
A Stochastically Stable Solution to the Problem of Robocentric Mapping

Adrian N. Bishop and Patric Jensfelt

Abstract— This paper provides a novel solution for robo-
centric mapping using an autonomous mobile robot. The
robot dynamic model is the standard unicycle model and the
robot is assumed to measure both the range and relative
bearing to the landmarks. The algorithm introduced in this
paper relies on a coordinate transformation and an extended
Kalman filter like algorithm. The coordinate transformation
considered in this paper has not been previously considered
for robocentric mapping applications. Moreover, we provide
a rigorous stochastic stability analysis of the filter employed
and we examine the conditions under which the mean-square
estimation error converges to a steady-state value.

I. INTRODUCTION

Simultaneous localization and mapping (or SLAM) refers

to the process of building a map of an environment from

sensory information gathered by a mobile robot, while simul-

taneously estimating the position of the robot using the map

[1]–[6]. An introduction to the SLAM problem is available

in many papers; e.g. see [7], [8] and the references therein

for an overview of the different approaches. Following the

work in [1], one of the most common methods for solving the

SLAM problem is to use an extended Kalman Filter (EKF).

However, the traditional SLAM state vector1 [1], [2], [4] in

a global coordinate system is not observable as discussed in

[9] given only relative landmark-robot measurements such

range and/or bearing. Another problem is that of estimator

inconsistencies caused by accumulated linearization errors

[10]–[12]. In [13] the concept of robocentric mapping is

introduced and this concept it is shown to better deal with

linearization errors than the traditional SLAM formulation.

The EKF consistency and the convergence of the ap-

proximate EKF covariance matrix is analyzed in [12] for

the general problem of SLAM. However, it is possible, in

the framework of the EKF, for the covariance matrix to

be asymptotically bounded while the state estimation error

diverges asymptotically. Moreover, it is the state estimate

itself that will be used by the robot when making decisions

etc. Hence, the actual (or mean) estimation error is a more

meaningful quantity to analyze.

The primary contribution of this paper is the development

of a robocentric mapping algorithm based on a simple,

yet particularly important, coordinate transformation. By

building a map in a relative polar framework we eliminate

the nonlinearities associated with the measurement equation.

Moreover, we eliminate the difficulties associated with the
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1The traditional SLAM state vector consists of the pose of the robot and
the Cartesian location of the landmarks.

unobservable states [9] and the inconsistencies caused by the

affect of the EKF linearizations (which alter the unobservable

subspace [9]). A robocentric map is also (arguably) more

useful/natural than a global map for a large class of problems.

The relative robot dynamic model remains nonlinear but

takes on a different form. We then apply the standard

extended Kalman filter (EKF) to this problem and justify

this approach via a rigorous stochastic convergence analysis.

The convergence of the EKF relative map is given in terms

of the mean estimation error and is based on stochastic cal-

culus. The convergence analysis in this paper is necessarily

conservative, with the particular asymptotic properties of the

mean estimation error being naturally dependent on the exact

robot trajectory; e.g. see [14]–[18].

The approach and analysis given in this paper was partly

inspired by [9][13] where the difficulties of the global SLAM

problem are highlighted and where it is implied (perhaps

not always explicitly) that a robocentric approach would

circumvent many of these problems. The coordinate frame-

work chosen in this paper was inspired by the large bearing-

only tracking literature where it is shown that removing

the nonlinearities associated with the measurement equation

can significantly improve the EKF performance [19], [20].

Finally, a rigorous mean-error convergence analysis was

given to further justify the application of the EKF and

to provide a deeper insight into the proposed robocentric

mapping algorithm.

The remainder of this paper is organized as follows. In

Section II we introduce some preliminary notation and con-

ventions. In Section III we introduce the concept of mapping

in polar coordinates using a robocentric framework. We

outline the standard extended Kalman filter-like algorithm

which forms the basis of the estimator considered in this

paper. In Section III we then analyze the observability of the

mapping problem considered and the convergence properties

of the particular estimator considered. In Section IV we

present some simple simulation results and in Section V

we relate our robocentric problem to the traditional SLAM

problem. In Section VI we give our conclusions.

