
Approximating Single Machine Scheduling
with Scenarios

Monaldo Mastrolilli, Nikolaus Mutsanas, and Ola Svensson

IDSIA - Lugano, Switzerland
{monaldo,nikolaus,ola}@idsia.ch

Abstract. In the field of robust optimization, the goal is to provide
solutions to combinatorial problems that hedge against variations of the
numerical parameters. This constitutes an effort to design algorithms
that are applicable in the presence of uncertainty in the definition of
the instance. We study the single machine scheduling problem with the
objective to minimize the weighted sum of completion times. We model
uncertainty by replacing the vector of numerical values in the description
of the instance by a set of possible vectors, called scenarios. The goal is
to find the schedule with minimum value in the worst-case scenario.
We first show that the general problem is intractable by proving that it
cannot be approximated within O(log1−ε n) for any ε > 0, unless NP has
quasi-polynomial algorithms. We then study more tractable special cases
and obtain an LP based 2-approximation algorithm for the unweighted
case. We show that our analysis is tight by providing a matching lower
bound on the integrality gap of the LP. Moreover, we prove that the
unweighted version is NP-hard to approximate within a factor less than
6/5. We conclude by presenting a polynomial time algorithm based on
dynamic programming for the case when the number of scenarios and
the values of the instance are bounded by some constant.

1 Introduction

In classical optimization problems, it is often assumed that the parameters of the
instances are precisely defined numerical values. In many cases, however, such a
precise definition is impossible due to inadequate knowledge on the side of the
decision maker. The necessity to provide algorithms for minimizing the cost in
uncertain environments lead to the fields of stochastic and robust optimization.

In stochastic optimization [4], it is assumed that we have knowledge of the
probability distribution of the data and the goal is to find a solution that min-
imizes the expected cost. Robust optimization [3,15] can be considered as the
worst-case counterpart of the stochastic optimization. In a robust optimization
problem, we have a set of possible configurations of the numerical parameters
of the problem, and the goal is to find a solution that minimizes the cost in a
worst-case scenario for the given solution. In the following we will focus on this
latter approach.

Within robust optimization, two common ways of modeling uncertainty are
interval data and discrete scenarios. In the case of interval data the vector of

numerical parameters in the description of the instance is replaced by a vector
of intervals, one for each parameter. On the other hand, in the case of discrete
scenarios the vector of numerical parameters is replaced by a set of vectors, each
of them corresponding to a different scenario. An advantage of this model is
that, whereas in the case of interval data the fluctuations of the different nu-
merical parameters are implicitly assumed to be independent, the use of discrete
scenarios allows the implementation of dependencies among parameters.

Several objective functions for robust minimization1 problems have been pro-
posed in literature (see e.g. the book by Kouvelis & Yu [15]). In the absolute
robustness approach, the goal is to minimize the maximum among all feasible
solutions and all scenarios. This is often referred to as the “min-max” version of
the problem. In the robust deviation approach, the goal is to minimize the max-
imum deviation from optimality among all feasible solutions and all scenarios.
Recent examples of these two families of approaches can be found in [1,12,9].

In this paper we investigate the min-max version of the following classical
scheduling problem. There is a set N = {1, . . . , n} of n jobs to be scheduled on a
single machine. The machine can process at most one job at a time. Each job j
is specified by its length pj and its weight wj , where pj and wj are nonnegative
integers. Jobs must be processed for pj time units without interruptions on the
machine. The goal is to find a schedule (i.e. permutation π : N → {1, . . . , n})
such that the sum

∑n
j=1 wjCj , where Cj is the time at which job j completes in

the given schedule, is minimized. In standard scheduling notation (see e.g. Gra-
ham et al. [10]), this problem is known as 1||

∑
wjCj . Smith [22] gave a simple

polynomial time algorithm for this problem, by showing that scheduling jobs in
non-decreasing order of the ratio of their processing time to their weight is op-
timal: given a set of n jobs with weights wj and processing times pj , 1 ≤ j ≤ n,
schedule the jobs such that π(i) < π(j) if and only if pi/wi ≤ pj/wj . When there
are precedence constraints among jobs, then the problem becomes NP -hard [16].
Several 2-approximation algorithms are known for this variant [19,11,6,5,17], as
observed in [7], all of them can be seen as obtained by rounding a linear relax-
ation of an integer program formulation ILP due to Potts [18]. The integrality gap
of ILP is known [5] to be 2, and understanding if a better than 2-approximation
algorithm exists is considered an outstanding open problem in scheduling the-
ory (see e.g. [21]). In this paper we consider the robust version of this classical
scheduling problem, as defined below.

