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Distributed Control of Triangular Formations with
Angle-Only Constraints
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Abstract—This paper considers the coupled formation control
of three mobile agents moving in the plane. Each agent has only
local inter-agent bearing knowledge and is required to maintain
a specified angular separation relative to both neighbor agents.
Assuming the desired angular separation of each agent relative
to the group is feasible, then a triangle is generated. The control
law is distributed and accordingly each agent can determine their
own control law using only the locally measured bearings. A
convergence result is established in this paper which guarantees
global asymptotic convergence of the formation to the desired
formation shape.

I. INTRODUCTION

This paper presents a distributed control system for tri-
angular formation control based only on local bearing mea-
surements and relative angular constraints. The formations
considered are characterized entirely by the interior angles
subtended at each agent by two neighbor agents. The angle-
based formation control problem introduced in this paper is
a novel contribution in the field of multi-agent dynamical
systems and the control law proposed is provably globally
asymptotically stabilizing.

Distributed control of multi-agent formations has been ex-
plored extensively in different settings. For example, consen-
sus and flocking algorithms lead to formation-like steady-
state structures of multi-agent systems [1]–[8]. Similarly, so-
called aggregation and swarm control, which typically involves
potential functions [9], is also common in the robotics and
control literature [10]–[14]. A number of formation control
applications have been considered [15]–[20] which typically
involve formations of uninhabited aerial or underwater vehi-
cles or formations of satellites etc. The problem considered
in this paper follows closely the ideology put forth in [11],
[21]–[24]. Specifically we are concerned with the formation,
and subsequent maintenance, of specific inter-agent geometric
relationships using distributed algorithms. The majority of
existing algorithms consider only inter-agent distance mea-
sures. We differ from this in a novel way, by considering
only inter-agent bearing measures taken in local coordinates,
i.e. agents do not share a common heading. Our bearing-
only formation control problem is motivated by the problem
of optimal sensor arrangement for localization [1], [2] where
the relative configurations are typically given in terms of the
angular geometry.
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There are two fundamental problems which need address-
ing. Firstly, the number and characteristics of the particular
constraints required has to be established. Obviously, defining
a complete distance constraint graph between a group of agents
will suffice in defining a unique formation. However, defining
a certain (well-chosen) subset of these distance constraints
can often (generically) define a unique formation, e.g. see
[21], [25]–[27]. Directed constraints can also be considered,
where some agents are tasked at maintaining a given distance
from another agent while the converse is not true, e.g. see
[26], [27]. Relative angular constraints can also be considered
[28]. Establishing the constraint leads to the second problem
of formation control, i.e. the design of control laws. The
control laws can either be distributed or centralized. Often,
distributed control lends itself naturally to the multi-agent
formation control problem and it is this form of control which
is considered in this paper. A distributed law for formation
control is implemented by individual agents in the formation.
Each agent attempts to achieve (and maintain) the desired
relevant constraints placed on it’s own position but does not
consider the constraints of any other agents (when planning
it’s own motion control).

The contribution of this paper is the development of a
distributed law for angular constrained formation control of
a multi-agent system taking only relative bearing measure-
ments. A large literature exists on bearing-only state estimation
and localization [29]–[31] making the angle-based formation
control problem particularly appealing. However, despite this
fact, angle-based formation control is not commonly addressed
in the literature; see [32], [33]. Instead, a large literature in
both robotics and control focuses on distance-based forma-
tion control and potential-function-based control laws. In this
paper, we introduce an angular constrained formation control
problem for a group of agents tasked at maintaining a specified
triangular formation. The control law introduced in this paper
is globally asymptotically stabilizing given any initial agent
configuration (assuming no agents are collocated initially). No
similar results on provably stable angle-only formation control
exist in the literature.

