
Automatic Learning and Extraction of Multi-Local Features

Oscar Danielsson, Stefan Carlsson and Josephine Sullivan
School of Computer Science and Communications

Royal Inst. of Technology, Stockholm, Sweden
{osda02,stefanc,sullivan}@csc.kth.se

Abstract

In this paper we introduce a new kind of feature - the
multi-local feature, so named as each one is a collection of
local features, such as oriented edgels, in a very specific
spatial arrangement. A multi-local feature has the ability
to capture underlying constant shape properties of exem-
plars from an object class. Thus it is particularly suited to
representing and detecting visual classes that lack distinc-
tive local structures and are mainly defined by their global
shape. We present algorithms to automatically learn an en-
semble of these features to represent an object class from
weakly labelled training images of that class, as well as
procedures to detect these features efficiently in novel im-
ages. The power of multi-local features is demonstrated by
using the ensemble in a simple voting scheme to perform
object category detection on a standard database. Despite
its simplicity, this scheme yields detection rates matching
state-of-the-art object detection systems.

1. Introduction
Features for representation and detection of visual

classes should ideally have several properties that, in gen-
eral, are mutually exclusive. These properties include ease
of computation, robustness against occlusions and clutter,
generality over the visual class considered and discrim-
inability against other classes. Ease of computation, robust-
ness and generality are achieved by simple local features,
but local features that are shared among exemplars in a class
tend to be too simplistic to have any discriminative power.
Discriminability requires features of higher complexity. For
most visual classes, automatic extraction of complex local
features from exemplars is a difficult problem due to large
intra-class variation. In this work we describe a method for
extracting and using constellations of simple local features
that retain the advantages of simple local features while
having more discriminative power. We call these constel-
lations multi-local features.

Consider the exemplars of chairs in figure 1. The intra-

class variation of the circled corresponding local features is
too large to allow a compact representation. The same ap-
plies to the global shape of the chairs which would prevent
any simple generic shape template to be computed from
these exemplars. However, there is obviously some struc-
ture that is shared among these exemplars that represents
the shape constancy of the class of chairs. This is exempli-
fied by the sets of oriented edges that have been marked in
each exemplar. Each oriented edge by itself has very small
discriminative power but occurs frequently among the ex-
amples in a class. As we add more locations of simple ori-
ented edges, the discriminative power will increase. The
challenge is then to add locations such that the generality
of the multi-local feature is retained while making it dis-
criminative against other visual classes. This provides us
with a simple mechanism to exchange generality for dis-
criminability while still keeping the robustness properties
of local features. In the limit as we add more locations to
the multi-local feature we will end up with a global shape
template. This represents the opposite end of the spectrum
where each template will be very discriminative at the price
of being very specific for a particular example in the class.
This situation is schematically illustrated in figure 2.

Multi-local features have similar properties to spatial
constellation models based on local features or patches
[8, 19, 5]. The information represented by a constellation
model is divided between the local features and the spa-
tial constellation structure. Typically, constellation models
are used to represent classes that have discriminative local
features that are shared across the exemplars of the class.
Thus, most of the information is contained in the local fea-
tures. The information in the multi-local features is domi-
nated by the spatial constellation of the local features since
the local features by themselves are not very discrimina-
tive. This makes them ideal for recognition of categories
that lack distinctive local features but are instead character-
ized by their global shape properties. However, multi-local
features could potentially be designed based on more infor-
mative local features as in standard constellation models or
pictorial structures [4].



Figure 1. Local features (circled) can display very large variation
within a class, while multi local features (sets of oriented edgels)
can capture the shape constancy properties of the class.
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Figure 2. Modeling a visual category. a) The target category is
a set (gray) in some space. b) Using simple features: each fea-
ture occurs on many exemplars within and outside of the target
category. c) Using complex features: each feature is essentially a
template and represents a single exemplar [10]. d) Using interme-
diate features: each feature is discriminative for the category but
not specific for a particular exemplar. This is the case for multi-
local features that will be shared among exemplars in the class
and each exemplar is represented by a set of multi-local features.

