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Abstract

Already in 1966, Graham showed that a simple procedure called list scheduling yields a
2-approximation algorithm for the central problem of scheduling precedence constrained jobs
on identical machines to minimize makespan. Till this date it has remained the best algorithm
and whether it can or cannot be improved has become a major open problem in scheduling
theory.

Assuming a new variant of the unique games conjecture (introduced by Bansal & Khot), we
resolve this problem by showing that the scheduling problem is NP-hard to approximate within
a factor strictly less than 2. The result is obtained by establishing a quite surprising relation
between the approximability of the considered problem and that of scheduling precedence con-
strained jobs on a single machine to minimize weighted completion time. This relation between
two classical scheduling problems is interesting on its own. In particular, a tight hardness result
for the latter problem implies a tight hardness result for the considered problem.

1 Introduction

One of the first approximation algorithms with a worst-case analysis can be traced back to 1966,
when Graham [Gra66] studied the following central scheduling problem (known as P |prec|Cmax in
standard scheduling notation [GLLK79]): There is a set N of n jobs to be scheduled on m identical
parallel machines. Each machine can process at most one job at a time and each job j ∈ N requires
pj uninterrupted units of processing on one of the machines. Jobs also have precedence constraints
between them that are specified by a partial order P on N , where (i, j) ∈ P implies that job i
must be completed before job j can be started. The goal is to find a schedule that minimizes the
makespan Cmax = maxj Cj , where Cj is the time at which job j completes in the given schedule.

Arguably the simplest algorithm for many scheduling problems is the so called list scheduling
procedure, where we order the jobs in a preference list and schedule the first available job(s) from
the list whenever a machine falls idle. In his seminal paper [Gra66], Graham showed that for
P |prec|Cmax, the list scheduling procedure has a worst-case performance guarantee of 2− 1/m.

Considering the special case with no precedence constraints, denoted by P ||Cmax, Graham [Gra69]
later refined his analysis and showed that the list scheduling procedure has a worst-case performance
guarantee of 4/3 − 1/(3m), assuming the priority list is obtained by arranging jobs according to
non-increasing processing times. Using more complex techniques, Hochbaum & Shmoys [HS87] im-
proved upon the 4/3−1/(3m) approximation guarantee by giving a polynomial time approximation
scheme for P ||Cmax. This gives a tight result since P ||Cmax is known to be strongly NP-hard and
hence does not admit a fully polynomial time approximation scheme [GJ78]. We remark that the
problem where the number of machines is fixed, i.e., not part of the input, is also resolved in terms
of approximability: Sahni [Sah76] gave a fully polynomial approximation scheme and it is easily
seen to be weakly NP-hard by a reduction from partition. In summary, the considered problem is
well understood in the absence of precedence constraints.
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Unfortunately, understanding the complexity in the presence of precedence constraints has
turned out to be much more challenging and remains limited. The mentioned (2−1/m)-approximation
algorithm obtained by Graham in 1966, remains the algorithm of choice for this problem. The last
progress in understanding whether it can or cannot be improved, was made over 30 years ago by
Lenstra & Rinnooy Kan [LK78a] who showed that it is NP-hard to approximate P |prec|Cmax within
a factor less than 4/3. Closing this gap is mentioned as “Open Problem 1” in Woeginger and Schu-
urman’s list of ten open problems in scheduling theory [SW99]. Furthermore, the computational
complexity of finding an exact solution to Pm|prec, pj = 1|Cmax (the problem with a fixed number
m of machines and unit processing times), open problem “OPEN8” from the original list of Garey
and Johnson [GJ79], is still open.

We remark that Du, Leung & Young [DLY91] showed P2|prec|Cmax to be strongly NP-hard.
Whereas, P2|prec, pj = 1|Cmax is known to be polynomially solvable by techniques from matching
theory (Fujii, Kasami & Ninomiya [FKN69]). The best algorithm for P3|prec, pj = 1|Cmax is a
4/3-approximation algorithm by Lam & Sethi [LS77]1 who analyzed an algorithm by Coffman &
Graham [CG72]. In a recent paper [GR08], Gangal & Ranade showed that Graham’s (2 − 1/m)-
approximation algorithm can be improved to a (2 − 7

3m+1 )-approximation algorithm in case of
unit processing times and m > 3. Older results by Hu [Hu61] and Garey, Johnson, Tarjan, &
Yannakakis [GJTY83] give polynomial time algorithms in the case of unit processing times and
special cases of precedence constraints. We refer the interested reader to the surveys [CPW98]
and [GLLK79] for further information on these and other algorithms for special cases of P |prec|Cmax.

1.1 Our Results

We make the first progress in settling (i) in the last 30 years: assuming a new possibly stronger
version of the unique games conjecture (introduced by Bansal & Khot [BK09]), we show that it is
NP-hard to approximate the scheduling problem P |prec|∑wjCj within any factor strictly less than
2, even in the case of unit processing times. The result is obtained by establishing a quite surprising
connection between P |prec|Cmax and the scheduling problem of minimizing weighted completion
time with precedence constraints (1|prec|∑wjCj), studied in [BK09].

The problem 1|prec|∑wjCj is another classical scheduling problem that has been studied since
the 70’s [Sid75, Law78, LK78b, Pot80]. Despite much interest, there was, until recently, a rela-
tively large gap in our understanding of the approximability of 1|prec|∑wjCj . On the algorithmic
side, several different techniques and linear programming formulations have been used to obtain
2-approximation algorithms for it (see e.g. [Sch96, CM99, CH99, MQW03]). On the hardness side,
before 2007, only NP-hardness for the exact problem was known [Law78, LK78b].