The paper is organized as follows. In Section II, the trian-
gular formation control problem is introduced along with the
distributed control law proposed in this paper. Subsequently,
the multi-agent system evolution is examined and global
stability of the desired formation shape is proved. In Section III
a number of illustrative examples are given. Some discussion
points are covered in Section IV and a conclusion is given in
Section V.
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II. BEARING-ONLY TRIANGULAR FORMATION CONTROL

Consider a group of n = 3 agents in R
2 which interact via

an undirected topology G = {V , E} with V = {1, 2, 3} and
E = V × V . The position of each agent is

pi = [xi yi]T ∈ R
2 (1)

where xi and yi denote agent i’s position in the x and y
directions respectively. The neighbor set N i ⊂ V denotes the
set of agents connected to agent i by a single (undirected)
edge. In this case Ni = {(i+ 1), (i− 1)} (modulo n).

Importantly, note that agents do not share a common head-
ing, i.e. they are not equipped with a compass of any kind.
Agent i measures only the bearing φij ∈ [−π, π), ∀j ∈ Ni

positive (negative) counter-clockwise (clockwise) from their
local xi-direction to agent j. Let αi denote the angle subtended
at agent i by the two agents in Ni. Then, the formation
shape (not scale) is completely characterized by α i, ∀i ∈ V .
Introduce the following angle

ϑi = |φi(i+1) − φi(i−1)| ∈ [0, 2π) (2)

which is the angle subtended at agent i by agents i + 1 and
i−1 which is measured positive from the min(φi(i+1), φi(i−1))
to max(φi(i+1), φi(i−1)) in agent i’s local coordinate frame.
Then, mathematically, the interior αi can be given by

αi =
{
ϑi if ϑi ≤ π
2π − ϑi otherwise (3)

with αi ∈ [0, π]. Note the difference between αi = 0 and
αi = π implies agent i can ascertain whether or not it is in
between agents i+1 and i−1 with all three collinear. Tacitly,
it can be assumed that αi is measured by agent i. The inter-
agent range has not been considered and plays no part in the
measurement of αi or the control law to be derived.

Define the desired steady-state angles α∗
i ∈ [0, π], ∀i ∈ V .

The α∗
i then completely characterize the shape (not scale)

of the desired triangle formation. The following standing
assumptions are adopted to hold through Sections II and III.

Assumption 1. The desired (i.e. control objective) interior
angular separations α∗

i , obey α∗
1 + α∗

2 + α∗
3 = π. The case

where α∗
i = 0, α∗

j �= 0 and α∗
k = π − α∗

j is excluded.

Assumption 2. The initial agent positions pi(0) are non-
coincident, i.e. pi(0) �= pj(0), ∀i �= j.

Assumption 1 ensures the desired steady-state triangle is
well-defined and the set of control objectives are simulta-
neously feasible. The case where α∗

i = 0, α∗
j �= 0 and

α∗
k = π−α∗

j would place agent i infinitely far from the other
two agents and this case will be discussed separately later. The
considered problem is now summarized.

Problem (Angle-Only Triangle Control). Design a distributed
control law for agent i that steers the measured angle α i to α∗

i

given any initial triangle formation. Technically, as time t→ ∞
then we want αi → α∗

i exponentially fast given any initial
configuration. Moreover, we want α i to be well-defined for
the entire motion of the formation, i.e. no two agent positions
should coincide during the formation motion.

This problem is novel since the controller uses only bearing
measurements taken by individual agents in local coordinates
and we are given only inter-agent angle constraints. Agents
do not share information and agent i does not consider the
constraints of any other agent when executing its own control
law.

A. The Proposed Control Law

The motion of agent i is governed by

ṗi = vi

[
cosβi

sinβi

]
(4)

where both vi and βi are control inputs to be determined. The
heading βi is defined positive (negative) counter-clockwise
(clockwise) from agent i’s local xi-direction. The control law
which determines vi and βi is truly distributed and determined
solely by α∗

i and the measured angle αi subtended at agent i
by two agents j ∈ Ni. The speed control input of agent i is
defined as follows,

vi = (α∗
i − αi)k (5)

where k > 0 is a constant (which in this paper is taken to be
k = 1). The heading of agent i is defined along the bisection
of αi ∈ [0, π] and toward the interior of αi so that

βi =
{

αi

2 + min(φi(i+1), φi(i−1)), if ϑi ≤ π
αi

2 + max(φi(i+1), φi(i−1)), if ϑi > π
(6)

where ϑi is given by (2). Actually, it is easier to visualize the
heading of agent i then to mathematically define it. Visually,
the heading of agent i is simply toward the interior of α i and
specifically along the bisection of αi. Of course, the speed
of agent i might be negative. By definition, if α i = π then
the bisection is well defined by αi

2 + min(φi(i+1), φi(i−1)). If
αi = 0 then the bisection is also well defined.