The use of multi-local features for object representation
and detection is analogous to the use of discriminative lo-
cal features where they are applicable. Therefore we give a
brief review of part-based object detection. To detect con-
stellation models one normally begins by detecting parts
and then looks for plausible configurations of these parts.
The computational complexity of this search for plausible
configurations grows quickly with the number of parts in
the model and the number of detections of each part in the
test image [19, 5]. But recently many researchers have ex-
perimented with various voting schemes, where the loca-
tion of the object is stored relative to each part and each
part detection then votes for one or many object occurrences
[12, 11, 18, 15]. A common choice is to vote for the centroid
of the object (sometimes referred to as centroid boosting).
Parts that vote for the same (or similar) centroid agree on the
location of the object and are thus likely to form a plausible
configuration. Essentially, the explicit search for plausible
configurations has thus been bypassed and replaced by a
simple voting/clustering procedure. Each part detector acts
as a weak detector of one or many object categories, gen-
erating hypotheses of object occurrences. The subsequent
clustering step determines which hypotheses have sufficient
support. Various types of parts have been used, ranging

from image patches [12] to edge segments [18, 15].
This bottom-up approach to object detection is very ap-

pealing. We would like to leverage the power of part-based
models and voting schemes for description and detection
using multi-local features. We present a learning algorithm
that, given example images of the target category annotated
with bounding box information, learns such features and we
wrap this learner in a boosting scheme to produce feature
ensembles. We also describe an algorithm that efficiently
detects these features in test images. We present a perfor-
mance evaluation on the task of object detection, showing
results that match comparable methods.

In summary, this paper presents:

1. A definition of multi-local features.

2. A procedure for automatically learning multi-local fea-
tures from a set of image exemplars of a class and
a computationally efficient way of detecting multi-
local features in test images and integrating informa-
tion from collections of multi-local features for object
detection.

3. A demonstration of the usefulness of these features
when applied to the problem of object detection.

This paper is structured as follows. In the next subsec-
tion, we review some related work. In section 2, we describe
the multi-local feature. In sections 3 and 4 we present the
algorithms to learn and detect these features. We present
an experimental evaluation in sections 5 and 6. Finally, we
discuss some properties of multi-local features and suggest
some topics for future study in section 7.

1.1. Related Work

Voting schemes are inspired by the Hough transform [1].
Leibe and Schiele applied it to object detection [12], using
local appearance patches to vote for the centroid of the tar-
get object. Local shape features and boundary fragments
have been used for object categories lacking discriminative
local appearance [11, 18, 15].

Multi-local features capture global shape properties of
the object. There are several methods that describe the
global shape of the object using one or a few templates
(prototypes) [7, 6, 17, 16, 21]. Typically, an explicit de-
formation model is used to account for intra-class varia-
tion [7, 6, 16]. Detection may then be performed by it-
eratively hypothesizing point-to-point correspondences and
estimating deformation parameters [6] (in [6], a voting
scheme using local shape features is used to initialize the
shape matcher). Alternatively, detection can be based on
finding (grouping) edge segments belonging to the object
[16, 21, 7]. Leordeanu et. al. represent an object as a sparse
set of directional features, connected by pairwise relation-
ships in a graph structure [13]. Wu et. al. also present an
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in Bookstein coordinates, us-
ing the first two edgels for
alignment.

Figure 3. Multi-local feature description.

object model consisting of a sparse set of directional fea-
tures (Gabor filters), but locations and orientations of the
features are given relative to an object centered reference
frame [20].

We have not seen any approach that specifically models
the object as a set of geometrically consistent, discrimina-
tive, global shape features.

2. Multi-Local Features
In this section we describe the multi-local features. The

multi-local features are specific spatial constellations of ori-
ented edge elements (edgels). A typical example used for
the detection of mugs is shown in figure 3. Two of the
edgels are used for alignment. The locations and orienta-
tions of the remaining edgels are described relative to the
feature coordinate system defined by letting the first edgel
in the aligning pair be the origin and the second edgel be
located at unit distance from the origin on the x-axis (Book-
stein coordinates). We can also describe the bounding box
of the target object in this coordinate system. The bound-
ing box has five parameters; the centroid (xc, yc), the width
w, the height h and the orientation α. A multi-local fea-
ture represents the sparse edgel constellation and the object
bounding box in the feature coordinate system. A multi-
local feature can thus be described by a parameter vector,
Θ(ke), containing the orientations of the aligning edgel pair,
the locations and orientations of the rest of the edgels and
the parameters of the bounding box, as shown in equation
1 (where ke is the number of edgels in the feature). Omit-
ting the orientation of the edgels would make the feature
significantly less discriminative.