II. PRELIMINARIES

Consider a single robot with a state sr = [xr yr φr]
⊤ ∈

{R2 × SO(1,R)} where xr and yr are the robot’s Cartesian

position coordinates and φr is the robot’s heading. The robot

dynamics are based on the unicycle model,

ẋr = vr cosφr

ẏr = vr sinφr (1)

φ̇r = wr
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where vr is the translational velocity and wr is the robots

angular velocity. Note that there are three robot state vari-

ables in {R2 × SO(1,R)} and only two control inputs. The

nonholonomic constraint on the robot is given by

ẋr sinφr = ẏr cosφr (2)

The robot will generally only know vr and wr up to some

error denoted by v and w respectively. Here, v and w are

assumed to be uncorellated zero-mean Weiner processes. The

dynamics of the robot are thus assumed to obey

d




xr

yr

φr



 =




vr cosφr

vr sinφr

wr



 dt+




σv cosφr 0
σv sinφr 0

0 σw




[
dv
dw

]

(3)

which is a stochastic differential equation of the Ito-type.

Here, σv and σw are the standard-deviations of the errors

v and w respectively. The environment is populated with a

set V of landmark (or feature) points with |V| = n. The

Cartesian position of the ith landmark is denoted by pi =
[xi yi]

⊤ ∈ R
2. The landmarks are stationary in this case

and represent the map of the environment which is to be

estimated by the mobile robot. At some time t the robot can

sense a subset G(t) ⊆ V of landmarks. At time t the true

robot measurements are given by

di =
√

(xi − xr)2 + (yi − yr)2

ϑi = θi − φr = arctan

(
yi − yr

xi − xr

)
− φr (4)

∀i ∈ G(t)

where ϑi = θi − φr is the relative bearing to ith landmark

in the robots internal Cartesian coordinate system, i.e. the

Cartesian coordinate system rotated by the robots heading.

Let z = [sr pi . . . pn]⊤ denote a traditional SLAM state

vector. The measurements are typically corrupted by a noise

process n(t) such that

dy(t) , ψdt = h(z)dt+ E(t)n(t) (5)

in continuous-time. Here, n(t) is a zero-mean Weiner process

and E(t) is a measurement noise weighting matrix that can

be dependent on the true state. The measurements and robot

dynamics are nonlinear in the chosen coordinate system.

III. IMPROVED ROBOCENTRIC MAPPING IN POLAR

COORDINATES

The contribution of this paper is a novel robocentric

algorithm for mapping and localization that takes advantage

of the polar-like nature of the relative range and bearing

measurements. There does not appear to be any similar

(polar-like) algorithms in the SLAM or robocentric mapping

literature. However, there is a long history in the bearing-

only tracking literature [19], [20] of working in variants

of polar coordinate systems. The motivation is that the

measurements are then linear in the state components. Recall

the measurements taken by the robot are in the form

di =
√

(xi − xr)2 + (yi − yr)2

ϑi = θi − φr = arctan

(
yi − yr

xi − xr

)
− φr (6)

where the state sr = [xr yr φr]
⊤ of the robot and the position

of the landmarks pi = [xi yi]
⊤ ∈ R

2 are in some external

(non-robocentric) coordinate system. The measurements are

nonlinear in the first two components of sr and in pi, ∀i.
Now define the following state variable ri = [di ϑi]

⊤

with di ∈ (0,∞) and ϑi ∈ [−π, π). The augmented state

variable in this section is given by z = [r1 . . . rn]⊤.

The measurements (6) are linear in ri or more generally

in z = [r1 . . . rn]⊤ and are given by the continuous-time

measurement equation

dy(t) , ψdt = H(G(t))zdt+ E(t)n(t) (7)

where E(t) is not required to be independent of z. Here,

H(G(t)) is a time-varying linear matrix which is dependent

only on the set G(t) of currently sensed landmarks. For

example, if all of the landmarks are sensed and the state

variable z is ordered appropriately, then H would be the

identity matrix.

Consider again a robot that obeys the unicycle model (1)

in R
2 × SO(1,R). Then we can write down the following

differential equation for the dynamics of ri,

ḋi = −vr cosϑi

ϑ̇i =
vr

di

sinϑi − wr (8)

which is nonlinear in ri. Note also that di must be bounded

away from zero. Again we (must) assume that the control

inputs are corrupted by an additive noise process v and w
such that

d

[
di

ϑi

]
=

[
−vr cosϑi

vr

di

sinϑi − wr

]
dt+

[
σv cosϑi 0
σv sinϑi −σw

] [
dv
dw

]
(9)

is a more accurate depiction of the relative robot and ith

landmark dynamics. Here, v and w are uncorellated Weiner

processes with standard deviations of σv and σw respectively.

Note that the affect of v on ϑi and di is conditioned on a

nonlinear function of a true state variable (in this case ϑi).