The control laws (5) and (6) imply that if α∗
i > αi, so that

the angular separation subtended at agent i is too small, then
vi is positive and the agent moves toward the interior of and
along the bisection of αi. Clearly, the description of agent i’s
movement is coupled to the movements of agents (i+ 1) and
(i− 1).

B. Stability Analysis for the Proposed Control Law

The range rij = rji = ‖pi−pj‖ will be useful in analyzing
the evolution of the multi-agent system but is not included in
the implementation of the controller.

In addition to the formation stability results, we will show
later that if rij = rji > 0 at some time t0, for all i, j then
it remains strictly positive for all t ≥ t0, i.e. we prove that
collisions are avoided naturally by our formation control law
and thus αi is well-defined for all time.

Consider agent i with vi = α∗
i −αi and heading βi defined

as before (6) and note that Ni = {(i+1), (i−1)}. Obviously,
agent i moves with a speed of α∗

i − αi and with a heading
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along the bisection of αi. This (directly) affects how α̇i±1

evolves. If agents i+ 1 and i− 1 are static, then

α̇i+1 = − vi

ri(i+1)
sin(

αi

2
)

= − 1
ri(i+1)

sin(
αi

2
)(α∗

i − αi) (7)

using the formula for the angular velocity in terms of the
cross-radial component of the velocity of agent i. The sign is
negative since if αi increases, i.e. if (α∗

i −αi) > 0, then αi+1

decreases. Similarly

α̇i−1 = − 1
ri(i−1)

sin(
αi

2
)(α∗

i − αi) (8)

In addition, α̇i is affected directly by α∗
i − αi. Note that∑

i α̇i = 0. Thus, when agents i + 1 and i − 1 are static we
have

α̇i =
(α∗

i − αi)
ri(i+1)

sin(
αi

2
) +

(α∗
i − αi)
ri(i−1)

sin(
αi

2
)

=
ri(i+1) + ri(i−1)

ri(i+1)ri(i−1)
sin(

αi

2
)(α∗

i − αi)

=
sin(αi+1) + sin(αi−1)
ri(i+1) sin(αi+1)

sin(
αi

2
)(α∗

i − αi)

=
sin(αi+1) + sin(αi−1)
ri(i−1) sin(αi−1)

sin(
αi

2
)(α∗

i − αi) (9)

where the last three lines of (9) are equivalent via the sine
rule. Now for future notational brevity let

fi(i+1) =
1

ri(i+1)
sin(

αi+1

2
) (10)

and let

gi =
ri(i+1) + ri(i−1)

ri(i+1)ri(i−1)
sin(

αi

2
) (11)

where we note gi ≥ 0 and fij ≥ 0 for all i, j ∈ {1, 2, 3} when
αi ∈ [0, π], ∀i. Now, assuming all agents move with a motion
governed by their individual control laws we have

α̇i = gi(α∗
i −αi)−fi(i+1)(α∗

i+1−αi+1)−fi(i−1)(α∗
i−1−αi−1)

(12)
with αi ∈ [0, π]. The system of differential equations

α̇ =

⎡
⎣ −g1 f12 f13

f21 −g2 f23
f31 f32 −g3

⎤
⎦

⎛
⎝α−

⎡
⎣ α∗

1

α∗
2

α∗
3

⎤
⎦
⎞
⎠ (13)

where
α =

[
α1 α2 α3

]T
(14)

is defined on a 2-simplex in α-space with vertices α =
[π 0 0]�, α = [0 π 0]� and α = [0 0 π]�. We denote this
manifold by Mα.