However, in contrast to P |prec|Cmax, several recent results have lead to increased understand-
ing of 1|prec|∑wjCj . In a series of papers [CH99, CS05, AM09] it was in fact established that
1|prec|∑wjCj is a special case of weighted vertex cover; a result exploited to obtain improved
approximation algorithms for special cases of precedence constraints [AMMS07]. Furthermore,
new techniques have been used to obtain inapproximability results. Ambühl, Mastrolilli & the
author [AMS07] used the Quasi-random PCP due to Khot [Kho06] to rule out the possibility of
a polynomial time approximation scheme. More importantly, Bansal & Khot [BK09] settled the
approximability of 1|prec|∑wjCj assuming a certain conjecture. More specifically, they proved,
assuming a new variant of the unique games conjecture (see Hypothesis B.2), that it is NP-hard
to approximate the value of an optimal schedule to 1|prec|∑wjCj within a factor of 2− ε for any
ε > 0.

Our main result lets us profit from the hardness of 1|prec|∑wjCj to obtain hardness of
P |prec|∑wjCj :

Theorem 1.1 For any ε > 0 and ζ ≥ ζ(ε) where ζ(ε) tends to 0 as ε tends to 0: if 1|prec|∑wjCj
has no (2− ε)-approximation algorithm2 then P |prec|Cmax has no (2− ζ)-approximation algorithm,
even in the case of unit processing times.

1Also see [BT94] for a correction of an error in [LS77].
2Recall that an α-approximation algorithm is a polynomial time algorithm that approximates the value of an

optimal solution within a factor of α.
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The relation between the approximability of 1|prec|∑wjCj and that of P |prec|Cmax is interesting
on its own. In particular, even if the new variant of the unique games conjecture is false it might
very well be that 1|prec|∑wjCj (and thus P |prec|Cmax by the above theorem) is NP-hard to
approximate within a factor 2− ε, for any ε > 0.

Proof Overview. The proof is made in two steps. First in Section 2, we show that if 1|prec|∑wjCj
has no (2− ε)-approximation algorithm then the following bipartite ordering problem is also hard:
given an n by n bipartite graph G(V,W,E) determine whether

• (YES Case): G has a permutation π : V 7→ {1, . . . n} such that for i = 1, 2, . . . , n, the set
{w ∈W : max{v,w}∈E π(v) ≤ i} has size at least i− ζn.

• (NO Case): For each permutation π : V 7→ {1, . . . n}, the set {w ∈ W : max{v,w}∈E π(v) ≤
(1− ζ)n} has size at most ζn.

The proof of the hardness of this problem is based on some new observations together with several
older results regarding the structure of problem 1|prec|∑wjCj .

Second in Section 3, we provide a reduction from the bipartite graph problem to P |prec|Cmax.
The intuition of the reduction is the following. Let δ > ζ be a small constant and Let G(V,W,E) be
an instance of the bipartite ordering problem. Consider the instance I of P |prec|Cmax with (1−δ)n
machines, a job with processing time 1 for each vertex in G, and a precedence constraint from v ∈ V
to w ∈ W if {v, w} ∈ E. Now suppose G is a YES instance, then there is a permutation π so that
the set {w ∈ W : max{v,w}∈E π(v) ≤ (1 − δ)n} has size at least (1 − δ)n − ζn ≥ (1 − 2δ)n. This
means that there is a schedule of I that completes the jobs corresponding to the first (according
to π) (1 − δ)n vertices in V at time 1; schedules the remaining jobs in V (at most δn many) and
(1 − 2δ)n jobs in {w ∈ W : max{v,w}∈E π(v) ≤ (1 − δ)n} during time interval [1, 2]; and finally
completes the remaining jobs in W at time 3. On the other hand if G is a NO instance, then it is
easy to see that any schedule will have completed only a fraction ζ of the jobs in W at time 2. It
follows that any schedule will need to schedule at least a fraction 1− ζ > 1− δ = m of the W -jobs
from time 2 and will thus have makespan at least 4.

To amplify this “gap”, we form a new instance I ′ that consists of several copies of I that are
related by precedence constraints. For a hardness factor close to 2, a careful balance between the
number of copies and the number of machines is needed. With our current techniques ε must
be significant smaller than ζ and as a result a strong hardness result (close to 2) is needed for
1|prec|∑wjCj to obtain a good hardness result for P |prec|Cmax.

�

The above theorem together with the result of Bansal & Khot [BK09], gives us the following corollary.

Corollary 1.2 Assuming a new variant of the unique games conjecture (Hypothesis B.2), it is
NP-hard to approximate P |prec|Cmax within a factor (2− ζ), for any ζ > 0.

2 Bipartite Ordering and 1|prec|∑wjCj

Problem 1|prec|∑wjCj is the problem of scheduling a set N of n jobs on a single machine, which
can process at most one job at a time. Each job j ∈ N has a processing time pj and a weight
wj . Jobs also have precedence constraints between them that are specified in the form of a partial
order P on N . The goal is to find a schedule that minimizes

∑
j∈N wjCj , where Cj is the time

at which job j completes in the given schedule. In this section we shall see that if 1|prec|∑wjCj
has no (2− ε)-approximation algorithm for some ε > 0, then there is no polynomial algorithm that
distinguishes between certain bipartite graphs (see Theorem 2.2). This will then be used to prove
our main result in Section 3.

Before presenting the result of this section we need the following definition.
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Definition 2.1 For an n by n bipartite graph G = (V,W,E) and a permutation π : V 7→ {1, . . . , n},
define

V πi = {v ∈ V : π(v) ≤ i} for i = 1, . . . , n

Wπ
i = {w ∈W : max{v,w}∈E π(v) ≤ i} for i = 0, 1, . . . , n.

