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Abstract

Many object categories are better characterized by the
shape of their contour than by local appearance properties
like texture or color. Multi-local features are designed in or-
der to capture the global discriminative structure of an ob-
ject while at the same time avoiding the drawbacks with tra-
ditional global descriptors such as sensitivity to irrelevant
image properties. The specific structure of multi-local fea-
tures allows us to generate new feature exemplars by linear
combinations which effectively increases the set of stored
training exemplars. We demonstrate that a multi-local fea-
ture is a good ”weak detector” of shape-based object cate-
gories and that it can accurately estimate the bounding box
of objects in an image. Using just a single multi-local fea-
ture descriptor we obtain detection results comparable to
those of more complex and elaborate systems. It is our
opinion that multi-local features have a great potential as
generic object descriptors with very interesting possibilities
of feature sharing within and between classes.

1. Introduction

The use of local feature descriptors has been a major suc-
cessful tool for object classification in recent years. Local
descriptors can be designed in order to avoid the disturbing
effects of class irrelevant foreground and background clut-
ter in the image. Their limited spatial extent means that in-
tra class variation among spatially corresponding features is
limited, making them efficient for classification. They have
been especially successful in the detection of object classes
such as faces, cars, motorcycles [3, 11, 14, 16, 20, 21] where
well defined subparts such as eyes, nose, wheels etc. can be
captured as local features. For a large set of object classes
however, well defined subparts are difficult to define and ex-
tract. Even if they can be defined, their intra class variability
is sometimes very large, or they are not very discriminative
[7, 18]. These classes in general need to be characterized
by their global shape properties. This typically applies to a
large range of “simple” objects like cups, bottles and tools

etc.
The problem of extracting and representing global ob-

ject structure in an efficient way has a very long history
going back to theories of perceptual grouping and gestalt
perception. Just simply increasing the spatial size of the
local descriptors will in general have the result that they be-
come susceptible to the effects of class irrelevant clutter in
the image [15, 19], although recent modifications based on
subdivision and boosting have proved to be comparatively
efficient [8, 9]. In order to avoid this, grouping local struc-
ture therefore in general takes place along the boundaries
and edges of an object, see e.g. the recent work in [4, 5].
The problem of grouping is however very difficult since it
requires the extraction of object shape by edge detection or
some other process which is often unreliable. In general
one has to be content with the extraction of short fragments
of object shape that may not have sufficient discriminatory
power.

What is needed is a descriptor that preserves all the good
clutter rejection properties of local descriptors while at the
same time being able to capture global shape. This seems
like a contradiction but does not necessarily have to be so.
We will demonstrate that it is possible to define efficient
multi-local features which are just specific spatial constel-
lations of local features that actually have these desirable
properties. In addition to this, exemplars of multi-local fea-
tures extracted from training images can be used to gener-
ate linear manifolds of multi-local feature classes that ef-
fectively increase the training data set of features. Having a
generative model for a feature class like this is a very pow-
erful tool for classification. Classification procedures can
be based on manifolds instead of individual exemplars.

2 Multi-local features

A multi-local feature consists of a set of k local features
at locations (x1 . . .xk) with local content characterized by
descriptors (c1 . . . ck). Local content can be any descriptor
but in this work it will typically consist of just directionality
information. Local descriptors can therefore be applied to
any part of the object’s shape outline. By selecting corre-
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Figure 1. Multi-local features consist of specific spa-
tial constellations of local features. Corresponding
locations on examples from an object class then gen-
erate a specific multi-local feature manifold for that
class

sponding locations for local features across examples of an
object class, we end up with a set of exemplar descriptors
(x(i)

1 , c
(i)
1 . . .x(i)

k , c
(i)
k ) for training exemplars i = 1 . . . n

for a specific feature.
The multi-local feature class manifold will consist of all

possible values of the descriptor: (x1, c1 . . .xk, ck) that are
extracted from corresponding locations xi in the image ex-
emplars of the object class. It will include all possible image
translations and scalings of the individual examples. Typi-
cally it will depict a specific viewpoint of a class as in the
standard constellation models considered in [3, 21].

If we consider simple local structure descriptors (ci)
such as just directionality, the multi-local feature will cap-
ture global shape properties of the object class. This is in
contrast to standard appearance based global image descrip-
tors that will have to deal with a large range of appearance
variation that is irrelevant to the object class. The prize we
pay for this interesting property is of course an increased
complexity in the extraction stage.