Define the control error ei = (αi − α∗
i ) ∈ [−π, π] for each

agent i. Then the following differential system is obtained

ėi = − sin(αi+1) + sin(αi−1)
ri(i+1) sin(αi+1)

sin(
αi

2
)ei +

1
ri(i+1)

sin(
αi+1

2
)ei+1 +

1
ri(i−1)

sin(
αi−1

2
)ei−1 (15)

Using both (10) and (11), then the system of differential
equations (15) can be written succinctly as

ėi = −giei + fi(i+1)ei+1 + fi(i−1)ei−1 (16)

Note that ėi is a nonlinear differential equation since, for
example, αi = α∗

i + ei is dependent on the known constant
α∗

i and also the error ei. Stacking the system of differential
equations (15) or (16) leads to

ė = F(e)e (17)

where
e =

[
e1 e2 e3

]T
(18)

and where

F(e) =

⎡
⎣ −g1 f12 f13

f21 −g2 f23
f31 f32 −g3

⎤
⎦ (19)

where e is defined on a 2-simplex in e-space with vertices
e = [π − α∗

1 − α∗
2 − α∗

3]�, e = [−α∗
1 π − α∗

2 − α∗
3]� and

e = [−α∗
1 − α∗

2 π − α∗
3]

�. We denote this manifold by Me.
In fact, Me is obtained directly from Mα via a translation
by −[α∗

1 α
∗
2 α

∗
3]

�. Again, F(e) is (significantly) nonlinear in
e since αi = α∗

i + ei.
Figure 1 depicts the error manifold and shows six distinct

error regions, Ri±, with i ∈ {1, 2, 3}. The index conventions
will become clear subsequently.
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Fig. 1. A plot of the open error manifold showing six distinct regions and
the boundaries of the manifold.

Note the regions are taken without boundary such that, for
example, we can define R3+ by

e ∈ R3+ ⇐⇒
⎡
⎣ 0 < e1 < π − α∗

1

0 < e2 < π − α∗
2

−α∗
3 < e3 < 0

⎤
⎦ (20)

For distinct i, j, k ∈ {1, 2, 3}, we chose the individual error
regions to exhibit the following useful properties

Ri+ ⇒ {ej > 0, ek > 0, ei < 0, ėi > 0} (21)

or

Ri− ⇒ {ej < 0, ek < 0, ei > 0, ėi < 0} (22)
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where ei ∈ [−α∗
i , π − α∗

i ] ⊂ [−π, π], ∀i and
∑

i ei = 0
must be enforced. The sign of the errors is taken directly
from the definition of the region while the sign of a particular
error velocity can be determined using the signs of the error
and (17). The inequalities are strict. Note importantly that the
simplex, or manifold Me shifts in the error space depending
on the desired configuration angles α∗

i . As such, error regions,
Ri±, can grow or shrink, and can disappear altogether. For
example, take the case where α∗

1 = α∗
2 = 0 such that α∗

3 = π,
then the only region in existence is R3+.

Theorem 1. The manifold Me is a positively invariant set.

Proof: To show that Me is positively invariant we show
that for any ei ∈ Me, then it is impossible for ei to escape
Me. Note that ei ∈ [−α∗

i , π − α∗
i ] ⊂ [−π, π]. Thus, let us

consider the right-sided limit,

lim
ei→−α∗

i
+
ėi =

1
ri(i+1)

sin(
α(i+1)

2
)ei+1 +

1
ri(i−1)

sin(
α(i−1)

2
)ei−1

=
ei+1

ri(i+1)
if ei+1 → (π − α∗

i+1)
−

ei−1 → −α∗
i−1

+

=
ei−1

ri(i−1)
if

ei+1 → −α∗
i+1

+

ei−1 → (π − α∗
i−1)

−

> 0 (23)

which implies ei cannot escape Me in one direction. A similar
computation shows that ei cannot escape Me in the other
direction, i.e. by following ei → π−α∗

i through the boundary
of the manifold. That is

lim
ei→(π−α∗

i )−
ėi = −ri(i+1) + ri(i−1)

ri(i+1)ri(i−1)
ei

< 0 (24)

which completes the proof.
Note that technically, once inside Me, there are only three

possible escape routes. In the proof of Theorem 1 we show
that none of these routes can be taken. Given that Me is a
positively invariant set, we state the following result which
ensures the formation is well-defined for all time t, i.e. the
angles αi are well defined for all time.

