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Attentional Landmarks and Active Gaze Control
for Visual SLAM

Simone Frintrop and Patric Jensfelt

Abstract—This paper is centered around landmark detection,
tracking and matching for visual SLAM (Simultaneous Localiza-
tion And Mapping) using a monocular vision system with active
gaze control. We present a system specialized in creating and
maintaining a sparse set of landmarks based on a biologically
motivated feature selection strategy. A visual attention system
detects salient features which are highly discriminative, ideal
candidates for visual landmarks which are easy to redetect.
Features are tracked over several frames to determine stable
landmarks and to estimate their 3D position in the environment.
Matching of current landmarks to database entries enables loop
closing. Active gaze control allows us to overcome some of the
limitations of using a monocular vision system with a relatively
small field of view. It supports (i) the tracking of landmarks which
enable a better pose estimation, (ii) the exploration of regions
without landmarks to obtain a better distribution of landmarks
in the environment, and (iii) the active redetection of landmarks
to enable loop closing in situations in which a fixed camera fails to
close the loop. Several real-world experiments show that accurate
pose estimation is obtained with the presented system and that
active camera control outperforms the passive approach.

Index Terms—Mobile robotics, visual SLAM, landmark selec-
tion, visual attention, saliency, active camera control

I. INTRODUCTION

WHAT do I see? This is one of the most important
questions for a robot that navigates and localizes itself

based on camera data. What is “seen” or “perceived” at a
certain moment in time is firstly determined by the images
acquired by the camera and secondly by the information ex-
tracted from the images. The first aspect is usually determined
by the hardware, but if a steerable camera is available, it is
possible to actively direct the camera to obtain useful data.
“Useful” refers here to data which supports improving the
current task, e.g. localization and map building. The second
aspect is especially important in tasks based on visual data
since the large amount of image data together with real-time
constraints make it impossible to process everything. Selecting
the most important data is one of the most challenging tasks
in this field.

SLAM is the task of simultaneously estimating a model
or map of the environment and the robot’s position in this
map. The map is not necessarily a 3D reconstruction of the
world, it is a representation that allows the robot to localize
itself. Based on range sensors such as laser scanners, SLAM
has reached a rather mature level [1], [2], [3], [4], [5]. Visual
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SLAM instead attempts to solve the problem with cameras as
external sensors [6], [7], [8], [9], [10], [11]. This is desirable
because cameras are low-cost, low-power and lightweight
sensors which may be used in many applications where laser
scanners are too expensive or too heavy. In addition, the rich
visual information allows the use of more complex feature
models for position estimation and recognition. On the other
hand, visual SLAM is considerably harder, for example for
the reasons given above.

A key competence in visual SLAM is to choose useful
landmarks which are easy to track, stable over several frames,
and easily re-detectable when returning to a previously visited
location. This loop closing is important in SLAM since it
decreases accumulated errors by distributing information from
areas with lower uncertainty to those with higher. Furthermore,
the number of landmarks should be kept under control since
the complexity of SLAM typically is a function of the number
of landmarks in the map. Landmarks should also be well dis-
tributed over the environment. Here, we suggest the application
of a biologically motivated attention system [12] to find salient
regions in images. Attention systems are designed to favor
regions with a high uniqueness such as a red fire extinguisher
on a white wall. Such regions are especially useful for visual
SLAM because they are discriminative by definition and easy
to track and redetect. We show that salient regions have a
considerably higher repeatability than Harris-Laplacians and
SIFT keypoints.

Another important part of our system is the gaze control
module. The strategy to steer the camera consists of three
behaviours: a tracking behaviour identifies the most promis-
ing landmarks and prevents them from leaving the field of
view. A redetection behaviour actively searches for expected
landmarks to support loop-closing. Finally, an exploration
behaviour investigates regions with no landmarks, leading to a
more uniform distribution of landmarks. The advantage of the
active gaze control is to obtain more informative landmarks
(e.g. with a better baseline), a faster loop closing, and a better
distribution of landmarks in the environment.

The contributions of this paper are first, a landmark selection
scheme which allows a reliable pose estimation with a sparse
set of especially discriminative landmarks, second, a precision-
based loop-closing procedure based on SIFT descriptors, and
finally, an active gaze control strategy to obtain a better
baseline for landmark estimations, a faster loop closing, and
a more uniform distribution of landmarks in the environment.
Experimental results are presented to show the performance of
the system. This paper builds on our previous work [8], [13],
[14] and combines all this knowledge into one system.
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In the following, we first give an overview over related
work (sec. II), then we introduce the SLAM architecture
(sec. III). Sec. IV, V, and VI describe the landmark selection
and matching processes and VII introduces the active camera
control. Sec. VIII shows the performance of the SLAM system
in several real-world scenarios and illustrates the advantages
of active camera control. Finally, we finish with a conclusion.

