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Abstract— Linking semantic and spatial information has be-
come an important research area in robotics since, for robots
interacting with humans and performing tasks in natural en-
vironments, it is of foremost importance to be able to reason
beyond simple geometrical and spatial levels. In this paper, we
consider this problem in a service robot scenario where a mobile
robot autonomously navigates in a domestic environment, builds
a map as it moves along, localizes its position in it, recognizes
objects on its way and puts them in the map. The experimental
evaluation is performed in a realistic setting where the main
concentration is put on the synergy of object recognition and
Simultaneous Localization and Mapping systems.

I. INTRODUCTION

The importance of robotic appliances in terms of eco-
nomical and sociological perspective regarding the use of
robotics in domestic and office environments as well as a
help to elderly and disabled has been well recognized. The
AAAI Mobile Robot Challenge has demonstrated that the
development of an interactive social robot represents a clear
research challenge for the future. Such a robot should be
able to easily navigate in dynamic and crowded environments,
recognize and avoid objects and people and have a dialog
with a human. It has been widely recognized that for such
a system different processes have to work in synergy: high-
level cognitive processes for abstract reasoning and planning,
low-level sensory-motor processes for data extraction and
action execution, and mid-level processes connecting these
two. The coordination between these levels requires some
form of representation that facilitates anchoring of different
processes: one of the approaches has been the use of cognitive
maps, [1]. The cognitive map is the body of knowledge
a human or robot has about the environment. In [1], it is
argued that topological, semantic and geometrical aspects are
important for representation of spatial knowledge. This relates
to Human-Augmented Mapping (HAM) where a human and
a robot interact so to establish a correspondence between the
human spatial representation of the environment and robot’s
autonomously learned one, [2]. These two approaches are the
main motivation for our current work where the integration
of object recognition and map building represents a basis
for longterm reasoning and planning of a robot system. Our
previous contributions related to different parts of a service
robot system have been presented in [2]–[6].

A. Example Tasks and Experimental Platform

The specific problem considered in this work is a mobile
robot platform that navigates autonomously in a domestic
environment, builds a map as it moves along, localizes its
position in it, recognizes objects on its way and puts them in
the map. In our previous work, [3] we have demonstrated how
robot localization and object manipulation can be performed
once the robot knows an approximate position of the object
before it is instructed to execute an object fetching task. In this
paper, we are primarily concerned with a problem of how to
autonomously build a map, detect object while doing this and
autoamatically put them in the map. This then makes the basis
for instructing the robot to fetch objects in a similar manner
as we have demosstrated in [3]. Our experimental platform
is a PowerBot from MobileRobots Inc., a non-holonomic
differential drive platform with two rear caster wheels. The
robot is equipped with a 6DOF robotic manipulators on the
top plate. It has a SICK LMS200 laser scanner mounted low
in the front, 28 Polaroid sonar sensors, a Canon VC-C4 pan-
tilt-zoom CCD camera with 16x zoom on top of the laser
scanner and a firewire camera on the last joint of the arm.
The object recognition system presented in this work uses the
Canon pan-tilt-zoom camera.

Fig. 1. left) The experimental platform: ActivMedia’s PowerBot and right)
Some of the objects from the database.

B. Motivation and Related Work

During the last few years, there have been a few examples
of systems where the robot can acquire and facilitate semantic
information, [7], [8]. Different to our approach, the work
presented in [7] is mostly concentrated on linguistic interaction



with a human and the robot is not using its sensors to retrieve
semantic information. The anchoring approach, presented in
[8], deals mostly with the problem of integrating semantic
and spatial levels where a special type of representation is
used to achieve this. In this work, we are primarily interested
in integration of SLAM and object recognition to acquire the
semantic structure of the environment automatically and refer
to our previous work regarding other aspects such as robot
architecture [3], human-robot interaction [4], SLAM [5], social
aspect [6] and dialog based robot instruction [2].