Theorem 2. Suppose that pi(t0) �= pj(t0) for i �= j at some
time t0. Then, pi(t) �= pj(t) for i �= j for all t ≥ t0, i.e. for all
t ≥ t0 we have ‖pi(t) − pj(t)‖ > 0.

Proof: In order for pi(t) = pj(t) at some time t > t0
there must exist a time interval [t − ε, t] with t − ε ≥ t0 on
which βi = φij and/or βj = φji for any ε ≥ dt. We now show
that no such time interval can exist. We consider now, with no
loss of generality, that βi = φij . Note that βi = φij on [t−ε, t]
then implies αi = 0 which implies αj = 0 or αj = π on the
entire interval [t− ε, t]. If αj(t− ε) = π then at time t− ε+dt
we immediately have βi �= φij since αj(t − ε + dt) < π. To
see this note that αj(t− ε) = π implies

α̇j = −gj(αj − α∗
j ) on [t− ε, t− ε+ dt] (25)

which is strictly negative unless α∗
j = π which according to

Assumption 1 would imply that both agents i, k �= j are also
at equilibrium. Similarly, if αj = 0 then at time t− ε+ dt we
immediately have βi �= φij since αj(t− ε+ dt) > 0.

The previous result ensures collisions are avoided naturally
by the formation. The following result characterizes the equi-
librium points of the system.

Theorem 3. The system (17) is at equilibrium ė = 0 if and
only if e = 0.

Proof: The sufficiency of e = 0 is obvious. To prove
necessity, suppose firstly that the state of the system is in one
of the six distinct regions Ri+ or Ri− defined using (21) or
(22). Using (21) or (22) it is clear ė i �= 0 for at least one i,
i.e. the system is not at equilibrium.

Now it remains to show that on the manifold Me there are
no equilibrium points on the boundaries in between the error
regions. Denote such a boundary via

Σi+j− = {∂Ri+ ∩ ∂Rj−}/{0} = Σj−i+ (26)

and note we consider only boundaries with strictly positive
length, i.e. a strictly positive 1-d Hausdorff measure. Now
following our derivation of the error regions R i+ we find that

e ∈ Σi+j− ⇐⇒
⎡
⎣ −α∗

i < ei < 0
0 < ej < π − α∗

j

ek = 0

⎤
⎦ (27)

which implies, using (16), that ėi > 0 and ėj < 0 and thus
ė �= 0. This completes the proof.

We introduce the following theorem which will form the
basis of our subsequent stability proof.

Theorem 4 (Poincare-Bendixson [34]). Let M ⊂ R
2 be a

compact, positively invariant two-manifold containing a finite
number of fixed points. Let x ∈ M and consider the ω-limit
set ω(x). Then one of the following possibilities holds:

1) ω(x) is an equilibrium point;
2) ω(x) is a closed orbit;
3) ω(x) consists of a finite number of fixed points x1, . . .,

xm and orbits γ with α(γ) = xi and ω(γ) = xj ,

where α(γ) means the α-limit set of every point γ.

The intuition behind the Poincare-Bendixson theorem is that
all bounded trajectories in a planar region (or two-manifold)
must converge to an equilibrium point, a limit cycle, or a union
of fixed points and the trajectories connecting them, i.e. so-
called homoclinic or heteroclinic orbits.

We know there is only a single equilibrium and that Me is
positively invariant. We now show there are no closed orbits.

Theorem 5. The system (17) has no closed orbits in Me.

Proof: Consider the arc between adjacent regions given
by

Σi+j− = {∂Ri+ ∩ ∂Rj−}/{0} = Σj−i+ (28)

with strictly positive length, i.e. a strictly positive 1-d Haus-
dorff measure. There are six such ‘well-defined’ sets Σ i+j− =