Theorem 2.2 For any ε > 0 and ζ such that ζ2 > 2ε: if no polynomial algorithm approximates
1|prec|∑wjCj within a factor of (2 − ε), then there is no polynomial algorithm that distinguishes
between n by n bipartite graphs

• that have a permutation π of V that satisfies

|Wπ
i | ≥ i− ζn for i = 1, 2, . . . , n

• and those for which each permutation π of V satisfies

|Wπ
(1−ζ)n| ≤ ζn.

Proof. Woeginger [Woe03] proved that the general case of 1|prec|∑wjCj is no harder to approx-
imate than the following bipartite case:

1. The set N of jobs are partitioned into two sets A and B so that the set P of precedence
constraints is a subset of A×B.

2. The jobs in A have processing time 1 and weight 0 and the jobs in B have processing time 0
and weight 1.

We can thus restrict our attention to such bipartite instances. Structural results by Sidney [Sid75]
and algorithmic results by Lawler [Law78] imply that an α-approximation algorithm for bipartite
instances that are so called non-Sidney-decomposable gives an α-approximation algorithm for all
bipartite instances 3. A bipartite instance is non-Sidney-decomposable if for each A′ ⊆ A the
number of jobs in B with no predecessors in A \A′ is at most |A

′|
|A| |B|. We can thus further restrict

ourselves to bipartite instances that are non-Sidney-decomposable.
When analyzing non-Sidney-decomposable bipartite instances it will be convenient to work with

the so-called 2D Gantt chart, first introduced by Eastman et al. [EEI64] and later revived by
Goemans and Williamson [GW00] to give elegant proofs for various results related to 1|prec|∑wjCj .
In a 2D Gantt chart, we have a horizontal axis of processing time and a vertical axis of weight. For
a scheduling instance of the above form, the chart starts at point (0, |B|) and ends at point (|A|, 0).
A job j is represented by a rectangle of length pj and height wj . Hence, a job of A is represented
by a horizontal line of length 1 and a job of B is represented by a vertical line of length 1. Any
schedule is represented in the 2D Gantt chart by placing the corresponding rectangles of the jobs
in the order of the schedule such that the startpoint of a job is the endpoint of the previous job (or
(0, |B|) for the first job). The value

∑
j wjCj of a schedule is then the area under the “work line”

(see the shaded area in Figure 1-a).
Recall that a bipartite instance is non-Sidney-decomposable if for each A′ ⊆ A the number

of jobs in B with no predecessors in A \ A′ is at most |A
′|
|A| |B|. It follows that any schedule for

such an instance will have its work line always above the diagonal in the 2D Gantt chart. Hence,
any schedule of a non-Sidney-decomposable bipartite instance has value at least |A||B|/2. This
was discovered independently in the general case by Chekuri and Motwani [CM99] and Margot et
al. [MQW03]; and later shown by Goemans and Williamson [GW00] using 2D Gantt charts.

As non-Sidney-decomposable bipartite instances are the hardest instances to approximate and
any schedule of such an instance with job sets A and B has value at least |A||B|/2, we have
the following. If there is no (2 − ε)-approximation algorithm for 1|prec|∑wjCj then there is no
polynomial algorithm that distinguishes between non-Sidney-decomposable bipartite instances with

3We remark that we have restricted ourselves to bipartite instances of 1|prec|
P
wjCj , but the results by Sidney

and Lawler hold for general instances (see [GW00] for a nice exposition of these results).
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(0, |B|)

(|A|, 0)

Weight

Processing time

(0, 0)

work line

Weight

Processing time

(0, 0)

(i, nB − σ(i))

(a) (b)

≥ ζnB

≥ ζnA

f(x) = nB − x · nB

nA
+ ζnB

(nA, 0)

(0, nB)

Figure 1: (a): An example of a 2D Gantt diagram. (b): An illustration of the argument used to
prove Claim 2.3-a.

value 1+2ε
2 |A||B| and those with value (1 − ε)|A||B|, for any ε > 0. Indeed, suppose there exists

a polynomial time algorithm A that outputs “YES” if the scheduling instance has value at most
1+2ε

2 |A||B| and outputs “NO” if the scheduling instance has value at least (1− ε)|A||B|. Then the
following is a (2− ε)-approximation algorithm: given a non-Sidney-decomposable bipartite instance
with job sets A and B, run A on the instance and

• if A outputs “YES” then approximate the value of the instance to be (1− ε)|A||B| (since any
schedule has value at least |A||B|/2 this is a (2− 2ε)-approximation);

• else approximate the value of the instance to be |A||B| (since any schedule then has value at
least 1+2ε

2 |A||B| this is a 2
1+2ε ≤ (2− ε)-approximation).

Now let I be a non-Sidney-decomposable bipartite instance with the jobs partitioned into sets A
and B and precedence constraints P . Let nA = |A|, nB = |B|, and n = nAnB . With I we associate
an n by n bipartite graph G(V,W,E) where there are nB vertices in V for each a ∈ A referred to
as Va, nA vertices in W for each b ∈ B referred to as Wb, and an edge between all vertices in Va
and all vertices in Wb if (a, b) ∈ P . In other words, G is the undirected graph of the precedence
constraints where each job in A has been copied nB times and each job in B has been copied nA
times. The following claim completes the proof of the theorem.

Claim 2.3 For any ζ > 0 such that ζ2 > 2ε:

(a) If I has a schedule of value at most 1+2ε
2 n then G has a permutation π of V that satisfies

|Wπ
i | ≥ i− ζn for i = 1, 2, . . . , n

(b) If all schedules of I have value at least (1− ε)n then each permutation π of V satisfies

|Wπ
(1−ζ)n| ≤ ζn.