II. RELATED WORK

As mentioned in the introduction, there has been large
interest in solving the visual SLAM problem during the last
years [6], [7], [8], [9], [10], [11]. One of the most important
issues in this field are landmark selection and matching. These
mechanisms directly affect the ability of the system to reliably
track and redetect regions in a scene and to build a consistent
representation of the environment. Especially in loop closing
situations, matching of regions has to be largely invariant to
viewpoint and illumination changes.

The simplest kind of landmarks are artificial landmarks like
red squares or white circles on floor or walls [15], [16]. They
have the advantage that their appearance is known in advance
and the re-detection is easy. While a simple solution if the
main research focus is not on the visual processing, this ap-
proach has several obvious drawbacks. First, the environment
has to be prepared before the system is started. Apart from
the effort this requires, this is often not desired, especially
since visual landmarks are also visible for humans. Second,
landmarks with uniform appearance are difficult to tell apart
which makes loop closing hard. Another approach is to detect
frequently occurring objects like ceiling lights [17]. While this
approach does not require a preparation of the environment, it
is still dependent on the occurrence of this object.

Because of these drawbacks, current systems determine
landmarks which are based on ubiquitous features like lines,
corners, or blobs. Frequently used is the Harris corner detector
[18] which detects corner-like regions with a significant signal
change in two orthogonal directions. An extension to make the
detector scale-invariant, the Harris-Laplacian detector [19],
was used by Jensfelt et al. for visual SLAM [8]. Davison and
Murray [6] find regions with a version of the Harris detector
to large image patches (9× 9 to 15× 15) as suggested by Shi
and Tomasi [20]. Newman and Ho [21] used maximally stable
extremal regions (MSERs) [22] and in newer work [9] Harris
affine regions [23]. In previous work, we used a combination
of attention regions with Harris-Laplacian corners [13].

Here, we show that attention regions alone can be used as
landmarks which simplifies and speeds up the system. Many
attention systems have been developed during the last two
decades [24], [25], [12]. They are all based on principles of
visual attention in the human visual system and adopt many of
their ideas from psychophysical and neuro-biological theories
[26], [27], [28]. Here, we use the attention system VOCUS
[12], which is capable to operate in real-time [29].

Attention methods are well suited for selecting landmark
candidates since they favor especially discriminative regions
in a scene, nevertheless, their application to landmark selection
has rarely been studied. Nickerson et al. detect landmarks

in hand-coded maps [30], Ouerhani et al. built a topological
map based on attentional landmarks [31], and Siagian and Itti
use attentional landmarks in combination with the gist of a
scene for outdoor Monte-Carlo Localization [32]. The only
approach we are aware of which uses an approach similar to
a visual attention system for landmark detection for SLAM,
is presented in [33]. They use a saliency measure based
on entropy to define important regions in the environment
primarily for the loop closing detection in SLAM. However,
the map itself is built using a laser scanner.

Landmarks can only be detected and re-detected if they
are in the field of view of the robot’s sensor. By actively
controlling the viewing direction of the sensors much can
be gained. The idea of actively controlling the sensors is not
new. Control of sensors in general is a mature discipline that
dates back several decades. In vision, the concept was first
introduced by Bajcsy [34], and made popular by Active Vision
[35] and Active Perception [36]. In terms of sensing for active
localization, Maximum Information Systems are an early
demonstration of sensing and localization [37]. Active motion
to increase recognition performance and active exploration
was introduced in [38]. More recent work has demonstrated
the use of similar methods for exploration and mapping [39].
Active exploration by moving the robot to cover space was
presented in [40] and in [41] the uncertainty of the robot pose
and feature locations were also taken into account. In [42]
an approach for active sensing with ultrasound sensors and
laser-range finders in a localization context is presented. When
cameras are used as sensors, the matching problem becomes
more difficult but includes also a higher information content.
In the field of object recognition, [43] show how to improve the
recognition results by moving the camera actively to regions
which maximize discriminability.

In the field of visual SLAM, most approaches use cameras
mounted statically on a robot. Probably the most advanced
work in the field of active camera control for visual SLAM
is presented by Davison and colleagues. In [6], they present
a robotic system which chooses landmarks for tracking which
best improve the position knowledge of the system. In more
recent work [44], [11], they apply their visual SLAM approach
to a hand-held camera. Active movements are done by the user,
according to instructions from a user-interface [44], or they
use the active approach to choose the best landmarks from the
current scene without controlling the camera [11].