5

Σj−i+. Now define

Σ = Σ3+1− ∪ Σ1−2+ ∪ Σ2+3− ∪
Σ3−1+ ∪ Σ1+2− ∪ Σ2−3+ (29)

and note for clarity that Σ ∩ {0} = ∅. Note that any closed
orbit must enclose the origin [34] and thus intersect every well-
defined boundary Σi+j−. As a consequence, if the origin is on
a vertex of the manifold Me, i.e. if the desired configuration
is a line formation, then obviously no closed orbits exist.
Otherwise, the strategy is to show that any positive orbit
ψ+(e) of (17) intersects Σ in a strictly monotone sequence
approaching the origin (if it intersects it in more than a point).
That is, we show that if em+1 is the (m + 1)th intersection
of Σ then ‖em+1‖ < ‖em‖. Note that

e ∈ Σi+j− ⇒ ėi > 0, ei < 0 and ėj < 0, ej > 0
⇒ ek = 0 and ‖e‖ = |ej | (30)

using the definition of regions where i, j, k ∈ {1, 2, 3} are
distinct indices. We proceed using an inductive-like argument.
Suppose that em is the mth intersection of Σ (which also
intersects Σi+j−) for the positive orbit ψ+

t (em) starting at t =
tm. Define a time tm+1 and mark em+1 as the (m + 1)th

intersection of Σ with em+1 = ψ+
tm+1

(em). There exists a time
tm+ ∈ (tm, tm+1] at which ψ+

tm+
(em) is in (i) Σi+j− or (ii)

Ri+ or (iii) Rj−. We ignore the trivial case ψ+
tm+

(em) ∈ {0}
for some tm+ ∈ (tm, tm+1).

(Case i): If ψ+
tm+

(em) is in Σi+j− then tm+ = tm+1 and
0 < ej(tm+1) < ej(tm) using (30). It follows that ‖em+1‖ <
‖em‖ . We restart the argument at time t = tm+1.

(Case ii): If ψ+
tm+

(em) is in Ri+ then ej > 0, ek > 0 and
ėi = −ėj − ėk > 0 which implies −ėj > ėk. The relevant
boundaries of Ri+ are Σi+j− and Σi+k− for distinct i, j, k ∈
{1, 2, 3}. Now if em+1 ∈ Σi+j− then∫ tm+1

tm

ėk(τ)dτ = 0 ⇒
∫ tm+1

tm

ėj(τ)dτ < 0 (31)

which immediately implies |ej(tm+1)| < |ej(tm)|. Using (30)
it follows that ‖em+1‖ < ‖em‖ and we can then restart the
argument at time t = tm+1. Now if instead em+1 ∈ Σi+k−
then −ėj > ėk implies∫ tm+1

tm

ėj(τ)dτ = −ej(tm) ⇒
∫ tm+1

tm

ėk(τ)dτ < ej(tm)

(32)
and since ek(tm) = 0 we have |ek(tm+1)| < |ej(tm)|. The
consequence of this last fact is that ‖em+1‖ < ‖em‖ and we
can then restart the argument at time t = tm+1.

(Case iii): If ψ+
tm+

(em) is in Rj− then the argument follows
similarly to that given in case (ii).

Note that Theorem 5 could be interpreted as a proof of
asymptotic convergence of any solution of (17) to the origin.
The following result makes this convergence precise.

Theorem 6 (The Main Result). The equilibrium e = 0 of the
error system (17) is globally asymptotically stable.

Proof: We use the Poincare-Bendixson theorem. Consider
M−

e = cl(Me) where cl(·) denotes set closure. Note that M−
e

is now compact with a single equilibrium and no closed orbits,
via Theorems 3 and 5. Clearly, e(0) must be in Me ⊂ M−

e

and Me acts as a positively invariant set, via Theorem 1. The
Poincare-Bendixson theorem then states the ω-set of any initial
error in M−

e contains only e = 0. Global asymptotic stability
is assured.

The previous result is our main result and concerns the
global asymptotic formation stability for all desired config-
urations. Using a linearization argument, we can comment on
the convergence rate for almost all desired formations.

Theorem 7. If α∗
i ∈ (0, π) then solutions of (17) with any

initial condition in Me will converge asymptotically to the
origin and there exists a neighbourhood U of the origin within
which solutions converge at an exponential rate.