A. On the Observability of the Polar SLAM Problem and the

Convergence of the EKF-Based Polar SLAM Algorithm

In this subsection we will examine and prove a number of

results related to the observability of the considered polar-

coordinate SLAM problem formulation. We will also exam-

ine and prove a number of results regarding the convergence

of an EKF-like algorithm for estimating the relative polar

state variable.

1) Error Free Measurements and Dynamics: We consider

first the observability properties of the state z = [r1 . . . rn]⊤

with ri = [di ϑi]
⊤ evolving according to (8). We also assume

error free measurements of the form

ψdt = H(G(t))zdt (10)

such that the system and measurements are noiseless and

deterministic. The following result concerns the observability

of the subspace ri = [di ϑi]
⊤ for some i ∈ V .

1616



Corollary 1: Assume the robot-landmark dynamics and

the measurements are deterministic and error free. The state

ri(s) = [di(s) ϑi(s)]
⊤ for some i ∈ V and for s ≥ τ or

s < τ can be calculated at any time t ≥ τ if and only if

G(τ) ∩ ri(τ) 6= ∅ for some instant τ .

The fact that Corollary 1 is true is not surprising. How-

ever, it again highlights the observable space of the SLAM

problem is purely relative [9]. Hence, by considering a rela-

tive (robocentric) mapping algorithm we are not attempting

to extract more information (in any finite time) from the

measurements than is available [9][12].

2) Error Free Dynamics and Noisy Measurements: A

natural extension to the above result concerns the behavior

of an estimate ẑ of z when the dynamics of the state

ri = [di ϑi]
⊤ are error free and deterministic but the

measurements

dy(t) , ψdt = H(G(t))zdt+ E(t)n(t) (11)

are corrupted by an additive Weiner process. Naturally, the

behavior of any state estimate ẑ depends on the particular

estimator and thus let us consider an estimator of the form

dẑ = f(ẑ, vr, wr)dt+ K(t) (dy(t) − H(G(t))ẑdt) (12)

where the function fi(·) that captures the dynamics of the

subspace ri = [di ϑi]
⊤ is given by

f(ẑ, vr, wr) =

[
−vr cosϑi

vr

di

sinϑi − wr

]
(13)

where vr and wr are again considered as deterministic

inputs with no errors. The function f(·) is thus a vertical

concatenation of the fi(·). The gain K(t) is given by

K(t) = P(t)H⊤(G(t))R−1(t) (14)

and P(t) is the solution to the following Riccati differential

equation

dP(t) =
[
A(t)P(t) + P(t)A⊤(t) + Q(t)

]
dt−

P(t)H⊤(G(t))R−1(t)H(G(t))P(t) (15)

where Q and R are positive-definite tuning matrices. Note

that A(t) is the Jacobian of f(·) evaluated at ẑ. The Jacobian

Ai(t) of fi(·) is given by

Ai(t) =

[
0 −vr sinϑi

− vr

di

sinϑi
vr

di

cosϑi

]
(16)

and is evaluated at r̂i and is dependent on vr. Note the

estimation error ζ = z − ẑ evolves according to

dζ = (A(t) − K(t)H(G(t))) ζdt+

̺(z, ẑ, vr, wr)dt− K(t)E(t)dn(t) (17)

where we have used the following Taylor expansion of f(·)
about the estimate ẑ,

f(z, vr, wr) − f(ẑ, vr, wr) = A(t)(z − ẑ) + ̺(z, ẑ, vr, wr)
(18)

where ̺(z, ẑ, vr, wr) accounts for the higher order terms.

Recall that ri = [di ϑi]
⊤ with di ∈ (0,∞) and ϑi ∈ [−π, π)

for all t. Then it is clear that the following bound holds

‖A(t)‖ = a <∞ (19)

for all t where for any time-varying matrix M(t) we assume

the following

‖M(t)‖ = sup{‖M(t)‖ : mij ∈ R} (20)

for all t and for some norm ‖·‖. For the subsequent analysis,

it turns out that the coordinate spatial and temporal scales

will play an important role. Hence, at this point let us make

the following assumptions.

Assumption 1: The translational velocity of the robot

vr(t) is uppperbounded in any arbitrary coordinate scale such

that vr(t) ≤ v for all t. For simplicity we also assume that

vr(t) > 0 for all t. Now it follows that there exists a temporal

coordinate scale such that vr(t) ≤ 1 for all t.

Assumption 2: The relative distance between the robot

and the ith landmark at time t belongs to di(t) ∈ (0,∞) in

any arbitrarily chosen coordinate scale. There exists a spatial

coordinate scale such that for all t we have di ∈ [1,∞).