In service robot scenarios, we expect the robot to au-
tonomously navigate through a home or an office and manip-
ulate objects. For this purpose, we have developed an object
recognition system that is effective based on just a few training
images and also has the ability to learn incrementally as more
training images are available. The vision system design is
based on the active vision paradigm, [9] where, instead of
passively observing the world, viewing conditions are actively
changed so that the best results are obtained given the task
at hand. The idea is to first use an appearance-based method
to generate a number of hypotheses of the whereabouts of the
object. The robot then investigates each of these hypotheses by
moving closer to them, or as in our case, by zooming with a
pan-tilt-zoom camera. Once the object appears large enough, it
can be recognized with the local feature-based method. If the
robot recognizes the object from two different locations, it can
use geometric triangulation to calculate the approximate world
position of the object and store it in the map. By augmenting
the map with the location of objects, we foresee that we will
be able to achieve place recognition in a longer run. Along the
way by building up statistics about what type of objects are
typically found in, for example, a kitchen the robot might not
only be able to recognize a certain kitchen but also potentially
generalize to recognize a room it has never seen before as
probably being a kitchen, because of the objects found in it,
[8].

II. BUILDING A MAP OF THE ENVIRONMENT

For automatic acquirement of semantic structure of the
environment, automatic map building and its integration with
object/place identification is a basic requirement. For increased
flexibility, the robot should both be able to build a map
and use it for localization. Many of the methods for SLAM
(Simultaneous Localization and Mapping), including the one
used in this paper, have their roots in the work by Smith et
al. [10]. Much of the work in SLAM focus just on creating a
map from sensor data and not on how to use the map later on.
We want to use the map for tasks that require communication
with the robot using common labels from the map. These
labels are not only used for referring to objects, but also for
certain areas and places. A natural way to achieve this is to let
the robot follow the user around the environment. This allows
the user to put labels on specific locations, areas or rooms.

Our SLAM algorithm uses a laser sensor and details can be
found in [11]. A feature based map (e.g., 2D line map as in our
case) is rather sparse and does not contain enough information

for the robot to know how to move from one place to another.
Furthermore, only structures that are modelled as features will
be placed in the map and there is thus no explicit information
about where there is free space such as in an occupancy grid
based one. Here, we build a navigation graph while the robot
moves around. When the robot has moved a certain distance,
a node is placed in the graph at the current position of the
robot. Whenever the robot moves between two nodes, these are
connected in the graph. The nodes represent the free space and
the edges between them encode paths that the robot can use to
move from one place to another. The nodes in the navigation
graph can also be used as references for certain important
locations such as, for example, a recharging station. Fig. 2
shows an example of a navigation graph as connected stars.
For a more detailed description of the navigation graph and
how it can be used for space partitioning space, see [2].

III. ACTIVE OBJECT RECOGNITION

Despite the large body of work on vision based object recog-
nition, few have investigated strategies for object recognition
when the distance to the object (scale) changes significantly.
Similarly, there are very few object recognition systems that
have been evaluated in a mobile robot setting. In [12], a robot
behavior similar to ours is presented, but with somewhat lim-
ited vision algorithms. A mobile, self-localizing robot wanders
in an office environment and can learn and recognize objects
encountered. However, the recognition algorithm cannot cope
with a cluttered environment and it works only for a very few
objects since the neural network based vision algorithm only
uses object shape information as input.

The most significant drawback of the methods based on
local features such as, for example, Scale Invariant Features
(SIFT) [13] is that the reliable features can only be found when
the object occupies a significant part of the image. It is very
hard to recognize objects that are far away from the camera.
We have solved this problem by both making the use of a
pan-tilt-zoom camera and a global method prior to a feature
based one to generate hypotheses. By zooming in on a number
of a probable object locations provided by the hypotheses
generation step, objects far away from the camera can be
recognized. We propose to use Receptive Field Cooccurrence
Histograms (RFCH) for generating hypotheses of object loca-
tions and then use a SIFT-based method for object recognition
once the object is zoomed-in. RFCH [14] is an appearance-
based method capable of detecting objects far away from the
camera. The method itself does not outperform the SIFT based
method proposed in [13] in terms of recognition rate but it is
faster and thus more suitable for our scenario.