III. SYSTEM OVERVIEW

This paper describes a system for visual SLAM using an
attention-based landmark selection scheme and an active gaze
control strategy. This section gives an overview of the compo-
nents in the system. The visual SLAM architecture is displayed
in Fig. 1. Main components are a robot which provides camera
images and odometry information, a feature detector which
finds regions of interest (ROIs) in the images, a feature tracker
which tracks ROIs over several frames and builds landmarks,
a triangulator which identifies useful landmarks, a database
in which triangulated landmarks are stored, a SLAM module
which builds a map of the environment, a loop closer which
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Fig. 1. The active visual SLAM system estimates a map of the environment
from image data and odometry.

matches current ROIs to the database and a gaze control
module which determines where to direct the camera to. The
robot used in the experiments is an ActivMedia PowerBot
equipped with a Canon VC-C4 pan/tilt/zoom camera mounted
in the front of the robot at a height of about 0.35m above the
floor. The ability to zoom is not used in this work.

When a new frame from the camera is available, it is
provided to the feature detector, which finds ROIs based on
a visual attention system. Next, the features are provided to
the feature tracker which stores the last n frames, performs
matching of ROIs in these frames and creates landmarks. The
purpose of this buffer is to identify features which are stable
over several frames and have enough parallax information for
3D initialization. These computations are performed by the
triangulator. Selected landmarks are stored in a database and
provided to the EKF-based SLAM module which computes
an estimate of the position of landmarks and integrates the
position estimate into the map. Details about the robot and the
SLAM architecture can be found in [8]. Notice that the inverse
depth representation for landmarks [45] would have allowed
for an undelayed initialization of the landmarks. However the
main purpose of the buffer in this paper is for selecting what
landmarks are suitable for inclusion in the map and it would
thus still be used had another SLAM technique been applied.

The task of the loop closer is to detect if a scene has been
seen before. Therefore, the features from the current frame are
compared with the landmarks in the database. The gaze control
module actively controls the camera. It decides whether to
track currently seen landmarks, to actively look for predicted
landmarks, or to explore unseen areas. It computes a new
camera position which is provided to the robot.

IV. FEATURES AND LANDMARKS

As mentioned before, landmark selection and matching
belong to the most important issues in visual SLAM. A
landmark is a region in the world. It has a 3D location and
an appearance. A feature on the other hand is a region in
an image. It has only a 2D location in the image and an
appearance. The distance to the feature is initially not known
since we use a monocular vision system. To build landmarks,
features are detected in each frame, tracked over several frames
and finally, the 3D position of the landmark is estimated by
triangulation.

Feature selection is performed with a detector and the
matching with a descriptor. While these two mechanisms are
often not distinguished in the literature (people talk e.g. about
“SIFT-features”), it is important to distinguish between them.
A stable detector is necessary to redetect the same regions in
different views of a scene. In applications like visual SLAM
with time and memory constraints, it is also favorable to
restrict the amount of detected regions. A powerful descriptor
on the other hand has to capture the image properties at the
detected region of interest and enable a stable matching of
two regions with a high detection and low false detection
rate. It has to be able to cope with viewpoint variations as
well as with illumination changes. In this section, first the
feature detection is introduced which finds ROIs in images
(IV-A), then the descriptors which describe ROIs (IV-B), and
finally the strategy to match two ROIs based on the descriptors
(IV-C).

A. Attentional Feature Detection

An ideal candidate for selecting a few, discriminative re-
gions in an image is a visual attention system. Computational
attention systems select features motivated from mechanisms
of the human visual system: several feature channels are
considered independently and strong contrasts and the unique-
ness of features determine their overall saliency. The resulting
regions of interest have the advantage that they are highly dis-
criminative, since repeated structure is assigned low saliency
automatically. Another advantage is that there are usually only
few regions detected per image (on average between 5 to 20),
reducing the amount of features to be stored and matched
considerably.

The attention system we use is VOCUS (Visual Object de-
tection with a CompUtational attention System) [12]. VOCUS
consists of a bottom-up part which computes saliency purely
based on the content of the current image and a top-down
part which considers pre-knowledge and target information to
perform visual search. Here, we consider only the bottom-
up part of VOCUS, however, top-down search can be used
additionally if a target is specified.1 For the approach presented
here, any real-time capable attention system which computes
a feature vector for each region of interest could be used.