Assumptions 1 and 2 are weak (actually notational) and

can almost surely be satisfied in practice (i.e. by finding

explicit spatial and temporal scales). The case of vr = 0 is

trivially obtained from the subsequent results. For simplicity

we also assume the following.

Assumption 3: For all t we have r̂i(t) = [d̂i(t) ϑ̂i(t)]
⊤

with d̂i ∈ [1,∞) and ϑ̂i ∈ [−π, π).

Assumption 4: For all t we assume that the error ζi2 =
(ϑi − ϑ̂i) is taken modulo 2π and ζi2 ∈ [−π, π).

Assumption 3 calls for the state estimate components to

be restricted to the assumed true global state space. For

ϑ̂i(t) this can be achieved via a trivial modular operation.

Assumption 4 ensures the value of the bearing error falls

within a consistent 2π interval. Finally, we make the follow-

ing standard assumption regarding the design parameters

Assumption 5: The following Q(t) ≥ qI, R(t) ≥ rI
and P(t0) ≥ p0I are given for some q, r, p0 > 0 such

that ‖Q(t)‖ ≥ q and ‖R(t)‖ ≥ r. Moreover, Q(t) and

R(t) are chosen to be bounded by ‖Q(t)‖ ≤ q < ∞ and

‖R(t)‖ ≤ r < ∞ for all t. Also, we have E(t) ≤ e < ∞
with E(t) ≥ eI.

We will also need the following lemma concerning the

growth of ̺(z, ẑ, vr, wr).

Lemma 1: The following inequality holds

‖̺(z, ẑ, vr, wr)‖ = ‖f(z, ·) − f(ẑ, ·) − A(t)(z − ẑ)‖

≤ 2a‖ζ‖ (21)

for |V| = n with probability 1 when Assumptions 1-5 hold.
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Proof: From the triangle inequality we obtain

‖f(z, vr, wr) − f(ẑ, vr, wr) − A(t)(z − ẑ)‖ ≤

‖f(z, vr, wr) − f(ẑ, vr, wr)‖ + ‖ − A(t)ζ‖ ≤

‖f(z, vr, wr) − f(ẑ, vr, wr)‖ + aζ (22)

which follows using (19). Now if f(·) is Lipschitz then

‖f(z, vr, wr) − f(ẑ, vr, wr)‖ ≤ c‖z− ẑ‖ for some 0 < c <
∞. Actually, we know that if ‖A(t)‖ is bounded by a then

f(·) is Lipschitz with Lipschitz coefficient a. Thus, the proof

is immediate.

Note also that ̺(z, ẑ, vr, wr) = 0 when ζ(t) = 0. We now

consider the the propagation of the estimation error ζ(t) =
z(t) − ẑ(t) for all t > t0 given an initial estimation error

ζ(t0) which we will assume belongs to the set

ζ(t0) = {η ∈ {[0,∞) × [−π, π)} : ‖ζ(t0)‖ ≤ b} (23)

for some constant b <∞. We assume initially that G(t) = V
for all t > t0. The error propagates according to (17) with

(for simplicity) H(G(t)) = I for all t. It is common to as-

sume a full landmark measurement vector when performing

such an analysis [4], [12]. We state the following lemma

regarding the error covariance.

Lemma 2: Suppose Assumptions 1-5 hold. Then the state

estimate covariance P(t) is bounded by

0 < p ≤ P(t) ≤ p <∞ (24)

for all t > t0 and where

p ,

(
‖P(t0)‖ +

‖Q(t)‖ + ‖R(t)‖‖Λ(t)‖2

2κ

)
(25)

and where Λ is chosen such that

η⊤ (A(t) + Λ(t))η ≤ −κ‖η‖2 (26)

is satisfied for all η ∈ R
2 with κ > 0.

Proof: The upper bound can be obtained by considering

the following time-varying linear control system

−q̇ = A(t)q + u (27)

with a boundary q(T ) = qT for some 0 < T ≤ ∞ and with

controllability Grammian

C(t+ τ, t) =

∫ t+τ

t

Ψ(t+ τ, t)Ψ⊤(t+ τ, t)dt (28)

where Ψ(t+τ, t) is the fundamental matrix with Ψ(t, t) = I.