Proof: The asymptotic stability of the origin for all
desired configurations, i.e. α∗

i ∈ [0, π], and all initial positions
follows from the main result, Theorem 6. Now note that
ek = −ei − ej for distinct i, j, k ∈ {1, 2, 3}. We then reduce
the dimension of (17) and obtain

ėij = Fij(e)eij

˙[
ei

ej

]
=

[ −(gi + fik) (fij − fik)
(fji − fjk) −(gj + fjk)

] [
ei

ej

]
(33)

with gi > 0 and fij > 0 when αi ∈ (0, π) and gi = fji + fki.
Linearization of (33) about the point e = 0 leads to

ė = Aij(α∗)e (34)

where Aij(α∗) is a constant matrix and denotes the gradient
of Fij(e)eij with respect to e and evaluated at e = 0. Note
that Aij(α∗) = Fij(e)|αi=α∗

i
. It is then easy to verify that

tr(Aij(α∗)) < 0 (35)

det(Aij(α∗)) > 0 (36)

for all α∗
i ∈ (0, π). Now it follows that Aij(α∗) is stable,

i.e. Aij(α∗) has negative real eigenvalues, for all α∗
i ∈ (0, π).

Now within a neighborhood of the origin U it follows from
the Hartman-Grobman theorem [34] that solutions of (17)
converge at an exponential rate when α∗

i ∈ (0, π).
When the desired formation is a line then linearization is

inconclusive with one negative real eigenvalue and one zero
eigenvalue (and additional tests would be required).

We conjecture that if the desired formation is a line then e =
0 is also locally exponentially stable (we know it is globally
asymptotically stable from Theorem 6). However, we do not
explore this particular case further.

The neighborhood U can be made large by considering
certain Lyapunov functions explicitly but the value in doing
so is limited given the existence of Theorem 6. In addition,
as discussed in the next subsection, we could not find a
suitable Lyapunov function to show global stability. Also, the
simulation results indicate an exponential convergence rate for
the entire formation trajectory.

Finally, we make the following useful remark.

Remark 1. Denote a formation of agents at equilibrium, i.e.
with αi = α∗

i , as an equilibrium formation which is defined by
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the agent positions p∗
i at equilibrium. An equilibrium formation

is invariant to scale, rotation and translation of the formation
as a whole or reflection of any agent i about the triangle edge
formed by agents i+ 1 and i− 1.

This last remark is given for completeness and illustrates
the simple fact that transforming an equilibrium formation in
any of the referred to ways does not change the equilibrium
status of the formation. However, it is of course still true that
given pi(0) for all i, the desired formation p∗

i is unique (given
the standard uniqueness theorem [34]).

C. Discussion on the Method of Proof

Note that we could not find a suitable Lyapunov func-
tion that would prove global stability for all desired for-
mations given any initial configuration. In particular, testing
the negative-definiteness of the time-derivative for various
candidates was a significant hurdle. Variations on a number of
quadratic-type candidate functions failed the negative-definite
test in simulation. Indeed, Fij in (33) is not negative definite
for αi ∈ [0, π]. However, it was clear to us that the system
evolved on a positively-invariant set and that there was only a
single equilibrium. Moreover, we suspected that no limit cycles
were present. As such, given the dimension of the system
manifold, we know the Poincare-Bendixson theorem provides
a rigorous statement concerning the asymptotic behaviour of
the system trajectories. Thus, we chose to seek a globally
asymptotic convergence proof through the Poincare-Bendixson
theorem. An alternative route we considered was via lin-
earization (which does lead to local exponential stability for
almost all desired configurations). The disadvantage of using
only linearization is that global stability does not follow (and
even local exponential stability does not follow for desired
line configurations using linearization alone). In any case, we
believe the analysis given in this paper provides a deep insight
into the nature of the proposed vector field on the manifold
of interest.

III. EXAMPLES

In this section we demonstrate the algorithm developed in
this paper for distributed formation control with bearing-only
measurements and relative angular constraints.

1) Triangle to Triangle Formation: The first example illus-
trates how the formation converges to an arbitrarily specified
triangle (so long as the triangle is feasible) given a random
initial triangle configuration. The desired triangle formation
in this case is characterized by α∗

1 = π/6, α∗
2 = π/4 and

α∗
3 = 7π/12. The formation motion is illustrated in Figure 2

along with the convergence of |e i| to zero.
The initial position of the three agents are randomly dis-

tributed in Mα and the figure illustrates the trajectories of each
agent as the formation converges upon the desired shape. This
example illustrates that the control law can generate arbitrary
triangle formations.