Θ(ke)=(ϕ1,ϕ2,x3,y3,ϕ3,...,xke ,yke ,ϕke ,xc,yc,w,h,α) (1)

Multi-local features will typically be applied to object
detection. In this case, a multi-local feature should be
shared across several exemplars of the target category while
being discriminative against other visual inputs. Using too
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Figure 4. a)-c) Edge maps of typical example training images. d)
Learnt multi-local feature (aligning edgels marked in red).

few edgels would yield a feature with no discriminative
power. Increasing the number of edgels, ke, makes the fea-
ture more discriminative and in the limit we get a shape
template, representing a particular exemplar. For object de-
tection, the most efficient representation of a given target
category should be achieved using an ensemble of interme-
diate features that are shared by different sets of exemplars.
The features can then be combined in different ways to gen-
erate a large number of exemplars. We shall now describe
how to automatically learn an ensemble of multi-local fea-
tures for object category detection.

3. Learning

The extraction of multi-local feature ensembles should
be adapted to the task at hand. For object detection, we
want to learn a minimal ensemble that yield a sufficiently
specific representation of all exemplars of the target cat-
egory. We employ a simple boosting type algorithm and
maintain a distribution over the examples reflecting the rel-
ative importance of the examples. We iteratively call a base
learning algorithm to learn one multi-local feature using the
current distribution. The distribution is then updated before
the next call to the base learner. We first describe the base
learning algorithm and then the boosting scheme to learn
the ensemble.

3.1. Learning a single multi-local feature

The input to the learning algorithm is a set of example
images, {Ii|i = 1, . . . , nt}, containing the target object cat-
egory (no negative training examples are used) and a distri-
bution, d = {d1, . . . , dnt} ,

∑nt

i=1 di = 1, over these exam-
ples. Each training image is annotated with the bounding
box(es) of the object(s) in the image.

In order to find a representative shape feature, Θ(ke), we
want to maximize Pi∼d

(
Θ(ke) ∈ Ii

)
under the condition

that Θ(ke) is sufficiently discriminative. In order to enforce
discriminability, we require that ke ≥ K (typically K =
12) and that the edgels of the feature are spread out, i.e.
‖ (xi − xj , yi − yj) ‖ ≥ δ (typically δ = 0.1). Figure 4
shows the edge maps of three example training images (4(a)
- 4(c)) and a multi-local feature learnt by searching for the
most common edgel constellation (4(d)).



We use a greedy algorithm to incrementally construct a
multi-local feature. The first step is to find an edgel pair
that occurs in as many training examples as possible, i.e.
maximize Pi∼d

(
Θ(2) ∈ Ii

)
. This implies searching over

Θ(2) = (ϕ1, ϕ2, xc, yc, w, h, α) for the feature that is found
in the largest number of training examples (weighted by the
distribution d). In practice we sample Pi∼d

(
Θ(2) ∈ Ii

)
on a regular lattice. For each sample point, we count the
number of training examples that generate at least one suffi-
ciently similar feature. We take the sample with the highest
(weighted) count as the sought maximum. Recall that all
parameters are expressed in the coordinate system defined
by the first two edgels (the aligning pair).

