, 67
mugs and 103 swans, which were used to extend the training sets. The red
(upper) curves are the results using the extended training set and the detection
performance is now almost perfect.

In table 1 we compare the detection performance of our system to previ-
ously presented methods. Figure 8 shows some sample detections (true and false
positives).

Table 1. Comparison of detection performance. We state the average detection rate
at 0.3 and 0.4 FPPI and its standard deviation in parentheses. We compare to the
systems of [5, 2].

A. logos Bottles Giraffes Mugs Swans

ours@0.3 FPPI: 95.5(3.2) 91.9(4.1) 92.9(1.9) 96.4(1.4) 98.8(2.8)
ours@0.4 FPPI: 95.5(3.2) 92.6(3.7) 93.3(1.6) 97.0(2.1) 100(0)

[5]@0.4 FPPI: 83.2(1.7) 83.2(7.5) 58.6(14.6) 83.6(8.6) 75.4(13.4)
[2]@0.3 FPPI: 95.0 92.9 89.6 93.6 88.2
[2]@0.4 FPPI: 95.0 96.4 89.6 96.7 88.2

Object Class Detection using Boosted Configurations of Oriented Edges 11

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPPI

D
R

Applelogos

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPPI

D
R

Applelogos

(a) Applelogos

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPPI

D
R

Bottles

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPPI

D
R

Bottles

(b) Bottles

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPPI

D
R

Giraffes

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPPI

D
R

Giraffes

(c) Giraffes

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPPI

D
R

Mugs

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPPI

D
R

Mugs

(d) Mugs

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPPI
D

R

Swans

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPPI
D

R

Swans

(e) Swans

Fig. 7. Detection rate (DR) plotted versus false positives per image (FPPI). The results
from the initial experiment are shown by the blue (lower) curves and the results from
the experiment using extended training sets are shown by the red (upper) curves.

Our currently unoptimized MATLAB/mex implementation of the sliding
window detector, running (a single thread) on a 2.8 GHz Pentium D desktop
computer, requires on the order of 10 seconds for scanning a 640 x 480 image (ex-
cluding the edge detection step). We believe that this could be greatly improved
by making a more efficient implementation. This algorithm is also very simple
to parallelize, since the computations done for one sliding window position are
independent of the computations for other positions.

9 Discussion

Viola and Jones constructed their weak classifiers by thresholding single Haar-
features in order to minimize the computational cost of weak classifier evaluation
[16]. In our case, it is also a good idea to put an upper limit on the number of
features used by the weak classifiers in the first few stages of the cascade for
two reasons: (1) it reduces the risk of overfitting and (2) it improves the speed
of the learnt detector. However, a strong classifier built using only single-feature
weak classifiers should only be able to achieve low false positive rates for object
classes with small intra-class variability. Therefore later stages of the cascade
should not limit the number of features used by each weak classifier (rather, the
learner should be unconstrained).

12 Oscar Danielsson and Stefan Carlsson

(a) Applelogos true positives (b) Applelogos false positives

(c) Bottles true positives (d) Bottles false positives

(e) Giraffes true positives (f) Giraffes false positives

(g) Mugs true positives (h) Mugs false positives

(i) Swans true positives (j) Swans false positives

Fig. 8. Example detections (true and false positives) for each class.

Object Class Detection using Boosted Configurations of Oriented Edges 13

10 Future Work

As mentioned, search space culling and hierarchical search strategies will be
explored, ideally with improvements in precision and speed as a result.

Another straight forward extension of the current work is to use other features
in addition to oriented edges. We only need to be able to produce a binary feature
map, indicating the occurrences of the feature in an image. For example we could
use corners, blobs or other interest points. We could also use the visual words
in a visual code book (bag-of-words) as features. This would allow modeling of
object appearance and shape in the same framework, but would only be practical
for small code books.

We will investigate thoroughly how the performance of the algorithm is af-
fected by constraining the number of features per weak classifier and we will also
investigate the parameter estimation method presented in section 6.2 and the
possibility of using it for estimating other parameters of a detected object, like
the pose or viewpoint.