The system (27) is uniformly completely controllable since

‖A(t)‖ < ∞ and ‖Ψ(t + τ, t)‖ > exp(−τ‖A(t)‖) which

implies C(t+τ, t) is never singular for t0 ≤ t < τ . Consider

the following cost function

J (t, τ,q,u) = B(t0,q(t0)) +

∫ T

t0

(
q⊤Qq + u⊤Ru

)
dt

(29)

and value function B(t,q(t)) = q⊤(t)P(t)q(t). Let the

control input equal u(t) = Λ(t)q for some continuous

bounded matrix Λ(t) such that −q̇ = (A(t) + Λ(t))q. Note

now that

B(T,q(T )) = q⊤(T )P(T )q(T )

≤ B(t0,q(t0)) +
∫ T

t0

q⊤
(
Q + Λ⊤(t)RΛ(t)

)
qdt (30)

Solving −q̇ = (A(t) + Λ(t))q for q(T ) implies that

‖q(T )‖2 = ‖qT ‖
2 = ‖q(t0)‖

2 −

2

∫ T

t0

q⊤ (A(t) + Λ(t))q dt (31)

and thus (26) implies that ‖q(t0)‖
2 ≤ ‖qT ‖

2 and∫ T

t0
q⊤q ≤ ‖qT ‖2

2κ
. Using this with (30) leads easily to the

upper-bound.

Note that ‖P(t)‖ is bounded above by a constant inde-

pendent of the time t > t0. This bound holds irrespective of

whether or not the state estimation error is bounded. Part

of Lemma 2 follows from a theorem given in [21]. The

condition (26) calls for the system pair A(t) and H(G(t)) =
I to be uniformly detectable. In our case we know that

the system is observable (which implies detectability [21],

[22]). As such, a suitable matrix Λ(t) exists with probability

one. Alternatively, an upper-bound on ‖P(t)‖ can be derived

independent of (26) when the state is observable [21].

We now state a result concerning the exponential bound-

edness of the expected error E {‖ζ(t)‖} for all t > t0 and

the asymptotic properties of the expected estimation error.

Theorem 1: Consider the system (17) with an initial con-

dition (23) and H(G(t)) = I. Suppose that Assumptions 1-5

hold. If ‖P−1(t)Q(t)P−1(t) + R−1(t)‖p > 4ap
p

then the

estimation error is bounded above with

E
{
‖ζ(t)‖2

}
≤ max

{
npe2

2γr2
,
p

p
‖ζ(t0)‖

2

}
(32)

where γ = ‖P−1(t)Q(t)P−1(t) + R−1(t)‖p − 4ap/p and

the error E
{
‖ζ(t)‖2

}
as t→ ∞ is bounded by npe2

2γr2 .

Proof: The error system (17) can be thought of

as a linear system with a nonlinear perturbation being

driven by a zero-mean Weiner process. Let B(t, ζ(t)) =
ζ⊤(t)P−1(t)ζ(t) > 0 and note that

dB =

[
∂B

∂t
+
∂B

∂ζ
(A(t) − K(t)) ζ

]
dt+

∂B

∂ζ
̺(z, ẑ, vr, wr)dt+

1

2
tr

(
hess(B)K(t)E(t)E⊤(t)K⊤(t)

)
dt−

∂B

∂ζ
K(t)E(t)dn

dB =

[
∂B

∂t
+ LB

]
dt−

∂B

∂ζ
K(t)E(t)dn (33)

using Ito’s differential formula and where L is the Kol-

mogorov backward operator, hess(·) denotes the Hessian
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operator and tr(·) denotes the matrix trace. Evaluating the

terms and re-arranging leads to

dB =
[
ζ⊤

[
P−1(t)Q(t)P−1(t) + R−1(t)

]
ζ
]
dt+

2ζ⊤P−1(t)̺(z, ẑ, vr, wr)dt+
1

2
tr

(
R−1(t)E(t)E(t)R−⊤(t)P⊤(t)

)
dt−

2ζ⊤R−1(t)dn

≤

[
−α‖ζ‖2 +

4a

p
‖ζ‖2 +

npe2

2r2

]
dt−

2ζ⊤R−1(t)dn (34)

where we have explicitly employed Lemma 1 and Lemma 2

and where

α = ‖P−1(t)Q(t)P−1(t) + R−1(t)‖ (35)

Clearly we have p−1‖ζ‖2 ≤ B(t, ζ(t)) ≤ p−1‖ζ‖2 such

that some simple algebra implies that

dB ≤ −

(
αp−

4ap

p

)
Bdt+

npe2

2r2
dt−

2ζ⊤R−1(t)dn

B ≤ B(t0, ζ(t0)) −∫ t

t0

(
αp−

4ap

p

)
B(τ, ζ(τ))dτ +

npe2

2r2

∫ t

t0

dτ − 2

∫ t

t0

ζ⊤(τ)R−1(τ)dn(τ) (36)