Proof of Claim.

(a): Let σ be a schedule of I with value at most 1+2ε
2 n. For i = 0, 1, 2, . . . , nA, we let σ(i) denote

the number of jobs in B that have been scheduled when at most i jobs in A have completed. Now
suppose toward contradiction that there exists an integer i = 1, 2, . . . , nA such that σ(i) ≤ inB

nA
−ζnB
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and consider the the 2D Gantt chart of σ. As σ will have its work line above both the diagonal and
the point (i, nB − σ(i)) on the dotted line(see Figure 1-b), the value of σ will be at least

nb · na/2 + ζna · ζnb/2 =
1 + ζ2

2
n,

which is, by the choice of ζ, strictly greater than 1+2ε
2 n. A contradiction since we assumed the value

of σ to be at most 1+2ε
2 n. Hence, for all i = 1, 2, . . . , nA we have σ(i) > inB

nA
− ζnB . Now let π be a

permutation that orders all vertices in Va before the vertices in Va′ if σ schedules a before a′. Note
that by the definition of G and π

|Wπ
i·nB
| ≥ nA · σ(i) for i = 1, . . . , nA.

It follows that

|Wπ
i | ≥ nA · σ(i/nB) = i− ζnAnB = i− ζn for i = 1, 2, . . . , n.

We remarked that we assumed for simplicity that i/nb evaluates to an integer. However, it is easy
to see that a more careful analysis with bi/nbc will not have any impact on the final result.

(b): Assume all schedules of I have value at least (1− ε)n and suppose toward contradiction that
there is a permutation π of V that satisfies |Wπ

(1−ζ)n| > ζn. Let σ be a schedule of I such that

1. for each a, a′ ∈ A, σ schedules a before a′ if maxv∈Va
π(v) ≤ maxv′∈Va′ π(v′)

2. and a job in B is scheduled as soon as its predecessors are finished.

Since |Wπ
(1−ζ)n| > ζn at least ζnB jobs in B are scheduled when at most (1−ζ)nA jobs are completed

in σ. It follows that the value of σ is at most

(1− ζ)nA · ζnB + nA · (1− ζ)nB = (1− ζ2)n.

A contradiction since ζ2 > 2ε and hence (1− ζ2) ≤ (1− ε). �

The proof of the above claim completed the proof of Theorem 2.2. �

3 Proof of Main Result

Here, we shall use Theorem 2.2 to establish the connection between 1|prec|∑wjCj and P |prec|Cmax.
Given an n by n bipartite graph G(V,W,E) and an integer d, we will construct an instance I(d) of
P |prec, pj = 1|Cmax such that for a small ζ > 0 that only depends on d:

• (Completeness) If G has a permutation π of V that satisfies

|Wπ
i | ≥ i− ζn for i = 1, 2, . . . , n

then I(d) has a schedule of makespan d+ 1.

• (Soundness) If each permutation π of V satisfies

|Wπ
(1−ζ)n| ≤ ζn.

then any schedule of I(d) has makespan 2d.

Theorem 1.1 then follows by combining Theorem 2.2 with the above reduction. We first present
the reduction in Section 3.1 followed by the completeness and soundness analyses in Sections 3.2
and 3.3, respectively.
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3.1 Construction

The final instance I(d) will consist of several copies of a set of precedence constrained jobs. This
set will be referred to as the “building block” and is actually the only part of the construction that
depends on G. The number of copies of the building block is carefully selected and precedence
constraints between the copies are added to obtain the final instance I(d). We first present the
building block, then we set the parameters that control the number of copies of the building block
and the precedence constraints that are added between those copies. Finally, we present the instance
I(d).

Building Block Let B denote the building block. The set of jobs is V ∪ W and there is a
precedence constraint from v ∈ V to w ∈W if {v, w} ∈ E. In addition the jobs in V , referred to as
V -jobs, have processing time 1 and the jobs in W , referred to as W -jobs, have processing time 0.
We remark that the jobs with processing time 0 — the W -jobs — are superfluous in the sense that
removing them will not change the length of any schedule. Instead, they are included because they
make the exposition much cleaner.

Parameters Before describing instance I(d) we also need to define some parameters. Select
γd = 1

10 and let γ`−1 = γ10
` for ` = d, d − 1 . . . , 1. Furthermore, let δ`+1 = 1/γ5

` for ` = 1, 2, . . . , d.
Note that δ2, . . . , δd+1, 1/γ1, . . . , 1/γd are all integers. The parameters are also selected such that
the following bounds hold (they will be used in the completeness and soundness analyses).

Lemma 3.1 For each ` = 1, . . . , d

(1− 4γ`−1)δ`+1 ≥ 1− 2γ` (1)(
1− γ`

4

)δ`+1 ≤ γ`/2 (2)

The proof of the above bounds is straightforward and can be found in Appendix A. Finally, we
select

ζ = γ10
0 . (3)

Instance Instance I(d) has m machines (selected below (4)) and consists of several copies of B
related to each other by precedence constraints. Conceptually, it will be useful to partition these
copies into d layers. The copies in layer ` = 1, 2, . . . , d will then in turn be subdivided into several
groups. We will denote the set of groups in layer ` by L`. We continue by a formal definition of the
layers and will then define the precedence constraints between the layers (see also Figure 2 for an
example of the construction):

• Layer 1 consists of a set
L1 = {B(1,i) : i ∈ {1, . . . , n}}

of |L1| = n groups and each group B(1,i) ∈ L1 contains (1 + γ1) m
n·|L1| copies of B.