A. Object Training Procedure

For service robots, adding new objects to the database has
to be easy and suitable for ordinary users. In our system, this
is performed by simply showing the object to the robot - the
user places the object in front of the camera and visual features
are then automatically extracted from the image. During this
“teaching” step, it is crucial that only features from the object



Fig. 2. A partial map of the 7th floor at CAS/CVAP. The stars are nodes in the navigation graph. The large stars denote door/gateway nodes that partition
the graph into different rooms/areas.

are learned. If the background is visible in the image, that
information will be learned as well and will therefore increase
the number of false positives in the online recognition stage.
The common way of extracting the object is to manually
process the image in an editor and crop the object from the
background. However, this is a tedious step which may be
difficult for a ordinary user to do. In our framework, objects
are learned from human demonstrations in two steps. First, the
robot is instructed to take an image of the scene with no object
present in it. Then the operator places the object in front of the
camera and image differencing is used to segment the object
from the background. Since simple image differencing is prone
to noise, a series of morphological operations is performed to
achieve better segmentation (errode - dilate - errode). These
operations are performed using information from the original
image, i.e., a growing effect (covering holes) will not add black
pixels but pixels from the original image. The result of this
step can be seen in Fig. 3. The final image may still not have a
perfect segmentation of the whole object but it is good enough
for object recognition purpose.

Fig. 3. Left: The original image. Center: The result after image differencing.
Right: The result after morphological operations

Another problem with image differencing is the choice of a
threshold θ that determines if a pixel is part of the background
or not. If θ is set too high, too much of the background will be
kept and a too low θ will result in loosing significant parts of
the object. In our work, we use an automatic adjustment of θ

based on the result of the differencing performance. If image
differencing was successful, the remaining pixels should be

concentrated to a single area where the object has moved. If the
differencing has failed, the pixels are mostly scattered around
the entire image. Thus, the success is measured in terms
of detection variance. In addition, a penalty that is linearly
proportional to the number of remaining pixels is added to it.
The reason for this is to cover the case of very few remaining
pixels that have a low variance but are not sufficient for the
object representation. In teh run time, the algorithm tests every
θ from 1 to 150 to find the optimal setting with the lowest
score.

B. Hypotheses Generation

Once the object is segmented from the background, it has
to be represented in a compact way for future indexing. We
shortly overview the methodology and refer to our previos
work for more details, [14]. We start by extracting visual
features (gradient magnitude and Laplacian response) and
use them to build Receptive Field Cooccurrence Histograms
(RFCH). A RFCH is able to capture more of the geometric
properties of an object compared to a regular histogram since,
instead of just counting the descriptor responses for each pixel,
the histogram is built from pairs of descriptor responses. The
pixel pairs can be constrained based on, for example, their
relative distance where only pixel pairs separated by less than
a predefined distance, dmax are considered. Thus, the histogram
represents not only how common a certain descriptor is but
also how common certain combinations of descriptors are.

In the run time, the robot observes the environment and
object hypotheses are generated by scanning the image with
a small search window. At each step, a RFCH is built and
compared to the stored RFCH of the target object using
histogram intersection resulting in a vote matrix, see Fig. 4. If
a vote is higher than a certain object-dependent threshold, the
corresponding location for that vote is considered a hypothesis.
The threshold value provides a tradeoff between search time
and detection probability. If the threshold is low, many hy-
potheses are generated and evaluating them is time consuming.
On the other hand, if the threshold is high, there is a risk that
the object is missed. An extensive experimental evaluation has



shown that the method is not very sensitive to the value of
the threshold, [14]. We have found that T = 0.2 was suitable
for relatively small objects (approximately 8-10 cm in height),
while the larger objects could use T = 0.25 for a faster search.

Fig. 4. Searching for a soda can, cup and rice package in a bookshelf. Light
areas indicate high likelihood of the object being present. Vote matrices: Upper
right - soda, lower left - cup, lower right - rice package.