From the Bellman-Gromwall lemma [23] we have

B(t, ζ(t)) ≤ B(t0, ζ(t0)) exp (−γ(t− t0)) +

npe2

2γr2
(1 − exp (−γ(t− t0))) −

2

∫ t

t0

ζ⊤(τ)R−1(τ)dn(τ) (37)

where
γ =

(
αp− 4ap/p

)
(38)

with γ > 0 if and only if αp > 4ap
p

. Taking the expectation

E{·} of both sides of (37) gives

E {B(t, ζ(t))} ≤ B(t0, ζ(t0)) exp (−γ(t− t0)) +

npe2

2γr2
(1 − exp (−γ(t− t0))) (39)

and thus

E
{
‖ζ(t)‖2

}
≤

p

p
‖ζ(t0)‖

2 exp (−γ(t− t0)) +

npe2

2γr2
(1 − exp (−γ(t− t0))) (40)

We then easily find that

E
{
‖ζ(t)‖2

}
≤ max

{
npe2

2γr2
,
p

p
‖ζ(t0)‖

2

}
(41)

for all t if γ > 0 and the error E
{
‖ζ(t)‖2

}
as t → ∞ is

bounded by npe2

2γr2 . This completes the proof.

Importantly, we have shown under what conditions an

EKF-like algorithm will yield an exponentially bounded

and converging mean-square estimation error. The condition

γ > 0, which guarantees the expected error converges,

is independent of e. We have also given a method of

estimating the asymptotic mean-square error. The asymptotic

mean-square estimation error is dependent on the specific

robot trajectory but is upper-bounded by npe2

2γr2 . Theorem 1

is a significant contribution to the problem of robocentric

mapping and is a fundamental result. It is important to note

again that the algorithm considered in this paper is based on

nothing more than an EKF-like architecture and a coordinate

transform; see [20], [24], [25] for other EKF stability results.
3) Noisy Robot-Landmark Dynamics and Noisy Measure-

ments: We now consider the case where process noise is

present and where (for simplicity) H(G(t)) = I for all t.
We assume an EKF-like algorithm of the form (12) with

Assumptions 1-5 holding. The error ζ = z − ẑ obeys

dζ = [(A(t) − K(t)) ζ + ̺(z, ẑ, vr, wr)] dt+

G(t)

[
dv
dw

]
− K(t)E(t)dn(t)

dζ = [(A(t) − K(t)) ζ + ̺(z, ẑ, vr, wr)] dt+

[G(t) − K(t)E(t)]





[
dv
dw

]

dn(t)



 (42)

where Gi(t) is given by

‖Gi(t)‖ =

∥∥∥∥

[
σv cosϑi 0
σv sinϑi −σw

]∥∥∥∥ = g <∞ (43)

and G(t) = [G1(t) . . . Gn(t)]
⊤

. Moreover, Lemma 1 and

Lemma 2 still apply since they depend only on the validity

of Assumptions 1-5. Now we are in a position to prove the

main result concerning the exponential boundedness of the

expected estimation error for all t > t0.

Theorem 2: Consider the system (42) with an initial con-

dition (23) and H(G(t)) = I. Suppose that Assumptions 1-5

hold. If ‖P−1(t)Q(t)P−1(t) + R−1(t)‖p > 4ap
p

then the

estimation error is bounded above with

E
{
‖ζ(t)‖2

}
≤ max

{
n(r2g2 + ppe2)

2γr2p
,
p

p
‖ζ(t0)‖

2

}
(44)

where γ = ‖P−1(t)Q(t)P−1(t) + R−1(t)‖p − 4ap/p and

the error E
{
‖ζ(t)‖2

}
as t→ ∞ is bounded by

n(r2g2+ppe2)

2γr2p
.

Proof: The proof is similar to the proof of Theorem

1. We will omit most of the details as a consequence. Let

B(t, ζ(t)) = ζ⊤(t)P−1(t)ζ(t) > 0 and note that

dB =

[
∂B

∂t
+
∂B

∂ζ
(A(t) − K(t)) ζ +

∂B

∂ζ
̺(z, ẑ, ·)

]
dt+

dt+
1

2
tr

(
hess(B)Ξ(t)Ξ⊤(t)

)
dt−

∂B

∂ζ
Ξ(t)





[
dv
dw

]

dn(t)



 (45)
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where

Ξ(t) = [G(t) − K(t)E(t)] (46)

and where we have employed Itos differential formula.