An overview of VOCUS is shown in Fig. 2. The bottom-
up part detects salient image regions by computing image
contrasts and the uniqueness of a feature. The computations for
the features intensity, orientation, and color are performed on
3 different scales with image pyramids. The feature intensity
is computed by center-surround mechanisms; in contrast to
most other attention systems [24], [31], on-off and off-on
contrasts are computed separately. After summing up the
scales, this yields 2 intensity maps. Similarly, 4 orientation
maps (0 ◦, 45 ◦, 90 ◦, 135 ◦) are computed by Gabor filters and
4 color maps (green, blue, red, yellow) which highlight salient

1In [46] we found that in tracking situations, bottom-up matching out-
performs top-down search, for loop-closing, top-down search is preferable.
But since using the top-down mechanism requires a target, rather precise
expectations about expected landmarks are necessary. If the system searches
for many expected landmarks in each frame this slows down the system
considerably since the top-down search has to be applied for each expectation.
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Fig. 2. Left: the visual attention system VOCUS detects regions of interest (ROIs) in images based on the features intensity, orientation, and color. For each
ROI, it computes a feature vector which describes the contribution of the features to the ROI. Right: The feature and conspicuity maps for the image on the
left. Top-left to bottom-right: intensity on-off, intensity off-on, color maps green, blue, red, yellow, orientation maps 0 ◦, 45 ◦, 90 ◦, 135 ◦ and conspicuity
maps I , C, O. Since the red region sticks out as a unique peak in the feature map red, this map is weighted strongly by the uniqueness weight function and
the corresponding region becomes the brightest in the saliency map (left, top).

regions of a certain color. Before the features are fused, they
are weighted according to their uniqueness: a feature which
occurs seldomly in a scene is assigned a higher saliency than
a frequently occurring feature. This is a mechanism which
enables humans to instantly detect outliers like a black sheep
in a white herd [26], [27]. The uniqueness W of map X is
defined as

W(X) = X/
√
m, (1)

where m is the number of local maxima that exceed a
threshold and ’/’ is here the point-wise division of an image
with a scalar. The maps are summed up to 3 conspicuity maps
I (intensity), O (orientation) and C (color) and combined to
form the saliency map:

S = W(I) +W(O) +W(C) (2)

From the saliency map, the brightest regions are extracted as
regions of interest (ROIs). This is done by first determining the
maxima (brightest points) in the map and then finding for each
maximum a surrounding region with seeded region growing.
This method finds recursively all neighbors with sufficient
saliency. For simpler storing of ROIs, we approximate the
region here by a rectangle.

The output of VOCUS for one image is a list of ROIs, each
defined by 2D location, size and a feature vector (see next
section). The feature and conspicuity maps for one example
image are displayed in Fig. 2, right.

Discussion on Feature Detection: The most common
feature detectors for visual SLAM are corner-like features as
SIFT keypoints [47] or Harris-Laplacian points [19]. These
approaches are usually based on the idea that many features
are extracted and a few of them show to be useful for tracking
and matching.2 Matching these features between frames to
find stable ones, matching to existing landmarks, storing
landmarks in the database, and matching current features to the
database requires considerable time. With intelligent database
management based on search trees, it is possible to store and
access a large amount of features in real-time [8], [48], [49].
Nevertheless, solving the task equally well with less features is
favorable and enables to use computational power and storage
for other processes. To enable the system to use only few
features, it is necessary to have a detector which computes
discriminative features and is able to prioritize them.

We claim that an attention system is especially well suited
to detect discriminative features and that the repeatability of
salient regions is higher than the repeatability of non-salient
regions and of features detected by standard detectors. The
repeatability is defined as the percentage of regions which
are redetected in a subsequent frame (cf. [23]). While an
exhaustive analysis is beyond the scope of this paper, a

2We obtained in average 400 – 500 Harris-Laplace features per frame.
Computing these features together with a SIFT descriptor required 250 ms
per frame.
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few experiments shall illustrate this.3 The precondition for
the following experiments is that one or a few object(s) or
region(s) in the scene are salient (a salient region differs from
the rest of the scene in at least one feature type).

In the experiment in Fig. 3, we compare an image sequence
showing many white and one green object. For humans, the
green object visually pops out of the scene, so it does for
VOCUS. We compared the performance of VOCUS with two
other detectors: Harris-Laplace corners and SIFT keypoints,
i.e. extrema in DoG scale space, since these are the most
commonly used detectors in visual SLAM scenarios.4 To make
the approaches comparable, we reduced the number of points
by sorting them according to their response value and using
only the points with the strongest response. We compared
whether this response can be used to obtain a similar result as
with salient regions.

We determined the repeatability of regions over 10 frames
for different amounts of detected features.5 The result of the
comparison is shown in Fig. 3. The highest repeatability is
naturally obtained for the most salient region: it is detected
in each frame. The strongest Harris-Laplace feature and the
strongest SIFT keypoint on the other hand are in a subsequent
frame only detected at the same position in 20% of the
images. We compared the repeatability up to 11 features per
frame since this is the average number of features detected
by the attention system in our experiments. It shows that the
repeatability of attentional ROIs is consistently higher than
the one of the other detectors. It remains to mention that
the repeatability of Harris-Laplace features and SIFT points
goes up when computing more features, repeatability rates
of about 60% have been reported for Harris-Laplacians in
[23]. Note that our point here is that with attentional ROIs
it is possible to select very few discriminative features with
high repeatability, which is not possible with the other, locally
operating detectors.