• Layer ` = 2, 3, . . . , d consists of a set

L` = {B(`,i,X) : i ∈ {1, . . . , n} and X a multi-set consisting of δ` groups from L`−1}

of |L`| = n · |L`−1|δ` groups and each group B(`,i,X) ∈ L` contains (1 + γ`) m
n·|L`| copies of B.

Note that the number of V -jobs and the number of W -jobs in layer ` = 1, . . . , d are both (1 + γ`)m.
We are now ready to define the precedence constraints between the different layers. For a group

B(`,i,X) ∈ L` with ` ≥ 2, there are precedence constraints from all the jobs that correspond to wi
in the groups L`−1 ∩X to all the jobs in B(`,i,X).
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Finally, we select the number of machines so as to guarantee that (1 + γ`) m
n|L`| is an integer for

` = 1, . . . , d. As |L`| divides |Ld| for ` = 1, . . . , d, we let

m =

(
d∏
i=0

1
γi

)
· n · |Ld| =

(
d∏
i=0

1
γi

)
· n · n1+

Pd
i=2

Qd
j=i δj (4)

Note that m is a polynomial in n whose degree only depends on d and since layer ` = 1, 2, . . . , d
contains (1 + γ`)m V -jobs and (1 + γ`)m W -jobs the construction is polynomial in n for any fixed
d.

v1 v2

w1 w2 Layer 1 consisting
of n = 3 groups

Layer 2 consisting of
27 groups. One for
each i ∈ {1, 2, 3} and
δ2 = 2 groups in layer 1

v3

w3

v1 v2

w1 w2

v3

w3

v1 v2

w1 w2

v3

w3

v1 v2

w1 w2

v3

w3

v1 v2

w1 w2

v3

w3

v1 v2

w1 w2

v3

w3

v1 v2

w1 w2

v3

w3

B(1,1) B(1,2) B(1,3)

B(2,1,{B(1,1)B(1,2)}) B(2,1,{B(1,2)B(1,2)}) B(2,2,{B(1,2)B(1,3)}) B(2,3,{B(1,2)B(1,3)})

Figure 2: An example of the groups in I(2) with δ2 = 2 arising from the bipartite graph with
V = {v1, v2, v3}, W = {w1, w2, w3}, and E = {{v1, w1}, {v2, w2}, {v3, w3}, {v3, w2}}. Each rectangle
represents a group that contains a layer dependent number of copies of the building block. The
V -jobs and W -jobs are depicted in gray and white, respectively.

3.2 Completeness

Let π be a permutation of V that satisfies

|Wπ
i | ≥ i− ζn for i = 1, 2, . . . , n. (5)

Let ti = b(1− γi)nc for i = 1, 2, . . . , d. The key lemma for the completeness is the following:

Lemma 3.2 For each ` = 1, . . . , d there exists a schedule σ` of all the jobs in layers 1, . . . , ` satis-
fying: for each k = 1, . . . , `

(i) in at least a fraction 1 − 4γk−1 of layer k’s groups, all jobs corresponding to the vertices in
V πtk ∪Wπ

tk
are scheduled during time interval [k − 1, k];

(ii) the set of remaining jobs of layer k that were not scheduled during [k − 1, k] contains at most
4γkm V -jobs and are scheduled during time interval [k, k + 1].

As σd will schedule all the jobs and have makespan d+ 1, this will imply the completeness analysis.

Proof. We proceed by induction on `.

Base Case: For ` = 1, consider schedule σ1 defined as follows. During time interval

[0, 1] : σ1 first schedules the jobs in layer 1 that correspond to the vertices in V πt1 followed (at
time 1) by the jobs that correspond to the vertices in Wπ

t1 .
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[1, 2] : σ1 first schedules the remaining V -jobs of layer 1 followed (at time 2) by the remaining
W -jobs of layer 1.

Before showing that σ1 satisfies conditions (i) and (ii), we prove that σ1 is a feasible schedule,
i.e., no precedence constraints are violated and σ1 does not schedule more than m jobs at any time.
Note that there might only be a precedence constraint between two jobs in layer 1 if they correspond
to two vertices v ∈ V and w ∈ W with {u,w} ∈ E. By Definition 2.1 there are no edges between
the vertices in V \V πt1 and the vertices in Wπ

t1 . It follows that no precedence constraints are violated
by σ1. To show σ1 feasible, it remains to verify that σ1 does not schedule more jobs than machines
at any time. As the W -jobs have 0 processing time, they can be scheduled sequentially without
increasing the makespan. It is thus sufficient to verify that no more than m V -jobs are scheduled
at any time. During time interval [0, 1], σ1 schedules a fraction t1/n ≤ (1− γ1) of the V -jobs. The
total number of V -jobs scheduled during [0, 1] is thus at most (1− γ1)(1 + γ1)m = (1− γ2

1)m ≤ m.
Similarly, during time interval [1, 2], σ1 schedules the remaining 1 − t1/n ≤ 2γ1 fraction of the
V -jobs. The total number of V -jobs scheduled during [1, 2] is thus at most 2γ1m.

We shall now see that σ1 satisfies conditions (i) and (ii). Since we have proved that the remaining
jobs scheduled by σ1 during time interval [1, 2] contains at most 2γ1m V -jobs, we know that σ1

satisfies condition (ii) in the induction hypothesis. To see that σ1 satisfies condition (i), it is
sufficient to observe that in all layer 1’s groups, all jobs corresponding to the vertices in V πt1 ∪Wπ

t1
are scheduled during time interval [0, 1]. This completes the proof of the base case.