Evaluating the terms and re-arranging leads to

dB =
[
ζ⊤

[
P−1(t)Q(t)P−1(t) + R−1(t)

]
ζ
]
dt+

2ζ⊤P−1(t)̺(z, ẑ, vr, wr)dt+
1

2
tr

(
P−1(t)G(t)G⊤(t)

)
dt+

1

2
tr

(
P−1(t)K(t)K⊤(t)

)
dt−

2ζ⊤P−1(t)Ξ(t)





[
dv
dw

]

dn(t)





≤

[
−α‖ζ‖2 +

4a

p
‖ζ‖2 +

n(r2g2 + ppe2)

2γr2p

]
dt−

2ζ⊤P−1(t)Ξ(t)





[
dv
dw

]

dn(t)



 (47)

where we have explicitly employed Lemma 1 and Lemma 2

and where

α = ‖P−1(t)Q(t)P−1(t) + R−1(t)‖ (48)

Now noting that p−1‖ζ‖2 ≤ B(t, ζ(t)) ≤ p−1‖ζ‖2 and

using the Bellman-Gromwall lemma [23] we come to

B(t, ζ(t)) ≤ B(t0, ζ(t0)) exp (−γ(t− t0)) −

2

∫ t

t0

ζ⊤(τ)P−1(τ)Ξ(τ)





[
dv(τ)
dw(τ)

]

dn(τ)



 +

n(r2g2 + ppe2)

2γr2p
−

n(r2g2 + ppe2)

2γr2p
exp (−γ(t− t0)) (49)

where

γ =

(
αp− 4

ap

p

)
(50)

with γ > 0 if and only if αp > 4ap
p

. Taking the expectation

of (49) and proceeding as in the proof of Theorem 1 gives

E
{
‖ζ(t)‖2

}
≤ max

{
n(r2g2 + ppe2)

2γr2p
,
p

p
‖ζ(t0)‖

2

}
(51)

for all t if γ > 0. The error E
{
‖ζ(t)‖2

}
as t → ∞ is

bounded by
n(r2g2+ppe2)

2γr2p
. This completes the proof.

Again we have a fundamental result concerning the ex-

ponential boundedness and convergence of the expected

estimation error. Note that the steady state expected mean

square error bound is larger when process noise is present

(as expected).

IV. NUMERICAL SIMULATIONS

The algorithm presented in this paper is now illustrated via

simulation. The examples we consider involve a single mo-

bile robot and a rectangular configuration of 40 landmarks.

The scenario is illustrated graphically in Figure 1.

Fig. 1. The example scenario considered in this paper consists of 40
landmarks and a single mobile robot. The true robot trajectory is illustrated
by the sequence of arrow heads (and starts at the origin).

The true robot velocity has a magnitude vr = 0.5. The

true angular velocity of the robot has magnitude wr = π
32 .

The matrix Q(t) = G(t)G⊤(t) is evaluated at the estimated

target state but uses the true values of σv and σw. The matrix

R is a constant matrix representing the true covariance of the

measurement vector. The initial landmark positions are equal

to the first noisy measurements and the associated initial

covariance matrix is equal to R. This initialization method

is a very convenient side benefit of our approach.

A. Example 1

Firstly we consider the case in which the robot senses the

entire set V of landmarks for all t. This is of course not

entirely practical but is the precise condition under which

the analysis of this paper pertains to (and is a common as-

sumption made when analyzing the convergence of mapping

and/or SLAM algorithms). The velocity error has standard

deviation magnitude of σv = 0.05. The angular acceleration

error has a standard deviation magnitude of σw = 0.0175.

The bearing and range noise are assumed to be independent

of the state with standard deviation magnitudes of 0.035 and

0.5 respectively. The RMS state estimation error for 10000

simulation runs is shown in Figure 2.

Fig. 2. The RMS state estimation error for the complete relative (robo-
centric) range and bearing state estimate for example 1.
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It is clear that the error is bounded above and converging to

a steady value. Note that the error vector consists of bearing

and range errors (as we are working in polar coordinates).

However, each state component is bounded and convergent.

The error covariance also converges and we plot the average

maximum singular value of P(t) in Figure 3.

Fig. 3. The average maximum singular value of P(t) for example 1.

It is clear that the maximum singular value of the covari-

ance matrix P(t) converges very fast to a steady state value.

The average value of α and ‖A(t)‖ is shown in Figure 4.

Fig. 4. The mean value of α and ‖A(t)‖ for example 1.