Definition 1. In the robust scheduling problem, we are given a set of jobs N =
{1, . . . , n} and a set of scenarios S = {s1, . . . , sm} where si = (psi1 , . . . , p

si
n , w

si
1 , . . . , w

si
n)

for si ∈ S. A feasible schedule is a permutation π of the jobs and the problem is
to find a permutation π∗ of the jobs such that

π∗ = min
π

max
si∈S

∑
j∈N

wsij C
si
j (π)

 ,

where Csij (π) =
∑
j′∈N,π(j′)≤π(j) p

si
j′ .

1 The definition for robust maximization problems are analogous.

Whereas 1||
∑
wjCj is polynomial time solvable in the case of a single sce-

nario, Kouvelis & Yu [15] prove that the robust version is weakly NP-complete
even for the case of two scenarios and unit processing times.

In this paper we take on the task of studying the approximability of the
robust variant. We show that, unless NP has quasi-polynomial algorithms, it
cannot be approximated within factor O(log1−ε n) in polynomial time, for any
ε > 0. Moreover, under P 6= NP , we show that it remains hard to approximate
within 6/5 even if we assume that processing times, or alternatively weights, are
equal to one and do not vary across the scenarios.

Then, we study the natural generalization of the ILP due to Potts [18] for the
robust version. We provide a lower bound on the integrality gap and a matching
upper bound for the special case where processing times or, alternatively, weights
do not vary across the scenarios. Interestingly, the upper bound can be extended
to include precedence constraints, and we obtain the same performance guar-
antee, namely a 2-approximation, as for the single scenario case. Proving good
hardness of approximation results for 1|prec|

∑
wjCj is a long standing open

problem in scheduling theory. In contrast, for the robust variant, we show that
it is NP-hard to approximate within a factor less than 6/5.

We conclude by presenting a polynomial time algorithm based on dynamic
programming for the case that the number of scenarios and the values of the
instance are bounded by some constant.

2 Hardness of the Robust Scheduling Problem

2.1 Inapproximability Result for the general problem

Here, we show that the general problem with non-constant number of scenarios
has no O(log1−ε n)-approximation algorithm for any ε > 0, unless NP has quasi-
polynomial algorithms. The hardness result is obtained by reducing the following
version of the Label Cover problem to the scheduling problem.

Definition 2. The Label Cover problem L(V,W,E, [R], {σv,w}(v,w)∈E) is de-
fined as follows. We are given a regular bipartite graph with left side vertices
V , right side vertices W , and set of edges E ⊆ V ×W . In addition, for every
edge (v, w) ∈ E we are given a map σv,w : [R]→ [R]. A labeling of the instance
is a function ` assigning a set of labels to each vertex of the graph, namely
` : V ∪W → 2[R]. A labeling ` satisfies an edge (v, w) if

∃a ∈ `(v),∃b ∈ `(w) : σv,w(a) = b.

A total-labeling is a labeling that satisfies all edges. The value of a Label Cover
instance, denoted val(L), is defined to be the minimum, over all total-labelings,
of maxx∈V ∪W |`(x)|.

Observe that the variant of the Label Cover problem that is considered assumes
that an edge is covered if, among the chosen labels, there exists a satisfying pair

of labels. The following hardness result easily follows from the hardness result
for the max version by using the “weak duality” relationship between the two
versions (see e.g. [2]).

Theorem 1. There exists a constant γ > 0 so that for any language L in NP,
any input w and any R > 0, one can construct a labeling instance L, with
|w|O(logR) vertices, and label set of size R, so that: If w ∈ L, val(L) = 1 and
otherwise val(L) > Rγ . Furthermore, L can be constructed in time polynomial
in its size.

We prove the following theorem by presenting a reduction from the label
cover problem.