Inductive Step: Suppose we already defined schedules σ1, σ2, . . . , σ` that satisfy conditions (i)
and (ii), for ` < d. We shall now define a schedule σ`+1 that schedules all jobs in layers 1, 2, . . . , `+1
and satisfies conditions (i) and (ii).

Before defining schedule σ`+1 we need to introduce some new notation. A group B ∈ L` is called
early if σ` has completed all the jobs in B that correspond to the vertices in V πt` ∪Wπ

t`
at time `.

Let
Lno-pre`+1 = {B(`+1,i,X) ∈ L`+1 : wi ∈Wπ

t`
and each B ∈ X is early}.

Note that Lno-pre`+1 is defined so that σ` has scheduled all the predecessors of the V -jobs in Lno-pre`+1

at time `.
We are now ready to define σ`+1. Schedule σ`+1 is an extension of σ` in the sense that σ`+1

schedules all the jobs in layers 1, 2, . . . , ` in the same way as σ`. The jobs in layer `+1 are scheduled
by σ`+1 as follows. During time interval

[`, `+ 1] : σ`+1 first schedules the jobs in Lno-pre`+1 that correspond to the vertices in V πt`+1
followed

(at time `+ 1) by the jobs in Lno-pre`+1 that correspond to the vertices in Wπ
t`+1

.

[`+ 1, `+ 2] : σ`+1 first schedules the remaining V -jobs of layer ` + 1 followed (at time ` + 2) by the
remaining W -jobs of layer 1.

As in the base case we start by showing that σ`+1 is feasible. The proof that σ`+1 satisfies
conditions (i) and (ii) will then follow in a straightforward manner.

To show that σ`+1 is feasible we need to prove that no precedence constraints are violated and
the number of scheduled jobs does not exceed the number of machines m at any time.

We start by showing that no precedence constraints are violated. Since σ` does not violate
any precedence constraints between jobs of layers 1, 2, . . . , ` neither does σ`+1. Now consider the
precedence constraints where at least one job is in layer `+ 1. As already noted, σ` and thus σ`+1

has finished all the predecessors of the V -jobs in Lno-pre`+1 at time `. Similarly, by condition (ii) in the
induction hypothesis σ` and thus σ`+1 has finished all the predecessor of all V -jobs in layer `+ 1 at
time `+1. It follows that no precedence constraint from a job in a different layer than `+1 to a job
in layer `+ 1 is violated. Now consider the precedence constraints between jobs in layer `+ 1. As
in the base case, there might only be a precedence constraint between two jobs in the same layer if
they correspond to two vertices v ∈ V and w ∈W with {u,w} ∈ E. By Definition 2.1 there are no
edges between the vertices in V \ V πt`+1

and the vertices in Wπ
t`+1

. Hence, no precedence constraints
are violated.
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We continue by verifying that σ`+1 does not schedule more than m jobs at any time. As noted
in the base case, it is sufficient to verify that no more than m V -jobs are scheduled at any time.
Since σ`+1 and σ` do not differ during time interval [0, `], we only need to verify σ`+1 during time
intervals [`, `+ 1] and [`+ 1, `+ 2]. By condition (ii) in the induction hypothesis, σ` and thus σ`+1

schedules at most 4γ`m V -jobs from layer ` during time interval [`, `+1]. In addition σ`+1 schedules

a fraction t`+1
n ·

|Lno-pre
`+1 |
|L`+1| of the V -jobs from layer `+ 1 during [`, `+ 1]. The total number of V -jobs

scheduled by σ`+1 during [`, `+ 1] is thus at most

4γ`m+
t`+1

n
· |L

no-pre
`+1 |
|L`+1| · (1 + γ`+1)m. (6)

During interval [`+ 1, `+ 2], σ`+1 schedules the remaining V -jobs from layer `+ 1. The number of
such jobs is thus (

1− t`+1

n
· |L

no-pre
`+1 |
|L`+1|

)
(1 + γ`+1)m. (7)

The following claim completes the proof that σ`+1 is feasible.

Claim 3.3 We have that (6) ≤ m and (7) ≤ 4γ`+1m.

Proof of Claim. We start with proving (6) ≤ m:

(6) = 4γ`m+
t`+1

n
· |L

no-pre
`+1 |
|L`+1| · (1 + γ`+1)m

≤ 4γ`m+ (1− γ`+1)(1 + γ`+1)m (trivially
|Lno-pre

`+1 |
|L`+1| < 1)

≤ m (since 4γ` = 4γ10
`+1 ≤ γ2

`+1)

To prove (7) ≤ 4γ`+1m we need to bound the size of
|Lno-pre

`+1 |
|L`+1| . Recall that

Lno-pre`+1 = {B(`+1,i,X) ∈ L`+1 : wi ∈Wπ
t`

and each B ∈ X is early}

By condition (i) in the induction hypothesis,

Pr
B∈L`

[B is early] ≥ 1− 4γ`−1

and by assumption (5) and the fact that ζ = γ10
0 << γ` we have

|Wπ
t`
|

|W | ≥
b(1− γ`)nc − ζn

n
≥ (1− 2γ`).