After finding the most common pair, we incrementally
add one edgel at a time to the feature until we have reached
the required number of edgels, ke. At each step in this
process we select the edgel that maximizes the probabil-
ity of finding the extended feature in an image drawn
from the distribution d, under the constraint that the new
edgel is sufficiently far from all previously chosen edgels.
Specifically, to find the kth edgel we want to maximize
Pi∼d

(
xk, yk, ϕk ∈ Ii|Θ(k−1) ∈ Ii

)
. This requires search-

ing over (xk, yk, ϕk), the coordinates of the kth edgel
in the coordinate system defined by the aligning pair.
In practice, we sample Pi∼d

(
xk, yk, ϕk ∈ Ii|Θ(k−1) ∈ Ii

)
densely. Typically, about 2000 samples are used. If the base
learner is called several times with similar distributions, d,
we would like the learner to return complementary features
rather than several copies of the same feature. Therefore
we add an element of chance by generating sample points
randomly through uniform sampling in the aligned bound-
ing box. For each sample point, we count the number of
training examples containing Θ(k−1) that also has an edgel
sufficiently close to (xk, yk, ϕk). The count is weighted by
the distribution d. We then set xk, yk, ϕk equal to the sam-
ple point with the highest count, but constrain the selection
so that ‖ (xk − xi, yk − yi) ‖ ≥ δ, ∀i ≤ k−1. The selection
process is terminated when the feature contains ke edgels.
See figure 6 for some sample features learnt this way.

This step of the learning process is somewhat similar in
spirit to the method for learning active basis models in [20].

3.2. Learning an ensemble of multi-local features

Now that we have an algorithm for learning a single
global shape feature, Θ(ke), given a set of examples and
a distribution giving the relative importance of these ex-
amples, we can use a simple boosting algorithm to learn
an ensemble of global shape features,

{
Θ(ke)

1 , . . . ,Θ(ke)
kf

}
.

This algorithm should ensure that each training example
is detected by a sufficient number of shape features. For
this purpose we maintain weights representing the impor-
tance of each training example. The weights are initialized

uniformly and are then updated after each call to the base
learner described above. The weights are updated accord-
ing to 2, where ρ < 1. The weights of examples that are
detected by the learnt shape feature are thus decreased, forc-
ing the base learner to focus on the other examples in future
rounds. The process is repeated until kf shape features are
learnt (typically, kf = 40).

dk+1
i =

{
ρ · dki , if Θ(ke)

k ∈ Ii
dki , if Θ(ke)

k /∈ Ii
(2)

The output of the learning algorithm is thus a set of kf
learnt shape features described as in equation 1.

4. Detection
We now assume that we have learnt an ensemble of

multi-local features such that each exemplar of the target
category contains a number of features and that the differ-
ent features are somewhat independent. We then want to ag-
gregate information from different features. The detection
process can be divided into two steps; (1) detecting individ-
ual multi-local features and (2) combining these detections
into object detections (voting).

4.1. Detecting a single multi-local feature

See figure 5 for an illustration of how to detect individ-
ual multi-local features. We consider all (ordered) pairs of
edgels in the image. For each such pair, we investigate if it
might correspond to the pair of aligning edgels of a learnt
multi-local feature. If there is any multi-local feature with
sufficiently similar orientations of the aligning edgels, we
hypothesize that the aligning edgels of that feature corre-
spond to the pair of edgels in the image. The remaining
edgels of that feature are then used to verify that hypothe-
sis; the predicted image locations of these edgels are com-
puted and we use the distance from these locations to the
closest image edgel as given by the distance transform to
determine if these verification edgels are present in the im-
age. If the distance from each predicted location to the clos-
est image edgel is sufficiently small, a feature was detected.
Distances, coordinates and angles are always expressed rel-
ative to the coordinate system defined by the pair of aligning
edgels, according to section 2.

4.2. Object detection using multi-local features

Different multi-local features are integrated by
letting each detected feature vote for a specific
bounding box in the image, described by parameters(
x

(im)
c , y

(im)
c , w(im), h(im), α(im)

)
. The votes are com-

bined in a Hough transform-like way. However, since we
want to be able to extend this algorithm to high dimensional
parameter spaces, we do not partition the parameter space
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Figure 5. Detection of individual shape features. 1) A pair of
edgels in the image has orientations that match the aligning pair
(red) of a stored multi-local feature. 2) The aligning pair of the
stored multi-local feature is aligned with the pair of image edgels
and we check if the rest of the edgels in the multi-local feature are
present sufficiently close to their predicted locations in the image.
3) If all the remaining edgels are present, the detected feature casts
a vote for the predicted bounding box of the object.

into a regular lattice. Instead we employ a simple greedy
clustering algorithm. We first compute the overlap between
each pair of detected bounding boxes. The overlap is
defined as the area of the intersection divided by the area
of the union of the bounding boxes. If two bounding boxes
have sufficient overlap and similar orientation (as given
by the α parameter), they are said to vote for each other.
For each feature detection, we can now count the number
of other feature detections voting for it. We iteratively
select the detection with most votes and add it to a list
of candidate object detections. After each iteration, the
selected detection and all other detections voting for it
are removed from further voting. We finally threshold
the number of votes of each candidate object detection to
produce the output object detections.