To show that the results in these simple experi-
ments also extend to longer image sequences and to
more natural settings, some videos showing qualita-
tive results can be found on http://www.informatik.uni-
bonn.de/∼frintrop/research/saliency.html. While these exper-
iments illustrate the advantages of salient regions for visual
SLAM, more detailed experiments will be necessary to in-
vestigate the differences of the different detectors in different
settings.

Another aspect to mention is the accuracy of the detectors.
The Harris-Laplace detector is known to be very precise and
to obtain sub-pixel accuracy. Attention regions on the other
hand are not as precise, their position varies sometimes a
few pixels from frame to frame. This is partially due to

3We did not compare the detectors on standard datasets as in [23] because
these have been designed for tasks like object recognition and do not contain
especially salient regions. Therefore, the advantages of salient regions cannot
be shown there.

4We used the publically available PYRA real-time vision library for both
detectors (http://www.csc.kth.se/∼celle/).

5For this comparison, VOCUS was adapted to compute all local maxima
from the saliency map to make it comparable to the Harris detector. In normal
usage it determines only regions which have a saliency of at least 50% of the
most salient region.
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Fig. 3. Comparison of the repeatability of attentional ROIs (red ellipses),
Harris-Laplace corners (blue crosses), and SIFT keypoints (green stars) on 10
frames of a sequence with a visually salient object (bottom: some example
frames with detected features. top left: saliency map of 1st frame). The most
salient attention region is detected in all frames (100% repeatability), the
strongest point of the other detectors reaches only 20% (see also videos on
http://www.informatik.uni-bonn.de/∼frintrop/research/saliency.html).

the segmentation process which determines the region. In
previous work, we therefore combined Harris-Laplace corners
and attention regions [13]. Tracking of landmarks with this
approach was accurate and the matching process based on
two descriptors resulted in a very low false detection rate. A
problem however was that the detection rate also was very
low: both detectors had to detect a feature in the same area
and both descriptors had to agree on the high reliability of a
match.

Using only attention regions with reasonable accuracy is
possible with an improved outlier rejection mechanism during
the triangulation process (cf. sec. V); this made the system
considerably simpler and about 8 times faster.

B. The Descriptors

To compare if two image regions belong to the same part
in the world, each region has to have a description vector. The
most simple vector is a vector consisting of the pixel values of
the region and possibly some surrounding. The similarity of
two vectors can then be computed by cross-correlation. How-
ever, this results in high-dimensional vectors and matching
does not perform well under image transformations.

An evaluation of more powerful descriptors is provided
in [50]. The best performance was obtained for the SIFT
descriptor (scale invariant feature transform [47]) and the
GLOH descriptor (gradient location-orientation histogram) –
an extension of the SIFT descriptor. The SIFT descriptor is
also probably the most used descriptor in visual tasks for
mobile robots [51], [7], [8], [10].

In this work, we use two kinds of descriptors: first, we
determine an attentional descriptor for tracking ROIs between
consecutive frames. The attentional descriptor can be obtained
almost without cost from the feature maps of VOCUS. Since it
is only an 13-element vector, matching is faster than with the
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SIFT descriptor. It is less powerful, but in tracking situations
sufficient. Second, we use the SIFT descriptor to match ROIs
in loop closing situations.

The attentional descriptor is determined from the values
of the 10 feature and 3 conspicuity maps of VOCUS. For
each ROI, a feature vector ~v with 13 entries is determined,
which describes how much each feature contributes to the ROI
(cf. Fig. 2). The value vi for map Xi is the ratio of the mean
saliency in the target region m(ROI) and in the background
m(image−ROI):

vi = m(ROI)/m(image−ROI). (3)

This computation does not only consider which features are the
strongest in the target region but also which features separate
the region best from the rest of the image (details in [12]).

The SIFT descriptor is a 4 × 4 × 8 = 128 dimensional
descriptor vector which results from placing a 4 × 4 grid
on a point and calculating a pixel gradient magnitude at 45◦

intervals for each of the grid cells. Usually, SIFT descriptors
are computed at intensity extrema in scale space [47] or at
Harris-Laplacians [19]. Here, we calculate one SIFT descriptor
for each ROI. The center of the ROI provides the position
and the size of the ROI determines the size of the descriptor
grid. The grid should be larger than the ROI to allow catching
information about the surrounding but should also not include
too much background and stay within the image borders.6

C. Feature Matching

Feature matching is performed in two of the visual SLAM
modules: in the feature tracker and in the loop closer.

In the tracker, we apply simple matching based on at-
tentional descriptors. Two vectors ~v and ~w are matched by
calculating the similarity d(~v, ~w) according to a distance
similar to the Euclidean distance [13]. This simple matching
is sufficient for the comparably easy matching task in tracking
situations.