Theorem 2. There exists a constant γ > 0 so that for any language L in NP,
any input w, any R > 0 and for g ≤ Rγ , one can, in time O(|w|O(g logR) ·RO(g)),
construct a robust scheduling instance that has optimal value 1 + o(1) if w ∈ L
and optimal value g otherwise.

Proof. Given a Label Cover instance L(V,W,E, [R], {σv,w}(v,w)∈E), we construct
a robust scheduling instance I. Before giving a more formal definition of the
reduction, we first give the intuition behind it.

For x ∈ V ∪W let Rx ⊆ [R] be the possible labels of x. For each (v, w) ∈ E,
let Rv,w ⊆ Rv × Rw contain all pairs of labels of v and w that satisfy the map
σv,w, i.e., Rv,w = {(a, b) ∈ Rv ×Rw : b = σv,w(a)}.

Clearly, for any feasible label cover ` there is at least one pair (a, b) from
Rv,w such that a ∈ `(v) and b ∈ `(w), and we say that (a, b) covers (v, w). In
order to have a “corresponding” situation in the scheduling instance I, we define
for each (v, w) ∈ E a set J (v,w) = {J (v,w)

1 , J
(v,w)
2 , . . . , J

(v,w)
nv,w } of nv,w = |Rv,w|

jobs. Let us consider some total ordering rv,w : Rv,w → {1, . . . , nv,w} of the
pairs in Rv,w. In any feasible schedule of the jobs from J (v,w) there exists an
i = 1, . . . , nv,w, such that J (v,w)

i+1 is scheduled before J (v,w)
i (assume i + 1 equal

to 1 when i = nv,w), otherwise we would have a cycle in that schedule. The
reduction that we are going to present will associate this situation (job J

(v,w)
i+1

scheduled before J (v,w)
i) to the case where the ith pair in Rv,w is in the label

cover, i.e. r−1
v,w(i) covers edge (v, w). Then, for each x ∈ V ∪W , a set of scenarios

is defined such that the maximum value of them counts (up to g) the number of
different labels of x. A precise description of the reduction is given below.

Jobs The jobs of instance I are the union of all jobs
⋃

(v,w)∈E J (v,w).

Ordering Scenarios Let m = |E| and let π : E → {1, . . . ,m} be some order of
the edges. For each i : 1 ≤ i < m, we have a scenario that sets the weights of
the jobs in J π−1(i) to m and the processing time of the jobs in

⋃
j>i J π

−1(j)

to m. The purpose of these scenarios is to ensure that any optimal schedule
will schedule the jobs in the order

J π
−1(1) ≺ J π

−1(2) ≺ · · · ≺ J π
−1(m). (1)

Counting Scenarios For each v ∈ V , let Ev ⊆ E denote the set of edges inci-
dent to v. For each tuple ((v, w1), . . . , (v, wg)) ∈ Ev×· · ·×Ev of pairwise dif-
ferent edges, for each tuple (a1, . . . , ag) ∈ Rv×· · ·×Rv of pairwise different la-
bels, and for each tuple (b1, . . . , bg) ∈ Rw1×· · ·×Rwg so that σ(v,wi)(ai) = bi

for i = 1, . . . , g, we have a different scenario S(v,w1),...,(v,wg)

(a1,b1),...,(ag,bg)
. Each scenario

S(v,w1),...,(v,wg)

(a1,b1),...,(ag,bg)
represents the situation in which label (ai, bi) covers edge

(v, wi) and the number of different labels of v is at least g. This label cover
(partial) solution corresponds to the scheduling solutions σ(v,w1),...,(v,wg)

(a1,b1),...,(ag,bg)

that schedule job J
(v,wi)
h+1 before J

(v,wi)
h , where h = rv,wi(ai, bi), for each

i = 1, . . . , g. The value of these schedules is made larger than g by setting
the processing time of J (v,wi)

h+1 equal to m2π(v,wi) and the weight of J (v,wi)
h

equal to 1/m2π(v,wi), for each i = 1, . . . , g, and zero all the others. Observe
that the processing times and weights have been picked in such a way that
jobs in J π−1(i) only contribute a negligible amount to the weighted comple-
tion time of jobs in J π−1(j) for i < j. This defines weights and processing
times of scenarios for every v ∈ V . In a symmetric way we define scenarios
S(v1,w),...,(vg,w)

(a1,b1),...,(ag,bg)
, for every w ∈ W , to count the number of labels that are

assigned to w.