5. Experiments and Dataset

We have claimed that an ensemble of multi-local fea-
tures can be used to efficiently represent shape-based object
categories and that such an ensemble can be learned auto-
matically from training images. We now demonstrate this
by evaluating the object detection performance when us-
ing multi-local features in a simple voting scheme on the
ETHZ Shape Classes dataset [7]. This dataset is challeng-
ing due to large intra-class variation, clutter and varying
scales. This dataset has been used by several other authors;
in [16, 21, 7, 17] hand drawn models are evaluated and in

[6, 9] models learnt from images are evaluated.
Experiments were performed on all classes in the dataset

and results are produced as in [6], using 5-fold cross-
validation. We build 5 different detectors for each class
by randomly sampling 5 subsets of half the images of that
class. All other images in the dataset are used for testing.
The dataset contains a total of 255 images and the number
of class images varies from 32 to 87. Thus, the number
of training images will vary from 16 to 43 and the test set
will consist of about 200 background images and 16 to 44
images containing occurrences of the target object.

Image Representation and Preprocessing All images
(both for training and test) are preprocessed by extracting
a set of edgels, E = {(xi, yi, θi) | i = 1 . . . n} (where n
is the number of edgels), and by computing the distance
transform [2] (which contains the distance from any pixel
to the closest edgel). In fact, we divide the set of edgels
into several subsets by quantizing the edgel orientation into
several overlapping intervals and we compute one distance
transform table for each subset. When doing a lookup in
this table, we use the orientation, θq , of the query edgel,
(xq, yq, θq), to determine which distance transform table to
use. The returned value is thus the distance from the query
edgel to the closest image edgel with similar orientation.

Edgels are extracted by sampling the image gradient at
locations returned by an edge detector. In these experiments
we used the edge maps provided with the ETHZ dataset
(computed using the Berkley edge detector [14]).

6. Results

Figure 6 shows some sample shape features learnt by the
training algorithm; the aligning edgels are marked in red.
We notice that the aligning edgels tend to be far apart on
the object; this makes the bounding box prediction robust
against slight changes in the position of the aligning edgels.
The remaining edgels are spread out to cover the whole ob-
ject. Different shape features in general represent different
subsets of the training set (however, each training example
should be represented by several shape features).

Figure 7 shows some sample detections. The detected
bounding boxes are displayed with a vertical line indicat-
ing the orientation of the detection. We also highlight all
image edgels that were found to be in correspondence with
the edgels of the shape features voting for a given bounding
box. We can see that these edgels tend to be on the contour
of the object and together they actually delineate the object
boundary quite well. This could potentially be used to esti-
mate the object boundary (even though only bounding box
information was used during training).

In figure 8 we show some false positives. False positives
typically occur in images with many edgels, where several
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(b) Bottles
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(c) Giraffes
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(d) Mugs
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(e) Swans

Figure 6. Some sample multi-local features output by the learning
algorithm (aligning edgels highlighted in red).

shape features are accidentally detected at the same loca-
tion. Since edge continuity is never enforced by our method,
these features need not combine to form a connected struc-
ture. Appending a post-verification stage that checks for
connectedness would undoubtedly reduce the number of
false positives. In the future we aim to integrate some sort
of verification into the method.

Quantitative results are plotted in figure 9 as the detec-
tion rate (the number of true positives divided by the num-
ber of occurrences of the target object in the test set) versus
the number of false positives per image (FPPI). We prefer
using FPPI, instead of precision, as a measure of error rate,
since it is not biased by the number of positive and negative
examples in the test set. Precision would for example be
unsuitable for comparison to methods evaluated using a dif-
ferent cross-validation scheme, since this might affect the
number of positive test examples.