In the loop closer, SIFT matching is applied to achieve a
higher matching stability. Usual approaches to perform match-
ing based on SIFT descriptors are threshold-based matching,
nearest neighbor-based matching and nearest neighbor dis-
tance ratio matching [50]. For each ROI in the image, we
use threshold-based matching to find a fitting ROI in the
database. Then, we apply nearest neighbor matching in the
other direction to verify this match.7

The distance dS of two SIFT descriptors is calculated as the
sum of squared differences (SSD) of the descriptor vectors.
Thresholding on the distance between two descriptors is a bit
tricky. Small changes on the threshold might have unexpected
effects on the detection quality since the dependence of
distance and matching precision is not linear (cf. Fig. 4).

Therefore, we suggest a slightly modified thresholding ap-
proach. By learning the dependence of distance and matching

6We chose a grid size of 1.5 times the maximum of width and height of
the ROI.

7Mikolajczyk and Schmid show that the nearest neighbor and nearest
neighbor distance ratio matching are more powerful than threshold-based
matching but also point out that they are difficult to apply when searching in
large databases [50].

Fig. 4. The dependence of the distance of two SIFT descriptors and their
matching precision (cf. eq. 4) determined from training data.

precision from training data, it is possible to set directly
a threshold for the precision from which the corresponding
distance threshold is determined.

This is done as follows: for a large amount of image data,
we gathered statistics regarding the distribution of correct and
false matches. 698 correct matches and 2253 false matches
were classified manually to obtain ground truth. We used data
from two different environments, one was the office envi-
ronment shown in Fig. 11, the other a different environment
not used in the experiments. The training data for the office
environment was obtained one year earlier than the test data
for the current experiments.8 Since the dS are real values,
we discretized the domain of dS into t = 20 values. For the t
distinct distance threshold values θj , we compute the precision
as

p(θj) =
c(θj)

c(θj) + f(θj)
, ∀ j ∈ {1..t} (4)

where c(θj) and f(θj) denote the number of correct and false
matches. The resulting distribution is displayed in Fig. 4.

To finally determine if two ROIs match, the distance of the
SIFT descriptors is computed and the corresponding matching
precision is determined according to the distribution in Fig. 4.
If the precision is above a threshold, the ROIs match.9

Discussion on Feature Matching: The precision-based
matching has several advantages over the usual thresholding.
First, it is possible to choose an intuitive threshold like “98%
matching precision”.10 Second, linear changes on the threshold
result in linear changes on the matching precision. Finally,

8Correct matches are naturally much more difficult to obtain than false
matches since there is a extremely large amount of possible false matches. To
enable a reasonable amount of correct matches, we considered only distances
below 1.2. As can be seen in Fig. 4, this does not affect the final matching
mechanism as long as a precision of at least 0.3 is desired.

9For our system, we chose a threshold of 0.98. We chose a high threshold
because an EKF SLAM system is sensitive to outliers.

10Note however that the precision value refers to the training data, so in
test data the obtained precision might be lower than the specified threshold.
However, the threshold gives a reasonable approximation of the precision on
test data.
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for every match a precision value is obtained. This value
can be directly used by other components of the system to
treat a match according to the precision that it is correct.
For example, a SLAM subsystem which can deal with more
uncertain associations could use these values.

The SIFT descriptor is currently one of the most powerful
descriptors, however, people have worked on improving the
performance, e.g. by combining it with other descriptors.
While intuitively a good idea, we suggest to be careful with
this approach. In previous work, we matched ROIs based on
the attentional and the SIFT descriptor [14]. While obtaining
good matching results, we found out that using only the
SIFT descriptor results in a higher detection rate for the same
amount of false detections. While surprising at first, this might
be explained as follows: a region may be described by two
descriptors, the perfect descriptor d1 and the weaker descriptor
d2. d1 detects all correct matches and rejects all possible false
matches. Combining d1 with d2 cannot improve the process, it
can only reduce the detection rate by rejecting correct matches.

V. THE FEATURE TRACKER

In the feature tracker, landmarks are built from ROIs by
tracking the ROIs over several frames. The length of a land-
mark is the number of elements in the list, which is equivalent
to the number of frames the ROI was detected in.

To compute the landmarks, we store the last n frames in
a buffer (here: n = 30). This buffer enables to determine
which landmarks are stable over time and therefore good
candidates for the map. The output from the buffer is thus
delayed by n frames but in return quality assessment can
be utilized before using the data. New ROIs are matched
with their attentional feature vector to previously detected
landmarks and to ROIs from the previous frame to build
new landmarks (details in [14]). At the end of the buffer, we
consider the length of the resulting landmarks and filter out
too short ones (here ≤ 3). Finally, the triangulator attempts
to find an estimate for the location of the landmark. In this
process, also outliers, i.e. bearings that fall far away from the
estimated landmark location, are detected and removed from
the landmark. These could be the result of mismatches or a
poorly localized landmark.