Multi-local features can have a range of variation of their
number of local feature components and their spatial extent.
By considering a small spatial extent, the multi-local feature
descriptor will be just an enlarged rich local descriptor such
as that considered in e.g. [4, 5]. The number of component
local features in a multi-local feature will clearly affect the
manifold of features occurring in images. If the number is
small, we will get very general features that can be expected
to be shared across object classes while if the number and
spatial extent is large, we get very specific features that will
serve more as shape templates.

The size and complexity of the multi-local feature ob-
viously affects the complexity of extracting it and it’s dis-
criminative value when used for e.g. object detection. In
this paper we will focus on these issues of complexity and
performance and demonstrate the applicability of the con-
cept of multi-local features. In future work we will consider
the broader issues of integration of several multi-local fea-
tures, feature sharing among object classes and automatic
discovery of multi-local features.

The idea of multi-local feature is closely related to the
concept of constellations [3] and pictorial structures [2] al-
though these in general assume rich local descriptors. In our
multi-local descriptor, the local features can be very simple
and the information of the feature is contained in the spatial
arrangement rather than local content. This idea of look-
ing at spatial arrangements and relations of simple features
occurs in [1, 19] and recently also in [10].

2.1 Multi-local feature detection

For detection we are faced with the problem of decid-
ing whether the image contains a multi-local feature with
a descriptor in the class manifold. Even for values of k
in the range 5 − 10 this can be a huge search problem.
In order to solve this we will exploit the specific structure
and properties of the multi-local feature manifold. Ide-
ally we should be able to characterize the manifold by
a complete statistical description p(x1, c1 . . .xk, ck). We
will estimate this from labeled exemplars of images of the
class. This will allow us to define conditionals such as
p(xj, cj |x1, c1 . . .xj−1, cj−1) which will be used to detect
local features efficiently in a recursive manner.

The spatial constellations of multi-local features for a
specific class and viewpoint will depict the internal class
shape variation. In general this variation is smooth in the
sense that similar exemplars can be deformed into each
other. Any intermediate deformation will then represent a
valid exemplar of the class. This is a purely empirical ob-
servation and has been validated experimentally on the data
sets that we have used so far. The important thing is that this
allows us to vastly extend the set of exemplars from those
sampled from training images into the whole convex hull:

C =

{
(x1 . . .xk) | xj =

∑
i αix

(i)
j , j = 1 . . . k∑

i αi = 1

}
(1)

This is illustrated in figure 2 showing extracted multi-
local features from bottle exemplars and their interpola-
tions. This property will be exploited in a final verification
stage for hypothesized multi-local features in an image.

The detection of multi-local features in an image will
proceed by a hypothesis generation and verification process.
From a set of n labeled training images containing exem-
plars of an object class we manually extract multi-local fea-
tures: (x(i)

1 , c
(i)
1 . . .x(i)

k , c
(i)
k ), i = 1 . . . n . In this work

we will only consider local feature properties cj depict-
ing the directional structure of the image location xj. We
will initiate the search for multi-local features in a test im-
age by first computing a binary feature map indicating the
presence or not of the various local features contained in
the multi-local constellation. The multi-local training fea-
tures are then used to generate hypotheses of the existence
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Figure 2. Convex linear combinations of multi-local
features tend to generate multi-local features that
emanate from valid representative exemplars in the
class. The three middle bottle multi-local features
above are generated by linear combinations of the
multi-local features of the left-most A and right-most
B bottles with linear weights successively changing
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Figure 3. Overview of multi-local feature hypothesis
and verification process using estimated distribution
from training images. Locations (x1 . . .xk) of com-
ponents in a multi-local feature are hypothesized us-
ing the set of labeled training exemplars and verified
by computing their distance to the convex hull of the
training feature locations

of multi-local features in the test image. These are subse-
quently verified by computing their distance to the convex
hull of the multi-local training features as given by eq. 1.
The whole procedure is illustrated in figure 3.