The total number of scenarios is at most |E| − 1 + 2|E|g ·Rg ·Rg and the total
number of jobs is at most |E| · R2. As |E| = |w|O(logR), the total size of the
robust scheduling instance is O(|w|O(g logR) ·RO(g)).

Completeness Analysis. By Theorem 1, there exists a feasible labeling of
L that assigns one label to each vertex. Let ` be such a labeling and consider a
schedule σ of I that respects (1) and such that, for each element (v, w) ∈ E, the
jobs in J (v,w) are scheduled as follows: for h = 1, . . . , nv,w, if h = rv,w(`(v), `(w))
then job J (v,w)

h+1 is scheduled before J (v,w)
h , otherwise J (v,w)

h is before J (v,w)
h+1 . This

gives a feasible schedule. Moreover, since only one label is assigned to each ver-
tex, it is easy to see that the value of any scenario is at most 1 + o(1).

Soundness Analysis. Consider a schedule σ of I. Define a labeling ` as follows:{
`(v) = {a : if J (v,w)

h+1 ≺ J
(v,w)
h for some h = rv,w(a, b), w ∈W and b ∈ Rw}

`(w) = {b : if J (v,w)
h+1 ≺ J

(v,w)
h for some h = rv,w(a, b), v ∈ V and a ∈ Rv}

As at least one scenario for each edge will have value 1, ` is a feasible labeling
of L. Furthermore, by Theorem 1, there exists a vertex x ∈ V ∪ W so that
|`(x)| ≥ g, and this implies that there is a scenario of value g. Indeed, if x ∈ V
let `(x) = {a1, . . . , ag} be the set of g labels assigned to x, and let (b1, . . . , bg) and
(w1, . . . , wg) be such that J (v,w)

h+1 ≺ J
(x,w)
h with h = rx,wi(ai, bi). Then scenario

S(x,w1),...,(x,wg)

(a1,b1),...,(ag,bg)
has been constructed to have value g according to this schedule.

The same holds when x ∈W .

By setting g = O(logc n) (and R = O(logO(c) n)), where |w| = n and c ≥ 1
any large constant, we obtain that the input size is equal to s = nO(g logR) ·
RO(g) = nO(logc n·log logn) · (log n)O(logc n) = nO(logc+δ n) = 2O(logc+1+δ n), for any
arbitrarily small δ > 0. It follows that g = O(log s)

c
c+1+δ = O(log s)1−ε, for any

arbitrarily small ε > 0.

Theorem 3. For every ε > 0, the robust scheduling problem cannot be approx-
imated within ratio O(log1−ε s), where s is the input size, unless NP has quasi-
polynomial algorithms.

2.2 Inapproximability for unit-time/unweighted case

We now restrict the above problem to the case where the processing times do not
vary across scenarios. We note that this case is symmetric to the one where the
processing times may vary across scenarios while the weights are common. We
show that, if the number of scenarios is unbounded, the robust scheduling prob-
lem is not approximable within 6/5 even for the special case that all processing
times are equal to one.

Our reduction is from the E3-Vertex-Cover problem, defined as follows. Given
a 3-uniform hypergraph G = (V,E) (each edge has size 3), the E3-Vertex-Cover
problem is to find a subset S ⊆ V that “hits” every edge in G, i.e. such that for
all e ∈ E, e ∩ S 6= ∅. Dinur et al. [8] showed that it is NP-hard to distinguish
whether a k-uniform hypergraph has a vertex cover of weight (1

k−1 + ε)n from
those whose minimum vertex cover has weight at least (1−ε)n for an arbitrarily
small ε > 0.

Given a 3-uniform hypergraph G(V,E), we construct a robust scheduling
instance as follows.

– For every vertex vi ∈ V we create a job i ∈ N with pi = 1.
– For every hyperedge e = {ve1, ve2, ve3} ∈ E we create a scenario se defined by

wsei =
{

1 , if vi ∈ {ve1, ve2, ve3}
0 , otherwise.