11 Conclusions

In this paper we have presented a novel shape-based object class representa-
tion. We have shown experimentally that this representation yields very good
detection performance on a commonly used database. The advantages of the pre-
sented method compared to its competitors are that (1) it is generic and does
not make any strong assumptions about for example the existence of discrimi-
native parts or the detection of connected edge segments, (2) it is fast and (3) it
is able to represent categories with significant intra-class variation. The method
can also be extended to use other types of features in addition to the oriented
edge features. The main drawback of the method is that, since its inductive bias
is rather weak, it needs a comparatively large training set (at least about 100
training exemplars for the investigated dataset).

Acknowledgement

This work was supported by the Swedish Foundation for Strategic Research
(SSF) project VINST.

References

1. Ferrari, V., Tuytelaars, T., Gool, L.V.: Object detection by contour segment net-
works. Proc. of the European Conference on Computer Vision (2006)

2. Maji, S., Malik, J.: Object detection using a max-margin. Proc. of the IEEE
Computer Vision and Pattern Recognition (2009)

3. Gavrila, D.M.: A bayesian, exemplar-based approach to hierarchical shape match-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (2007)

14 Oscar Danielsson and Stefan Carlsson

4. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using
shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence
24 (2002) 509–522

5. Ferrari, V., Jurie, F., Schmid, C.: Accurate object detection with deformable
shape models learnt from images. Proc. of the IEEE Computer Vision and Pattern
Recognition (2007)

6. Thuresson, J., Carlsson, S.: Finding object categories in cluttered images using
minimal shape prototypes. Proc. of Scandinavian Conference on Image Analysis
(2003)

7. Carlsson, S.: Order structure, correspondence and shape based categories. Inter-
national Workshop on Shape, Contour and Grouping (1999)

8. Shotton, J., Blake, A., Cipolla, R.: Contour-based learning for object detection.
Proc. of the International Conference of Computer Vision (2005)

9. Opelt, A., Pinz, A., Zisserman, A.: A boundary-fragment model for object detec-
tion. Proc. of the European Conference of Computer Vision (2006)

10. Freund, Y., Schapire, R.E.: A short introduction to boosting. Journal of Japanese
Society for Artificial Intelligence 14 (1999) 771–780

11. Viola, P.A., Jones, M.J.: Robust real-time face detection. International Journal of
Computer Vision 57 (2004) 137–154

12. Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear time euclidean distance
transform algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 17
(1995) 529–533

13. Fleuret, F., Geman, D.: Coarse-to-fine face detection. International Journal of
Computer Vision 4 (2001) 85 – 107

14. Wu, Y.N., Si, Z., Fleming, C., Zhu, S.C.: Deformable template as active basis.
Proc. of the International Conference on Computer Vision (2007)

15. Danielsson, O., Carlsson, S., Sullivan, J.: Automatic learning and extraction of
multi-local features. Proc. of the International Conference on Computer Vision
(2009)

16. Viola, P.A., Jones, M.J.: Fast and robust classification using asymmetric adaboost
and a detector cascade. Proc. of Neural Information Processing Systems (2001)
1311–1318

17. Fayyad, U.M.: On the Induction of Decision Trees for Multiple Concept Learning.
PhD thesis, The University of Michigan (1991)

18. Ravishankar, S., Jain, A., Mittal, A.: Multi-stage contour based detection of de-
formable objects. Proc. of the European Conference on Computer Vision (2008)

19. Zhu, Q., Wang, L., Wu, Y., Shi, J.: Contour context selection for object detection:
A set-to-set contour matching approach. Proc. of the European Conference on
Computer Vision (2008)

20. Schindler, K., Suter, D.: Object detection by global contour shape. Pattern Recog-
nition 41 (2008) 3736–3748

21. Stark, M., Goesele, M., Schiele, B.: A shape-based object class model for knowledge
transfer. Proc. of International Conference on Computer Vision (2009)

22. Ommer, B., Malik, J.: Multi-scale object detection by clustering lines. Proc. of
International Conference on Computer Vision (2009)