C. Hypotheses Evaluation Strategy

Given a pan-tilt-zoom camera and a set of hypothesized
object locations, the task is to efficiently determine and zoom
on the generated hypotheses. To speed up the process, we
decided to first use an intermediate level of zoom and then
use the appearance-based object detector for final verification.
Finding the best image locations to zoom on is not a trivial
task. We quantize the view space into the same size as the
vote matrix. For each vote cell, we calculate which hypotheses
would still be visible if one would zoom in on that location
using zoom factor z. Then, the problem is to find the smallest
set of zoom locations that cover all hypotheses. Here, a simple
greedy approach is followed: Select the location that covers
most hypotheses, then remove these from the list and calculate
the zoom locations once again. Continue until all hypotheses
are covered. See Fig. 5 for an example. This approach has
proven to work well and is much more efficient compared to
evaluating all of the hypotheses. The method is used both for
the high and the intermediate zoom levels. The zoom factor
z decides how much to zoom in so to reach the next zoom
level. A large z makes objects larger in the image and thus
gives the detector more information but it in turn means that
fewer hypotheses can be evaluated simultaneously. To account
for this, we set z based on the distance measured by the laser
scanner in the direction of the object. If the distance is small,
the far zoom level is skipped, and the algorithm starts at the
intermediate level. If the distance is very small, about 1 m
or less, the intermediate level is also skipped. Experimental
evaluation will show that the object recognition method works
well even if the object appears larger in the image compared
to training images.

Once a hypothesis is zoomed in, we again use RFCH
for matching. If the match value exceeds the threshold, we

Fig. 5. An example of the greedy search strategy used while searching
for the cup at the intermediate zoom level. Squares represent possible object
locations, and crosses are the calculated zoom locations that cover all the
hypotheses. There are 4 zoom locations and 30 hypotheses in this example.

perform SIFT-matching to verify the hypothesis. The more
SIFT-matches found in an image, the more likely it is that
the image contains the object. If the number of matches ex-
ceeds an object-dependent threshold, the object is considered
recognized. Some objects have more features than others and
are thus easier to recognize. To minimize the number of false
positives, the threshold depends on the number of features
found during training. If multiple objects are being searched
for, the hypotheses for each object may be combined at each
zoom level. This way, the number of zoom-in steps can be
reduced, compared to searching for the objects in sequence.
For each zoom-in operation, only those objects that generated
the visible hypotheses are considered.

IV. INTEGRATING SLAM AND OBJECT RECOGNITION

As pointed out in [15], [16] and others, robot architecture
design and modules such as navigation, localization, vision
based object and person recognition, speech recognition and
dialog processing are just some of the key research problems
that have to be considered in a development of a service robot.
In our previous work, we have already demonstrated some of
these. In [4], we present an interactive interface for a service
robot based on multi sensor fusion where speech, vision and
laser range data are integrated and show the benefit of sensory
integration in the design of a robust and natural interaction
system using a set of simple perceptual algorithms. In [6],
we deal with the problem of embodied interaction between
a service robot and a human where a control strategy based
on human spatial behavior that adopts human-robot interaction
patterns similar to those used in person-person encounters was
studied. In [2], we concentrate on a dialog based interaction for
resolution of ambiguities in Human-Augmented Mapping with
special focus on spatial organization and localization. Systems
integration have previously been demonstrated in [3].

In the current scenario, we focus on the integration of
SLAM and object recognition modules. Here, the robot fol-
lows the user through a new environment so that the user



can show the robot around. The robot is considered to be
our guest that is getting a tour of the environment. The user
can attach labels to areas/room, i.e. instruct the robot that this
is the living room, this is the kitchen, [2]. These labels can
then be associated with a part of the navigation graph. As
the object recognition is moderately fast, we let the robot add
objects to the map after the user has shown it the extent of
the environment. This is then carried out fully autonomously.

Some objects can be detected from more than one position.
This allows for triangulation to estimate not only the bearing
to the object but also the approximate position. Even though
an object has only been detected once, the map contains
information from where each object has been detected and
in what direction. We should stress that we do not propose to
try to estimate the exact position of an object here. When the
time comes to interact with the object, for example to pick it
up, it has to be redetected anyway to confirm that it is still
there and then use visual servoing techniques to pick it up.

V. EXPERIMENTAL EVALUATION

We started by testing the effectiveness of our system in an
office environment. Here, the robot was presented four objects
(see Fig. 1) which were then placed in a room in six different
configurations. In the training stage, the robot was given two
views of each object: one close-up view for SIFT-training and
one at a smaller scale for RFCH-training. For this specific
experiment, the navigation graph was limited to four nodes in
a single room. At each node, the robot performed a search
for the objects. This search was done with two different robot
rotations, separated by 180◦. Four different pan angles for the
camera were used to cover the field of view for each of the
two robot orientations.