An example of the algorithm is shown in figure 4. Here
we search for a multi-local feature consisting of four local
features in a box-like configuration. The first local feature
(defined by c1) is present at a particular location if there is a
sufficiently strong gradient with direction sufficiently close
to horizontal at that location (a). For each occurrence of
the first local feature, we search for plausible occurrences
of the second local feature using the conditional p(x2|x1),
which is defined up to an unknown scale factor. This yields
a conic region in the image, which is searched for the sec-
ond local feature (b). The second local feature is defined by
c2 to be a sufficiently strong gradient with direction close to
vertical. If the second local feature is found we finally sam-
ple from p(x4,x3|x2,x1) to get plausible locations of the
last two local features. We use the Euclidean (or Chamfer)

(a) (b) (c)

Figure 4. Illustration of the algorithm for finding in-
stances of a given multi-local feature. For each oc-
currence of the first local feature (a), we search for
occurrences of the second local feature (b). We then
sample plausible locations of the other local features
using the training exemplars and check for presence
of these local features at the predicted positions (c). If
all local features are present, we sample their constel-
lation and compute the distance to the closest point on
the convex hull of training exemplars

distance transforms of the binary feature maps of these two
local features to determine if they are present in the image
sufficiently close to the predicted positions (c). If so, we
sample the image locations of the local features and com-
pute the distance to the convex hull of multi-local features
extracted during training. The final output of the algorithm
is the image locations of the local features and the distance
to this convex hull for each detection. A detailed description
of the algorithm is given in figure 5.

The computational complexity of multi-local feature de-
tection is dominated by the hypothesis generation stage.
The complexity of hypothesis generation grows proportion-
ally to the number of occurrences of the first local fea-
ture, c1, times the number of occurrences of the second lo-
cal feature, c2, times the number of samples drawn from
p(x4,x3|x2,x1).

3 Experiments

The experiments presented in this section aim to illus-
trate the following properties of multi-local features:

1. A single multi-local feature is a good weak detector
and can produce accurate estimates of the bounding
box of instances of the target object class with rela-
tively few false positives.

2. The detection performance does not necessarily im-
prove by adding more local features to the multi-local
feature.

We have experimented with three shape-based object
classes: apple logos, bottles and mugs. For each class, we



Inputs: image I , exemplars (x
(i)
1 , c1 . . .x

(i)
k , ck), i = 1 . . . n,

threshold ρ.

1. Compute a binary feature map for each local feature.

2. Compute the Euclidean (or Chamfer) distance transforms on
these feature maps.

3. For each occurrence x1 of the first local feature c1:

• For each occurrence x2 of the second local feature c2
such that p(x2|x1) > ρ:

– Sample from p(xk, . . . ,x3|x2,x1)

– If local features ck, . . . , c3 are present close to
the hypothesized locations xk, . . . ,x3

∗ Save image locations of ck, . . . , c1

4. For each multi-local feature (x1, c1, . . . ,xk, ck) sampled
from the image, compute the distance to the convex hull of
training exemplars by solving the following quadratic pro-
gram:

d = min
w∈<n,t∈<2,rj∈<2

1

2

kX
j=1

‖rj‖2 (2)

subject to
nX

i=1

wi · x(i)
j + t + rj = xj, j = 1 . . . k

w ≥ 0

5. Normalize the distance by the square of the scale of the
multi-local feature in the image.

Output: A list of multi-local feature occurrences in the image
along with distances to the convex hull.

Figure 5. Detailed description of algorithm for find-
ing instances of a given multi-local feature
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Figure 6. Typical instances of the large multi-local
features selected for (a) apple logos, (b) bottles and
(c) mugs. Subsets of these with various numbers of
local features are used in the experiments

have selected a large multi-local feature as illustrated in fig-
ure 6. Exemplars of these features were manually clicked in
a number of training images downloaded from Google im-
ages. We then use sub-features with increasing numbers of
local features to perform object detection. We investigate
how the detection performance varies with the number of
local features.

3.1 Training

In the current experiments, we have manually extracted
exemplars

(
x(i)
1 , c1, · · · ,x(i)

k , ck

)
of multi-local features

by clicking locations in a number of training images down-
loaded from Google images. We have used the heuristics
presented below to select good multi-local features (in fu-
ture work, we will evaluate automatic learning methods
based partly on these heuristics):

1. Since we are going to use the multi-local features
as weak object detectors, we want them to be a
good predictor of the bounding box of the object. In
general, multi-local features that ”span” the object are
better in this respect and we try to select multi-local
features that capture global rather than rich local shape
properties of the object.

2. We try to select multi-local features that describe
shape properties that are characteristic of the object
but occur with as little variation as possible over the



Table 1. Detection rates of the best multi-local
feature at 0.4 FPPI.

Applelogos Bottles Mugs
77.3 72.73 60.6

class.

3. Increasing the number of local features makes the
multi-local feature more specific and thus reduces the
number of false positives. However, including too
many local features will result in a multi-local feature
that is not shared by all members of the class. Itera-
tively increasing the number of local features is a good
way to find the best trade-off.