2) Line to Triangle Formation: Consider now the case
involving three agents initially collinear. The desired formation
is a triangle characterized by α∗

1 = π/3, α∗
2 = π/6 and
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Fig. 2. The motion of the formation with a desired terminal constraint of
α∗

1 = π/6, α∗
2 = π/4 and α∗

3 = 7π/12.
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Fig. 3. The motion of a triangular formation consisting of three mobile agents
initially in a collinear position with desired terminal constraints α∗1 = π/3,
α∗

2 = π/6 and α∗
3 = π/2.

α∗
3 = π/2. The formation motion is illustrated in Figure 3

along with the control error for each agent.
The convergence of the three agents is illustrated in Figure 3
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along with the convergence of |e i| to zero for all i ∈ {1, 2, 3}.
This example illustrates that the control law is not affected by
initial agent collinearity.

3) Triangle to Line Formation: This example shows the
convergence of an initially random triangle formation to a
desired line formation. The desired formation is characterized
by α∗

1 = α∗
2 = 0 and α∗

3 = π.
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Fig. 4. The motion of a triangular formation consisting of three mobile agents
starting in a random triangle and given a desired collinearity condition.

The convergence of the three agents is illustrated in Figure 4
along with the convergence of |e i| to zero for all i ∈ {1, 2, 3}.
This example illustrates that we can steer an arbitrary initial
triangle formation to a collinear formation.

4) Line to Line Formation: Finally, we consider the case of
changing from an initial line formation with α1 = 0, α2 = π
and α3 = 0 to another (desired) line formation with α∗

1 = 0,
α∗

2 = 0 and α∗
3 = π. The order of the agents along the line

changes from the initial formation to the desired formation.
The formation motion is illustrated in Figure 5 along with the
control error for each agent.

The convergence of the three agents is illustrated in Figure 5
along with the convergence of |e i| to zero for all i ∈ {1, 2, 3}.
Note that agents 2 and 3 do not collide but do indeed swap
places in the formation configuration.

5) A Phase Portrait for the System: For illustrative pur-
poses, we plot the phase portrait of the reduced system (33)
when the desired formation is an equilateral triangle, i.e. when
α∗

1 = α∗
2 = α∗

3 = π/3.
In Figure 6 we see the manifold Me and the behaviour

of the vector field on this manifold for a particular desired
formation.
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Fig. 5. The motion of a triangular formation consisting of three mobile
agents initially in a collinear position with a desired condition specified by
another collinear formation with a different agent ordering.
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Fig. 6. Phase portrait of the reduced error system (33) when the desired
formation is an equilateral triangle.

IV. DISCUSSION

The case where α∗
i = 0, α∗

j �= 0 and α∗
k = π−α∗

j is a special
case where, in the desired configuration, agent i must be placed
infinitely far from the other two agents. Applying the derived
control law in this case leads to agent j and agent k becoming
coincident in the limit as t→ ∞. We note that our control law
is applicable when α∗

i = ε, α∗
j �= 0 and α∗

k = π − α∗
j − ε for

an arbitrarily small ε > 0 and that inter-agent collisions are
naturally avoided in such cases. In practice this is generally
sufficient. We also believe an extension to the control law to
account for such cases is also possible but the benefits of doing
so are rather superficial.

An extension to the problem of formation control with an
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arbitrary number of sensors is the next step and requires one
to specify the form of the agent interaction graph which in
turn specifies the constraint network for the formation. In
addition, proving global stability is likely to be non-trivial
as the Poincare-Bendixson theorem employed in this paper is
limited to scenarios involving only three agents.

V. CONCLUSION

This paper introduced a solution to the distributed bearing-
only triangular formation control problem with angle-only
inter-agent constraints. While the distance-based formation
control problem has been extensively considered in the liter-
ature, the problem of bearing-only formation control is less
studied. The solution provided in this paper requires only
that each agent measure the bearing to the remaining two
agents in a local coordinate system. Then, if each agent is
given a desired interior angle subtended at itself by the other
two agents, and assuming the set of desired interior angles is
feasible, then the group of agents is shown to converge to the
desired formation from any initial position.
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