For each object, we measured the average time for detec-
tion (ADT), average total search time (ATST) and the number
of detections. Not all object locations were visible from all
node positions so we counted the number of times the robot
missed the object completely, i.e. did not see it from any of the
node positions. As seen in Table I, this only happened three
times. The rice and book were the easiest to detect, which
can be seen from the average time for detection. This is not
because of their appearance but rather due to the size: the
rice and book are both large, so their features are easier to
detect when the object is far away. To spot the zip-packet
or the cup, the robot usually had to be less than 3 m away
from the object. We found that setting the SIFT-threshold to
1/20 of the number of features found during training, a high
detection rate and no false positives were achieved. The main
reason for the required recognition time and failure is that the
camera sometimes needed several seconds to focus with the
result that the images were blurry, causing the robot to miss
the objects. In Fig. 6, the map of the room is shown with
one of the object configurations with all four objects detected.
Since all objects were detected from several nodes, we were
able to estimate their positions.

TABLE I
OBJECT RECOGNITION RESULTS

Object ATD (min) ATST (min) Detect
Rice 1:10 3:52 6/6
Book 0:40 2:55 6/6
Cup 3:52 11:22 5/6

Zip-disks 3:28 7:01 4/6

Fig. 6. The results of a robot detecting four objects in a living room and
estimating their positions.

A. Experiment 2: Searching in Several Rooms

In this experiment, the search for objects is not limited to
a single room but to nodes generated based on the map that
are not door nodes or directly adjacent to doors. We used
only two objects in this experiments, a soda can and the rice
package. Fig. 7 shows the situation after the robot has visited
two of the rooms. One instance of each of the objects were
placed in these two rooms. The lines extending from close to
the graph nodes starts in the camera position at the time of
detection and is directed toward the observation of the object.
As can be seen the objects are often spotted from more than
one location. A rice package showed to the far right in the
map was placed on a table. It has been detected three times

Fig. 7. Searching for two objects in two rooms: a rice package placed on a
dinner table is precisely localized by camera compared to laser.



Fig. 8. The robot is instructed to fetch the rice from the living room. It first plans a path and then follows it while avoiding obstacles. Once the goal position
is reached, it verifies that the object is still there (marked with the white arrow). The robot signals that it has found the object by pointing to it with the arm.

and it can be seen that a triangulation would place the object
closer to the camera than the laser which is only able to detect
the distance to the wall behind the table. In this figure, it can
also be seen that the robot has correctly detected the three
doors in this part of the environment(marked as large stars),
two of them leading to the same room from the corridor. This
demonstrates the possibility of instructing the robot to fetch
object X in room Y, a task presented in the next section.

B. Experiment 3: Fetching an Object
We shortly demonstrate here how the robot may use the

acquired world knowledge. After the map is built and the robot
has performed a multi-room search, it is instructed to go to
a specific room and pick up an object. The initial position
of the robot is the room shown on the right in Fig. 7 called
the manipulator lab and the robot has to fetch the rice from
the living room (the left room on the map). The robot first
plans a path using the navigation nodes and starts moving
through the door to the hallway. It then enters the living room
and moves to the closest point from which it has previously
seen the object. At this point, it verifies that the object is still
there. Then, it raises its arm towards the object, signaling that
the object has been found. If the object was not found at the
expected location, a new search is initiated. A few example
images taken during robot task execution are shown in Fig. 8.

VI. CONCLUSIONS

In this paper, we have presented our current efforts toward
integrating spatial and semantic information in a service
robot scenario that allows the robot to reason beyond simple
geometrical level. At this stage, we are primarily interested
in using different learning techniques to acquire semantic
structure of the environment automatically. The approach taken
is the integration of SLAM and object recognition systems
where the map of the environment, built automatically during
navigation, is augmented by detecting objects in it and then
using this augmented map to perform fetching tasks. We have
also presented a method for active object recognition which
integrates both local and global information about the object.
Finally, we have presented some initial results on how we
augment our map with information about where objects are.
Our current work deals with using this information in object
fetch-and-carry tasks. We belive that, in a longer run, the
proposed methodology will allow us to determine what objects
are typically found in certain types of rooms thus facilitating
the recognitionn of rooms’ functionality.
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