Given the size of a minimum vertex cover c, one can calculate upper and
lower bounds on the optimal value of the corresponding scheduling instance, as
follows: given a schedule, i.e., a permutation π of the jobs, we can define a vertex
cover solution V C by letting

V C = {vi | vi covers an edge not covered by {vj |π(j) < π(i)}}.

Let vj ∈ V C be the vertex in V C that is scheduled last, i.e., any vi ∈ V C
with i 6= j satisfies π(i) < π(j). As vj was added to V C, it covers an edge, say
e = {vj , vk, vl}, with π(j) < π(k) and π(j) < π(l). Furthermore, since |V C| ≥ c
we have that π(j) ≥ c and hence π(k) + π(l) ≥ (c+ 1) + (c+ 2). It follows that
there is an s ∈ S with value at least

LB(c) = c+ (c+ 1) + (c+ 2) > 3c

which is thus also a lower bound on min
π

max
s∈S

(val(π, s)).

For the upper bound, consider the schedule where we schedule c jobs corre-
sponding to a minimum vertex cover first. Observe that a scenario in which the
last of these c jobs has weight one takes its maximal value if the other two jobs
of the corresponding edge are scheduled last, yielding

UB(c) = c+ (n− 1) + n < c+ 2 · n.

Using the inapproximability results of Dinur et al. [8] we get the following
gap for the robust scheduling problem:

LB((1− ε)n)
UB((1

3−1 + ε)n)
>

(1− ε)n · 3
(1
2 + ε)n+ 2 · n

=
6
5
− ε′

for some ε′ > 0 that can be made arbitrarily small. As the unit-time and un-
weighted robust scheduling problem are symmetric, this yields the following
theorem.

Theorem 4. It is NP-hard to approximate the unit-time/unweighted robust schedul-
ing problem within a factor less than 6/5.

Assuming the Unique Games Conjecture [13], the inapproximability result
for Ek-uniform Vertex Cover improves to a gap of k−ε [14]. A similar reduction
from 2-uniform hypergraphs (i.e. graphs) using the same bounds as above yields
an inapproximability gap of 4/3.

Finally, we note that an easy numerical analysis shows that, in both cases,
the inapproximability results cannot be improved by changing the uniformity of
the hypergraphs in the vertex cover problems considered.

3 An LP-Based Approximation Algorithm and Integrality
Gap

In this section, we consider the special case that processing times do not vary
among scenarios, i.e. for every i ∈ N we have ps1i = . . . = psmi = pi. Note that
this is symmetric to the case that processing times may vary across scenarios
while weights are common. Inspired by Potts [18] integer linear program (ILP)
formulation of 1|prec|

∑
wjCj , we formulate the robust scheduling problem with

common processing times as follows:

min t∑
j∈N

pjw
sk
j +

∑
(i,j)∈N2

δij · piwskj ≤ t 1 ≤ k ≤ m

δij + δji = 1 (i, j) ∈ N2

δij + δjk + δki ≥ 1 (i, j, k) ∈ N3

δij ∈ {0, 1} (i, j) ∈ N2

The variables, δij for (i, j) ∈ N2, are called ordering variables with the natural
meaning that job i is scheduled before job j if and only if δij = 1. The LP
relaxation of the above ILP is obtained by relaxing the constraint δij ∈ {0, 1}
to δij ≥ 0. We will show that the resulting LP has an integrality gap of 2.

Consider the following family of instances, consisting of n jobs and an equal
number of scenarios. The (scenario-independent) processing times are set to
pj = 1, j ∈ N . The weights of the jobs in scenario sk are defined as follows:

wskj =
{

1 , if j = k
0 , otherwise , j ∈ N.

It is easy to see that setting

δij = 1/2, 1 ≤ i, j ≤ n, i 6= j

yields a feasible solution. For this solution, all scenarios assume the same objec-
tive value

pj +
∑
i6=j

δijpi = 1 + (n− 1) · 1
2

=
n+ 1

2

which therefore equals the objective value of this solution. This gives an upper
bound on the value of the optimal solution.