From Figure 3 and Figure 4 we can verify that the

simulation results agree with the theoretical results provided

in this paper.

B. Example 2

The example considered here is identical to the previous

example except for the values of the noise variances. Here we

increase the values such that σv = 0.1 and σw = 0.035. The

bearing and range noise standard deviations are 0.175 and 1.5
respectively. These are large error statistics. The RMS state

error value for 10000 simulation runs is shown in Figure 5.

Fig. 5. The RMS state estimation error for the complete relative (robo-
centric) range and bearing state estimate for example 2.

The RMS error is bounded above and converging. The

value to which the error is converging is also greater than that

value indicated in Figure 2 for example 1 (as expected) and

it takes slightly longer for the error to reach a steady-value.

The covariance matrix P(t) or more specifically ‖P(t)‖ also

converges to a steady state value as expected. It can similarly

be shown (as was the case in example 1) that the condition

γ > 0 is satisfied in this simulation example (given relatively

large error statistics).

A significant advantage exhibited by the algorithm con-

sidered in this paper is the coordinate transformation that

subsequently permits linear measurements. This can consid-

erably improve the performance of the EKF as shown here

and in the bearing-only tracking literature [19], [20].

C. Example 3

Finally, we consider the same noise parameters and sim-

ulation scenario as examined in example 1 but we restrict

the sensing domain of the robot such that it can only sense

a subset G ⊆ V of landmarks at each time t. Specifically,

the robot can sense a landmark i at time s if and only if

ϑi(s) ∈ (−π/2, π/2) and di(s) ∈ (0, 5). We assume perfect

data-association capabilities. The duration of each simulation

run is increased to 400 seconds. We plot the RMS state error

value over 10000 simulation runs in Figure 6.

Fig. 6. The RMS state estimation error for the complete relative (
robocentric) range and bearing state estimate for example 3.

The robot completes one cycle and closes-the-loop in

just over 50 seconds. The error is increasing as the robot

moves from its initial position at the origin around the first

loop. When the robot completes one loop we see a notable

(and sudden) decrease in the error which then converges to

a reasonably stable value. We plot the average maximum

singular value of P(t) in Figure 7.

Fig. 7. The average maximum singular value of P(t) for example 3.
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A similar situation is observed with the singular values

of the covariance matrix P(t). During the first loop the

uncertainty is increasing and following the loop-closure the

uncertainty decreases dramatically.

V. DISCUSSION

Consider the state variable z = [sr r1 . . . rn]⊤ and the

corresponding EKF algorithm used to estimate z. The state

estimation of the subspace [r1 . . . rn]⊤ would obey the ana-

lytical results derived in this paper while the state estimation

of [sr] would depend on the nonlinear measurements and is

not covered explicitly in this paper. Actually, [sr] represents

an unobservable subspace of z = [sr r1 . . . rn]⊤. Thus it is

possible to directly relate the robocentric mapping algorithm

developed in this paper to the general global SLAM problem

by simply further augmenting the state variable as z =
[sr r1 . . . rn]⊤ and modifying (in an obvious way) certain

properties of the EKF algorithm. The result would be an

algorithm for an unobservable state variable. The observable

state space [r1 . . . rn]⊤ is the robocentric output and the

estimation error associated with the space [r1 . . . rn]⊤

would obey the results developed in this paper. Of course

the entire state z might diverge and there is no guarantee

that the entire P(t) matrix is bounded (this would depend

non-trivially on the robot trajectory and initialization).

Further experimental and simulation results will appear

in an extended version of this paper. The results given

here were simplified in an attempt to highlight the main

convergence properties of the filter. A comparison of the

proposed algorithm with that of the traditional formulation

of EKF-SLAM is warranted along with an analysis of the

degree-of-nonlinearity of the converted dynamic model.

VI. CONCLUDING REMARKS

Robocentric mapping provides an attractive and tractable

solution to many problems in robotics. The approach in-

troduced in this paper is based on nothing more than an

extended Kalman filter (EKF) and a very advantageous

coordinate transform. The novelty of this transformation is

that it leads to a linear measurement equation, i.e. it removes

significant nonlinearities associated with the measurements.

The standard unicycle model is given in polar coordinates

and relative to each landmark position. Hence, the robocen-

tric mapping problem given range and bearing measurements

is formulated in (arguably) its most natural form. To justify

the application of the EKF we then analyzed the finite-time

and the asymptotic convergence properties of the error. We

showed how the performance of the EKF estimation error can

be related to the design parameters and the noise properties.
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