VI. LOOP CLOSING

In the loop closing module, it is detected if the robot has
returned to an area where it has been before. This is essential
to update the estimations of landmark and robot positions in
the map. Loop closing is done by matching the ROIs from the
current frame to landmarks from the database. It is possible
to use position prediction of landmarks to determine which
landmarks could be visible and thus prune the search space, but
since this prediction is usually not precise when uncertainty
grows after driving for a while, we perform “global loop
closing” instead without using the SLAM pose estimate, as
in [33]. That means, we match to all landmarks from the
database. For the environments in our test it is possible to
search the whole database in each iteration. However, for

Fig. 6. Falsely matched ROIs (rectangles): in both cases, lamps are matched
to a different lamp. Top: current frame. Bottom: frame from the database.

larger environments it would be necessary to use e.g. a tree-
structure to organize the database, perform global loop closing
less frequently or distribute the search over several iterations.

ROIs are matched to the landmarks from the database with
the precision matching based on SIFT descriptors described
in sec. IV-C. When a match is detected, the coordinates of
the matched ROI in the current frame are provided to the
SLAM system, to update the coordinates of the corresponding
landmark. Additionally, the ROI is appended to the landmark
in the database. Some examples of correct matches in loop
closing situations are displayed in Fig. 5. False matches occur
seldomly with this approach. If they do, the ROIs usually
correspond to almost identical objects. Two examples are
shown in Fig. 6.

VII. ACTIVE GAZE CONTROL

The active gaze control module controls the camera accord-
ing to three behaviours:

• Redetection of landmarks to close loops
• Tracking of landmarks
• Exploration of unknown areas

The strategy to decide which behaviour to choose is as
follows: Redetection has the highest priority, but it is only
chosen if there is an expected landmark in the possible field
of view (def. see below). If there is no expected landmark
for redetection, the tracking behaviour is activated. Tracking
should only be performed if more landmarks are desired
in this area. As soon as a certain amount of landmarks is
obtained in the field of view, the exploration behaviour is
activated. In this behaviour, the camera is moved to an area
without landmarks. Most times, the system alternates between
tracking and exploration, the redetection behaviour is only
activated every once in a while (see sec. VII-A and Fig. 8). An
overview over the decision process is displayed in Fig. 7. In
the following, we describe the respective behaviours in more
detail.
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Fig. 5. Some examples of correctly matched ROIs, displayed as rectangles. Top: current frame. Bottom: frame from the database.

Fig. 7. The three camera behaviours Redetection, Tracking, Exploration.

A. Redetection of Landmarks

In redetection mode, the camera is directed to expected
landmarks. Expected landmarks

(a) are in the potential field of view of the camera,11

(b) have low-enough uncertainty in the expected positions
relative to the camera,12

(c) have not been seen recently, 13

(d) had no matching attempt recently.
If there are several expected landmarks, the most promising

one is chosen. Currently, we use a simple approach: the
longest landmark is chosen because a landmark which has
been observed frequently is more likely to be redetected than a
seldomly observed one. In future work, we consider integrating

11The potential field of view of the camera is set to ± 90◦ horizontally and
7m distance. This prevents considering landmarks which are too far away,
since these are probably not visible although they are in the right direction.

12The uncertainty is considered as too high if it exceeds the image size,
i.e. if the uncertainty of the landmark in pan-direction, projected to the image
plane, is larger than the width of the image. Note, that these are actually the
most useful landmarks to redetect, but on the other hand the matching is likely
to fail. Passive matching attempts for these landmarks are permanently done
in the loop closer, only the active redetection is prevented.

13The redetection behaviour focuses on landmarks which have not been
visible for a while (here: 30 frames) to prevent switching the camera position
constantly. The longer a landmark had not been visible, the more useful is
usually its redetection.

Fig. 8. The camera pan angle as a function of time. The camera behaviour
alternates here between tracking and exploration.

information theory to choose the landmark that will result in
the largest information gain, as e.g. in [44].

When a landmark has been chosen, the camera is moved
to focus it and pointed there for several (here 8) frames, until
it is matched. Note, that redetection and matching are two
independent mechanisms: active redetection only controls the
camera, matching is permanently done in the loop closer, also
if there is no expected landmark.

If no match is found after 8 frames, the system blocks this
landmark and chooses the next expected landmark or continues
with tracking or exploration.

B. Tracking of Landmarks

Tracking a landmark means to follow it with the camera
so that it stays longer within the field of view. This enables
better triangulation results. This behaviour is activated if the
preconditions for redetection do not apply.