On the other hand, for any feasible integral solution, there is a scenario sk for
which the job j is scheduled last. This scenario has value wkj ·Cj = n. Thus the
integrality gap of the above presented LP with n scenarios is at least 2n/(n+1),
which tends to 2 as n tends to infinity.

We now provide a 2-approximation algorithm based on the above LP-relaxation,
thus showing that the analysis of the integrality gap is tight.

Given a solution of the LP, let

C̃j = pj +
∑
i 6=j

δijpi

be the fractional completion time of job j. Assume, without loss of general-
ity, that C̃1 ≤ . . . ≤ C̃n. We will use the following property to derive a 2-
approximation algorithm.

Lemma 1 (Schulz [20]). Given a solution of the above LP, with C̃1 ≤ . . . ≤ C̃n
the following inequality holds

C̃j ≥
1
2

j∑
i=1

pi

This property can be used to derive a simple 2-approximation algorithm:
schedule the jobs in non-decreasing order of C̃j . The integral completion time is

Cj =
j∑
i=1

pi ≤ 2 · C̃j .

Since every completion time increases by at most a factor of 2, we have a 2-
approximate solution.

It is worth noting that the above analysis holds also for the case that there are
precedence constraints among the jobs, a significant generalization of this prob-
lem. For instance, in the single scenario case, 1|prec|

∑
wjCj is NP-complete

whereas 1||
∑
wjCj is polynomial time solvable. We summarize with the follow-

ing theorem.

Theorem 5. The robust version of 1|prec|
∑
wiCi has a polynomial time 2-

approximation algorithm when the processing times or, alternatively, the weights
of the jobs do not vary among the scenarios.

4 A polynomial time algorithm for constant number of
scenarios and constant values

In this section we assume that the number of scenarios m as well as the weights
and processing times are bounded by some constant. Given an instance I of the
robust scheduling problem, let W be the maximum weight and P the maximum
processing time occurring in the description of I. We present a polynomial time
algorithm that solves this problem. In fact, we are going to solve the related
multi-criteria scheduling problem. This result carries over to our problem by use
of Theorem 1 in Aissi et. al. [1].

In the context of multi-criteria optimization, given two vectors v, w ∈ Nk,
v 6= w, k > 0, we say that v dominates w, if vi ≤ wi for all 1 ≤ i ≤ k. A vector
that is not dominated is called efficient. Analogously, given a set of vectors S,
a subset S′ ⊆ S is called an efficient set if there is no pair (v, v′), v ∈ S, v′ ∈ S′
such that v dominates v′. The goal in multi-criteria optimization is to find a
maximal efficient set of solutions.

For a fixed set of scenarios S = {s1, . . . , sm}, we define the multivalue
of a schedule π by val(π) = (val(π, s1), . . . , val(π, sm)). Furthermore, we call
α = ((w1, p1), . . . , (wm, pm)) with 1 ≤ wi ≤ W , 1 ≤ pi ≤ W a job profile,
and let p(α) = (p1, . . . , pm) and similarly w(α) = (w1, . . . , wm). Note that,
since we assumed that P ,W and m are all bounded by a constant, there can
only be a constant number of different job profiles. Let α1, . . . , αk be the dif-
ferent job profiles that occur in instance I. We can now identify I by the tuple
((α1, . . . , αk), (n1, . . . , nk)) where ni is the number of jobs with profile αi oc-
curring in I. We will present a dynamic programming approach for solving the
min-max scheduling problem with a constant number of scenarios and constant
values in polynomial time.

4.1 Polynomial time algorithm

Consider a k-dimensional dynamic programming table DPT of size (n1 + 1) ×
(n2 + 1)× . . .× (nk + 1). Each cell of this table represents a subinstance I ′ of I,
where the coordinates of the cell encode the number of jobs of the correspond-
ing profile that are present in I ′ (for instance, the cell (1, 0, 4) represents the

subinstance of I that contains one job of type α1 and four jobs of type α3). We
denote the number of jobs in an instance represented by a cell c = (c1, . . . , ck)
by n(c) =

∑k
i=1 ci. Each of these cells will accommodate an efficient set Mc of

multivalues of schedules in which only the jobs of the subinstance are considered
(note that since the maximum value in any scenario is bounded, there can only
be a polynomial number of different efficient vectors). Since the cell (n1, . . . , nk)
represents the whole instance, filling in the last cell of the table would allow
us to solve the multi-criteria scheduling problem, and thus also the min-max
scheduling problem.