Hence,

Pr
B(`+1,i,X)∈L`+1

[B(`+1,i,X) ∈ Lno-pre`+1 ] = Pr
B(`+1,i,X)∈L`+1

[wi ∈Wπ
t`

and each B ∈ X is early]

=
|Wπ

t`
|

|W | ·
(

Pr
B∈L`

[B is early]
)δ`+1

≥ (1− 2γ`) · (1− 4γ`−1)δ`+1

≥ (1− 2γ`)2 (by selection of γ`−1 and δ`+1, see (1))
≥ 1− 4γ`
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We are now ready to prove (7) ≤ 4γ`+1m:

(7) =

(
1− t`+1

n
· |L

no-pre
`+1 |
|L`+1|

)
(1 + γ`+1)m

≤ (1− (1− 2γ`+1) · (1− 4γ`)) (1 + γ`+1)m
= (4γ` + 2γ`+1 − 8γ`γ`+1)(1 + γ`+1)m
≤ (4γ` + 2γ`+1)(1 + γ`+1)m
= (4γ10

`+1 + 2γ`+1)(1 + γ`+1)m
≤ 4γ`+1m (since γ`+1 ≤ 1/10)

�

We continue by proving that σ`+1 satisfies conditions (i) and (ii). Since σ`+1 is an extension of
σ`, conditions (i) and (ii) are satisfied for k = 1, 2, . . . , `. We continue by verifying the induction
hypothesis for k = ` + 1. To see that σ`+1 satisfies condition (i), note that σ`+1 schedules all
jobs in Lno-pre`+1 that correspond to the vertices in V πt`+1

∪Wπ
t`+1

during time interval [`, ` + 1]. As
PrB∈L`+1 [B ∈ Lno-pre`+1 ] ≥ (1− 4γ`) (see proof of the claim above), σ`+1 satisfies condition (i). Now
consider condition (ii). Obviously σ`+1 schedules all the remaining jobs of layer ` + 1 during time
interval [` + 1, `+ 2]. Furthermore, as proved above, the set of remaining jobs contains (7) V -jobs
with (7) ≤ 4γ`+1m.

By the above arguments the schedule σ`+1 is feasible and satisfies conditions (i) and (ii). This
concludes the inductive step and the completeness analysis. �

3.3 Soundness

By assumption we have that each permutation π of V satisfies

|Wπ
(1−ζ)n| ≤ ζn. (8)

Fix any feasible schedule σ. The key lemma for soundness is the following:

Lemma 3.4 For each ` = 1, . . . , d, schedule σ has at time 2 · (`− 1) completed at most a fraction
γ`−1 of the V -jobs in layer `.

As there are (1 + γd)m V -jobs in layer d and γd > γd−1, this implies that the schedule must have
makespan at least 2(d− 1) + 2 = 2d.

Proof. We proceed by induction on `.

Base case: For ` = 1 the induction hypothesis is obviously true, because σ has completed no jobs
at time 0.

Inductive Step: Suppose we already proved the induction hypothesis for all 1, 2, . . . , `, for ` < d.
We shall now prove that at time 2`, σ has completed at most a fraction γ` of the V -jobs in layer
`+ 1.

Let t = 2(` − 1). For each i = 1, . . . , n and each B ∈ L`, let X(B)
i be the indicator variable

defined

X
(B)
i =

 1,
If at time t+ 1, σ has completed all the jobs
in group B that correspond to wi ∈W .

0, Otherwise.

Moreover, for i ∈ {1, . . . , n}, let Xi denote the indicator variable that takes value 1 if EB∈L`
[X(B)

i ] ≥
1− γ`

4 and 0 otherwise.
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Claim 3.5 We have Ei[Xi] ≤ 4ζ.

Proof of Claim. Suppose toward contradiction that Ei[Xi] > 4ζ and hence there are more than a
fraction 4ζ of the indicator variables that equals 1. Let a = d4ζne and assume without loss of
generality that X1 = X2 = · · · = Xa = 1. By the definition of Xi’s,

Ei∈[a],B∈L`
[X(B)

i ] ≥ 1− γ`
4
.

It follows that
Pr
B∈L`

[Ei∈[a][X
(B)
i ] ≥ 1/2] ≥ 1− γ`

2
.

By letting the expectation be over [n] instead of [a],

Pr
B∈L`

[Ei∈[n][X
(B)
i ] ≥ 2ζ] ≥ 1− γ`

2
.

Call a group B ∈ L` good if Ei∈[n][X
(B)
i ] ≥ 2ζ. By the inequality above, at least a fraction 1 − γ`

2
of the groups in L` are good.

Now consider a good group B ∈ L`. As Ei∈[n][X
(B)
i ] ≥ 2ζ, σ schedules all jobs in B that

correspond to a subset W ′ ⊆ W of vertices with |W ′| ≥ 2ζn. By assumption (8), σ must have
completed more than a fraction 1 − ζ of the V -jobs in B before all jobs corresponding to W ′ are
scheduled. Hence, we can conclude that for each good block σ has completed at least a fraction
1− ζ of the V -jobs. As layer ` consists of (1 + γ`)m V -jobs and at least a fraction 1− γ`/2 of them
belong to good groups, the total number of the V -jobs completed by σ at time t + 1 is at least
(1 + γ1)(1 − γ1/2)(1 − ζ)m. However this leads to the following contradiction. By the induction
hypothesis, σ has completed at most a fraction γ`−1 of the V -jobs in layer ` at time t. Thus during
time interval [t, t+ 1], the number of V -jobs σ must schedule is at least

(1 + γ`)(1− γ`/2)(1− ζ)m− γ`−1(1 + γ`)m,

which is strictly greater than m since (1 + γ`)(1 − γ`/2) ≥ 1 + γ`/4, ζ = γ10
0 << γ`, and γ`−1 =

γ10
` << γ`. A contradiction. �

Without loss of generality, let X1, X2, . . . , Xk be the indicator variables with value 1. By the
claim above we have that k ≤ 4ζ. A group B(`+1,i,X) ∈ L`+1 can be scheduled at time t + 1 if
all of its predecessors have been completed at that time. All predecessors of B(`+1,i,X) have been
completed at time t + 1 if X(B)

i = 1 for each B ∈ X. We now continue by calculating the fraction
of groups in L`+1 for which all predecessors have been completed at time t+ 1:

Pr
B(`+1,i,X)∈L`+1

[∀B ∈ X,X(B)
i = 1] ≤ PrB(`+1,i,X)∈L`+1

[i ≤ k]+
PrB(`+1,i,X)∈L`+1

[i > k and ∀B ∈ X,X(B)
i = 1]

≤ 4ζ +
(

1− γ`
4

)|X|
(for i > k,EB [X(B)

i ] < 1− γ`

4 )

= 4ζ +
(

1− γ`
4

)δ`+1

≤ 4ζ + γ`/2 (by selection of γ` and δ`+1, see (2))
≤ γ` (since ζ = γ10

0 < γ`/8)

Hence, σ has at time t+ 2 = 2` completed at most a fraction γ` of the V -jobs in layer `+ 1. This
concludes the inductive step and the soundness analysis.

�
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[AM09] C. Ambühl and M. Mastrolilli. Single machine precedence constrained scheduling is a
vertex cover problem. Algorithmica, 53(4):488–503, 2009.
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A Proof of Lemma 3.1

Recall that the parameters were selected to be γd = 1
10 , γ`−1 = γ10

` and δ`+1 = 1/γ5
` for ` = 1, . . . , d.

To prove the bounds we shall use Bernoulli’s inequality:

1 + nx ≤ (1 + x)n for all x ∈ [−1,∞] and for all n = 1, 2, . . .

Bound (1),i.e., (1− 4γ`−1)δ`+1 ≥ 1− 2γ` now follows trivially. Indeed by Bernoulli’s inequality and
the selection of parameters we have

(1− 4γ`−1)δ`+1 ≥ 1− 4γ`−1 · δ`+1

= 1− 4γ10
` · 1/γ5

`

= 1− 4γ5
`

≥ 1− 2γ`

We continue by showing Bound (2), i.e.,
(
1− γ`

4

)δ`+1 ≤ γ`/2:

(
1− γ`

4

)δ`+1

=
(

4/γ` − 1
4/γ`

)δ`+1

=
1(

4/γ`

4/γ`−1

)δ`+1

=
1(

1 + 1
4/γ`−1

)δ`+1

≤ 1

1 + δ`+1
(4/γ`−1)

(by Bernoulli’s inequality)

≤ 1
γ` · δ`+1

=
1

γ` · 1/γ5
`

≤ γ`/2

�

B The New Stronger Unique Games Conjecture

Although we shall not directly use the new stronger version of the unique games conjecture, we
define it for the sake of completeness. An instance of unique games L = (G(V,W,E), [n], {πv,w}(v,w))
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consists of a regular bipartite graph G(V,W,E) and a set [n] of labels. For each edge (v, w) ∈ E
there is a constraint specified by a permutation πv,w : [n] 7→ [n]. The goal is to find a labeling
` : (V ∪W ) 7→ [n] so as to maximize val(`) := Pre∈E [` satisfies e], where a labeling ` is said to
satisfy an edge e = (v, w) if `(v) = πv,w(`(w)). For a unique game instance L, we let OPT (L) =
max`:V ∪W 7→[n] val(`). The now famous unique games conjecture that has been extensively used to
prove strong hardness of approximation results can be stated as follows.

Conjecture B.1 ([Kho02]) For any constants ζ, γ > 0, there is a sufficiently large constant n =
n(ζ, γ) such that, for unique game instances L with label set [n], it is NP-hard to distinguish between
OPT (L) ≥ 1− ζ and OPT (L) ≤ γ.

To address the scheduling problem 1|prec|∑wjCj , Bansal & Khot introduced the following
variant of the unique games conjecture:

Hypothesis B.2 ([BK09]) For arbitrarily small constants ζ, γ, δ > 0, there exists an integer n =
n(ζ, γ, δ) such that for a unique games instance L = (G(V,W,E), [n], {πv,w}(v,w)∈E), it is NP-hard
to distinguish between:

• (YES Case:) There are sets V ′ ⊆ V,W ′ ⊆W such that |V ′| ≥ (1−ζ)|V | and |W ′| ≥ (1−ζ)|W |
and an assignment to L such that all the edges between the sets (V ′,W ′) are satisfied.

• (NO Case:) No assignment to L satisfies even a γ fraction of the edges. Moreover, the
instance satisfies the following expansion property. For every set S ⊆ V, |S| = δ|V |, we have
Γ(S) ≥ (1− δ)|W |, where Γ(S) = {w ∈W |∃v ∈ S, (v, w) ∈ E}.

One can see that Hypothesis B.2 differs from Conjecture B.1 in two ways. In the YES case,
Hypothesis B.2 requires that there exists a labeling that satisfies all constraints between to large
sets V ′ ⊆ V,W ′ ⊆W . Whereas Conjecture B.1 only requires that almost all constraints are satisfied
by a labeling. Furthermore, in the NO case Hypothesis B.2 has the additional assumption that the
instance satisfy the (arguably weak) expansion property that any two sets of relative size δ has an
edge between them.

As remarked in [BK09], no algorithmic results rule out Hypothesis B.2. Furthermore, each of
the two extra properties (one in the YES case and the other in the NO case) can be achieved by
suitable transformations from the standard unique games conjecture. (The property in the NO
case can be achieved by imposing a dummy expander and Khot & Regev [KR08] showed how
to transform a unique game instance into one with the property in the YES case preserving low
soundness.) However, it remains an open problem whether assuming both properties simultaneously
is equivalent to the standard unique games conjecture.
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