A detection is counted as correct if the detected bounding
box overlaps more than 50 % with the ground truth bound-
ing box. Bounding box overlap is again defined as the area
of intersection divided by the area of union of the bound-
ing boxes. As a reference, [6] used 20 % and the PASCAL
Challenge [3] uses 50 % overlap to define a correct detec-
tion. Our algorithm detects objects at any orientation, but
to allow a fair comparison to previous methods that have
only detected vertically oriented objects, we filter out all
non-vertical detections.

Figure 7. Example detections. The image edgels that were active
in producing a detection are highlighted in black.

In table 1 we compare the detection performance of our
system to the results presented in [6]. We choose to com-
pare to [6] since that is the only model learnt from images
that has been evaluated on this database (to the knowledge
of the authors). We notice particularly that our performance
on the Giraffe class is significantly better than [6]. One pos-
sible reason is that it is difficult to extract good edge seg-
ments from the giraffe images and since our method uses



Figure 8. Example false positives of applelogo, bottle, giraffe, mug
and swan ordered from top left to bottom right. The image edgels
that were active in producing a detection are highlighted in black.

edgels rather than edge segments, it has an advantage on
this data. Our method performs worse on the applelogos
and swans. In the case of applelogos, we believe these re-
sults to be partly due to the subsampling that we perform to
produce the list of edgels, E = {(xi, yi, θi) | i = 1 . . . n},
in the preprocessing stage. Some applelogos are quite small
and are only represented by a small number (6-12) of edgels
and are not detected at all. In the case of swans, individual
shape features tended to generate bounding-box votes that
were too different to end up in the same cluster in the vot-
ing/clustering step. Thus many swans were detected multi-
ple times and each detection received only a few votes.

7. Discussion and Future Work

We have demonstrated multi-local features for shape-
based object description and detection.
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Figure 9. Detection rate (DR) plotted versus false positives per
image (FPPI).

Table 1. Comparison of detection performance. We state the aver-
age detection rate at 0.4 FPPI and its standard deviation in paren-
theses. We compare to the full system of [6], using models learnt
from images.

A. logos Bott. Gir. Mugs Swans

[6]: 83.2 83.2 58.6 83.6 75.4
(1.7) (7.5) (14.6) (8.6) (13.4)

our syst: 73.0 86.9 80.3 81.6 63.5
(8.2) (5.2) (6.2) (7.5) (12.4)

By learning an ensemble of multi-local features we not
only get an efficient representation of the intra-class varia-
tion but also redundancy, yielding a robustness against oc-
clusion. Furthermore, it is not always the case that parts of
the object are occluded and the rest is visible; it may also
happen that the whole object is partially occluded; consider
for example an animal seen through foliage. Ideally, multi-
local features should be less sensitive to this type of situa-
tion, since it does not rely on extracting complete parts or
edge segments.

By selecting edgel constellations that are common to



several training examples the learning algorithm is able to
reject clutter in the training data. During detection, the algo-
rithm only requires presence of edgels and not absence, so
the addition of clutter does not cause false negatives. How-
ever, it can cause false positives.

There are a number possibilities for future research.
Firstly, in order to build a complete object detection system,
it will be necessary to add a verification step, for example
append a shape matching stage as in [6]. As mentioned, this
would reduce the number of false positives. Possible exten-
sions include: 1) using multi-local features to describe parts
of articulated objects (e.g. animals), 2) using multi-local
features for 3D object detection, 3) combining multi-local
features with discriminative local features and 4) building
hierarchies of multi-local features.

8. Conclusion

We have motivated using multi-local features to effi-
ciently model and detect object categories defined by their
global shape properties. Each feature is represented and de-
tected independently of other features. We thus leverage
many of the advantages of part-based models for object cat-
egories with distinctive local features. Multi-local features
may also be a good complement to local features for objects
that have discriminative local features. We have shown that
multi-local features, combined in a manner similar to the
voting schemes used with traditional constellation models,
yield a detection performance comparable to state of the art
methods. We view this as a proof of concept and we sug-
gest several possibilities for future work in hope to inspire
attention to an area that we think has not been sufficiently
explored.
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