We initialize the table by filling in the cells whose coordinates sum up to one,
i.e. the cells c = (c1, . . . , ck) with n(c) = 1, as follows: for ct = 1 add to Mc the
multivalue of the schedule consisting of a single job with profile αt. We continue
filling in the rest of the cells in order of increasing n(c) in the following manner.

Consider the cell c with coordinates (c1, . . . , ck) and let Tc = {(c′1, . . . , c′k) |
n(c′) = n(c)−1, c′i ≥ ci−1}. In other words, Tc contains those cells representing
subinstances that result by removing one job from Ic. Note that, since we fill
in the table in order of increasing n(c), all cells in Tc have been filled in at this
point. For each c′ ∈ Tc with ct − c′t = 1, add to the set Mc the multivalues of
the schedules that result from the schedules in Mc′ by adding a job of profile αt
in the end of the schedule. More formally, for each π′ with val(π′) ∈ Mc′ , add
val(π) to Mc, with π defined as follows:

π(j) = π′(j) for 1 ≤ j ≤ n(c′) and π(n(c)) = αt.

Given val(π′), the multivalues of these schedules can easily be computed by:

val(π) = val(π′) + w(αt) ·
k∑
i=1

ci · p(αi)

Note that only the multivalue of π′ is needed in the above calculations, not π′

itself.
We conclude the computation for cell c by replacing Mc by Red(Mc), which

retains only the efficient elements of Mc.

Lemma 2. For every cell c of the table DPT , the set Mc is a maximal efficient
subset of the set of all multivalues achieved by scheduling the jobs of Ic.

Proof. We need to show that for every cell c of the table DPT and every mul-
tivalue val(π), where π is a schedule of Ic, either

• val(π) ∈Mc, or
• ∃v ∈Mc, such that v ≤ val(π)

Suppose, towards contradiction, that this is not the case, and let c be a cell
with minimal n(c) that does not satisfy the above condition. Thus, there is a
schedule π of the instance Ic with val(π) 6∈ Mc and for any v ∈ Mc there is
an l ∈ {1, . . . , k} with val(π)l < vl. Clearly, this can only happen for n(c) ≥

2. Let αf be the profile of the job scheduled last in π and let c′ be the cell
with coordinates (c1, c2, . . . , cf−1, cf − 1, cf+1, . . . , ck). Furthermore, let π′ be
the schedule derived from π by omitting the last job. The multivalue of π′ is
val(π)−w(αf) ·

∑k
i=1 ci ·p(αi). If there were a v ∈Mc such that val(v) ≤ val(π′),

then val(π) would be dominated by v + w(αf) ·
∑k
i=1 ci · p(αi). Thus, for every

v ∈ Mc′ , there is an l ∈ {1, . . . , k} such that vl > val(π′)l and thus c′ does
not satisfy the above property either. Since n(c′) < n(c), this contradicts the
minimality of c.

It is easy to see that the initialization of the table, as well as the computations
of val(π) can be done in polynomial time. Furthermore, since (n2 · P ·W)2 is
an upper bound on the value of any schedule in any scenario, there can be at
most (n2 · P ·W)2m efficient vectors in any stage of the computation. The size
of the dynamic programming table is bounded by nk and for each computation
of a cell, at most k cells need to be considered. Moreover, the operator Red can
be implemented in time (n2 ·P ·W)4m by exhaustive comparison. Thus, a single
cell can be filled-in in time k(n2 ·P ·W)2m + (n2 ·P ·W)4m, and the whole table
in time nk · (k · (n2 ·P ·W)2m + (n2 ·P ·W)4m). The number of different profiles
k is bounded by (P ·W)m, which is a constant. Thus our algorithm runs in time
O(n8m+WmPm), i.e. polynomial in n.

Acknowledgements

This research is supported by Swiss National Science Foundation project 200021-
104017/1, “Power Aware Computing”, by the Swiss National Science Founda-
tion project 200020-109854, “Approximation Algorithms for Machine scheduling
Through Theory and Experiments II”, and by the Swiss National Science Foun-
dation project PBTI2-120966, “Scheduling with Precedence Constraints”.