3.2 Evaluation

We present an evaluation of the detection performance
on the ETHZ Shape Classes dataset [4]. This dataset is chal-
lenging due to large intra-class variation, clutter and vary-
ing scales. However, object instances are generally not oc-
cluded. The whole dataset was used for testing and all im-
ages not in the target object category was used as negative
examples.

Previous experiments on this dataset have used a very le-
nient evaluation criterion and count a detection as correct if
the bounding box overlaps more than 20 % with the ground
truth bounding box and vice versa [4, 5]. In order to get
a better measure of the accuracy of the predicted bounding
boxes, we use a 70 % overlap criterion instead. In figure 7
the detection rate (Det. Rate) is plotted against the number
of false positives per image (FPPI).

4 Results

The results indicate that even a single multi-local feature
can achieve a quite good detection rate at a reasonable num-
ber of false positives per image. In particular for mugs and
apple logos we also see the expected effect that including
too many local features will reduce the detection rate con-
siderably, since the multi-local feature gets too specific and
is no longer shared across the class. The optimal number of
local features is 11 for apple logos and 9 for mugs.

In figure 8 we show detections in a few example images
from the test dataset. The predicted bounding boxes are
marked in green. The logarithm of the matching distance
of each detection is given in the upper left corner of the
bounding box.

In table 1 we give the detection performance of the best
single multi-local feature at 0.4 FPPI. This allows for com-
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Figure 7. The detection rate plotted against the num-
ber of false positives per image of (a) apple logos, (b)
bottles and (c) mugs. For each object class several
curves are plotted, representing different numbers of
local features. The number of local features used is
given at the end of the curve. A detection is counted
as correct if the bounding box overlaps more than 70
% with the ground truth and vice versa
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Figure 8. Example detections of (a) apple logos (us-
ing 12 local features), (b) bottles (using 9 local fea-
tures) and (c) mugs (using 8 local features). At the up-
per left corner of each bounding box is the logarithm
of the detection distance (lower is better). Detections
with distances better than -5.5 are shown

parison to Ferrari et. al. [5], but we stress that we are using
a much stricter evaluation criterion (they count a detection
as correct if the bounding box overlaps more than 20 %
with the ground truth bounding box and vice versa, while
we require 70 % overlap). Ferrari et. al. present detection
rates at 0.4 FPPI on the ETHZ Shape Classes dataset using
a Hough-voting scheme and using their full shape matching
system. Using only Hough-voting they get 35.9 %, 71.7 %
and 51.4 % detection rates for apple logos, bottles and mugs
respectively. Using their full system they get 83.2 % 83.2 %
83.6 %. Comparing that to the values in table 1, we see that
even a single multi-local feature gives comparatively good
detection performance on these object categories.

5 Discussion and Conclusion

We have investigated the use of linear manifolds of con-
stellations of simple local features (multi-local features) for
object detection. If these constellations ”span” the bound-
ing box of the object, this description captures global shape
properties of the object. We have claimed that

• A multi-local feature is a good weak object detector
and even a single multi-local feature might yield a de-
tection performance comparable to a full object detec-
tion system.

• All convex combinations of a given set of valid multi-
local feature exemplars are also reasonable exemplars
of the target shape. We thus have a good generative
model and the detection procedure is based on gener-
ating and verifying hypotheses. Feature detection can
therefore be based on manifolds generated by train-
ing exemplars instead of the training exemplars them-
selves.

• Since our method uses a sparse set of local feature oc-
currences, it is less dependent on the quality of the
edge detector than methods using locally connected
edge segments [4, 5, 6, 17, 13]. This robustness of
multi-local features will be very relevant when we con-
sider object detection in severe occlusion situations.

However, the detection of multi-local features in its cur-
rent implementation is sensitive to occlusions and can only
represent unimodal shape variations. Therefore, combina-
tions of several multi-local features are necessary to achieve
a flexible object detector. The optimal selection and com-
bination of multi-local features for recognition will be a
topic of future studies. The problem will be to define
sets of multi-local features for a specific class with opti-
mal discrimination capabilities. In view of the results, it
seems reasonable to investigate methods that sequentially
increase the number of local features until further additions



no longer improve detection performance. A natural ex-
tension to building sequences of multi-local features of in-
creasing size is to build hierarchies of multi-local features,
where the multi-local features represented by the leaf nodes
share common sub-features.
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