References

1. H. Aissi, C. Bazgan, and D. Vanderpooten. Approximating min-max (regret) ver-
sions of some polynomial problems. In COCOON, pages 428–438, 2006.

2. S. Arora and C. Lund. Hardness of approximations. In D. S. Hochbaum, editor,
Approximation Algorithms for NP-Hard Problems. PWS, 1995.

3. D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Pro-
gramming Series B, 98:49–71, 2002.

4. J. Birge and F. Louveaux. Introduction to stochastic programming. Springer, 1997.
5. C. Chekuri and R. Motwani. Precedence constrained scheduling to minimize sum

of weighted completion times on a single machine. Discrete Applied Mathematics,
98(1-2):29–38, 1999.

6. F. A. Chudak and D. S. Hochbaum. A half-integral linear programming relax-
ation for scheduling precedence-constrained jobs on a single machine. Operations
Research Letters, 25:199–204, 1999.

7. J. R. Correa and A. S. Schulz. Single machine scheduling with precedence con-
straints. Mathematics of Operations Research, 30(4):1005–1021, 2005. Extended
abstract in Proceedings of the 10th Conference on Integer Programming and Com-
binatorial Optimization (IPCO 2004), pages 283–297.

8. I. Dinur, V. Guruswami, S. Khot, and O. Regev. A new multilayered pcp and the
hardness of hypergraph vertex cover. In STOC ’03: Proceedings of the thirty-fifth
annual ACM symposium on Theory of computing, pages 595–601, New York, NY,
USA, 2003. ACM.

9. U. Feige, K. Jain, M. Mahdian, and V. S. Mirrokni. Robust combinatorial opti-
mization with exponential scenarios. In IPCO, pages 439–453, 2007.

10. R. Graham, E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: A survey. In Annals
of Discrete Mathematics, volume 5, pages 287–326. North–Holland, 1979.

11. L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize av-
erage completion time: off-line and on-line algorithms. Mathematics of Operations
Research, 22:513–544, 1997.

12. A. Kasperski and P. Zieliński. On the existence of an fptas for minmax regret com-
binatorial optimization problems with interval data. Operations Research Letters,
35(4):525–532, 7 2007.

13. S. Khot. On the power of unique 2-prover 1-round games. In IEEE Conference on
Computational Complexity, page 25, 2002.

14. S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2− ε.
In Proc. of 18th IEEE Annual Conference on Computational Complexity (CCC),
pages 379–386, 2003.

15. P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications. Kluwer
Academic Publishers, 1997.

16. E. L. Lawler. Sequencing jobs to minimize total weighted completion time subject
to precedence constraints. Annals of Discrete Mathematics, 2:75–90, 1978.

17. F. Margot, M. Queyranne, and Y. Wang. Decompositions, network flows and a
precedence constrained single machine scheduling problem. Operations Research,
51(6):981–992, 2003.

18. C. N. Potts. An algorithm for the single machine sequencing problem with prece-
dence constraints. Mathematical Programming Study, 13:78–87, 1980.

19. A. S. Schulz. Scheduling to minimize total weighted completion time: Performance
guarantees of LP-based heuristics and lower bounds. In Proceedings of the 5th Con-
ference on Integer Programming and Combinatorial Optimization (IPCO), pages
301–315, 1996.

20. A. S. Schulz. Scheduling to minimize total weighted completion time: performance
guarantees of LP-based heuristics and lower bounds. In Proceedings of the Fifth
Conference on Integer Programming and Combinatorial Optimization (IPCO), vol-
ume 5, pages 301–315, 1996.

21. P. Schuurman and G. J. Woeginger. Polynomial time approximation algorithms
for machine scheduling: ten open problems. Journal of Scheduling, 2(5):203–213,
1999.

22. W. E. Smith. Various optimizers for single-stage production. Naval Research
Logistics Quarterly, 3:59–66, 1956.

	Approximating Single Machine Scheduling with Scenarios
	Monaldo Mastrolilli, Nikolaus Mutsanas, and Ola Svensson