First, one of the ROIs in the current frame has to be
chosen for tracking. There are several aspects which make
a landmark useful for tracking. First, the length of a landmark
is an important factor for its usefulness since longer landmarks
are more likely to be triangulated soon. Second, an important
factor is the horizontal angle of the landmark: points in the
direction of motion result in a very small baseline over several
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Fig. 9. Left: function ψ(α) with k1 = 5 and k2 = 1. Right: One test image
with two (almost) identical ROIs, differing only by their position in the image.
The center ROI has the angle α1 = 0.04 resulting in ψ(α1) = 2.06. The
left ROI has a larger angle α2 = 0.3 resulting in ψ(α2) = 5.09 (> ψ(α1)).
The tracking behaviour selects the left ROI for tracking and prevents it from
moving out of the image.

frames and hence often in poor triangulations. Points at the
side usually give much better triangulation results, but on the
other hand they are more likely to move outside the image
borders soon so that tracking is lost.

We define a usefulness function capturing the length l of
the landmark and the angle α of the landmark in the potential
field of view as

U(L) = ψ(α)
√
l (5)

where

ψ(α) = k1 (1.0 + cos(4α− 180)) + k2 (1.0 + cos(2α)). (6)

The function is displayed in Fig. 9, left, and an example is
shown in Fig. 9, right. Like in redetection mode, integrating
the information gain could improve this estimation. After
determining the most useful landmark for tracking, the camera
is directed into the direction of the landmark.14 The tracking
stops when the landmark is not visible any more or when it
was successfully triangulated.

C. Exploration of Unknown Areas

As soon as there are enough (here more than 5) landmarks in
the field of view, the exploration behaviour is started, i.e., the
camera is directed to an area within the possible field of view
without landmarks. We favor regions with no landmarks over
regions with few landmarks since few landmarks are a hint that
we already looked there and did not find more landmarks.

We look for a region which corresponds to the size of
the field of view. If the camera is currently pointing to the
right, we start by investigating the field directly on the left
of the camera and vice versa. We continue the search in that
direction, in steps corresponding to the field of view. If there is
no landmark, the camera is moved there. Otherwise we switch
to the opposite side and investigate the regions there. If no area
without landmarks is found, the camera is set to the initial
position.

14The camera is moved slowly (here 0.1 radians per step), since this
changes the appearance of the ROI less than large camera movements. This
results in a higher matching rate and prevents to loose other currently visible
landmarks.

To enable building of landmarks over several frames, we
let the camera focus one region for a while (here 10 frames).
As soon as a landmark for tracking is found, the system will
automatically switch behaviour and start tracking it (cf. Fig. 8).

VIII. EXPERIMENTS AND RESULTS

We tested the system in two different environments: an
office environment and an atrium area at the Royal Institute
of Technology (KTH) in Stockholm. In both environments,
several test runs were performed, some at day, some at
night to test differing lighting conditions. Test runs were
performed during normal work days, therefore they include
normal occlusions like people moving around. The matching
examples in Fig. 5 show that loop closing is possible anyway.

For each run, the same parameter set was used. During each
test run, between 1200 and 1800 images with 320×240 pixels
were processed. In the office environment, the robot drove the
same loop several times. This has the advantage that there
are many occasions in which loop closing can take place.
Therefore, this is a good setting to investigate the matching
capability of the system. On the other hand, the advantage of
the active camera control is not obvious here since loop closing
is already easy in passive mode. To test the advantages of the
active camera mode, the atrium sequence fits especially well.
Here, the robot drove an “eight”, making loop closing difficult
in passive mode because the robot approaches the same area
from three different directions. Active camera motion makes
it possible to close the loop even in such difficult settings.

The current system allows real-time performance. Currently,
it runs on average at ∼ 90 ms/frame on a Pentium IV 2 GHz
machine. Since the code is not yet optimized, a higher frame
rate should be easily achievable by standard optimizations.
Although VOCUS is relatively fast with ∼ 50 ms/frame since
it is based on integral images [29], this part requires about half
of the processing time. If a faster system is required, a GPU
implementation of VOCUS is possible, as realized in [52].

The experiments section has two parts. First, we investigate
the quality of the attentional landmarks. Second, we compare
active and passive camera control.

A. Visual SLAM with Attentional Landmarks

In this section, we investigate the quality of landmark
detection, of data association in loop closing situations, and
the effect on the resulting maps and robot trajectories. We
show that we obtain a high performance with a low number
of landmarks. Loop closing is obtained easily even if only few
landmarks are visible and if they are seen from very different
viewpoints.

In the first experiment, the same trajectory was driven three
times in the office environment. Fig. 10 shows the robot
trajectory which was determined from pure odometry (left) and
from the SLAM process (right). Although the environment is
small compared to other scenarios of the literature, it is well
visible that the odometry estimation becomes wrong quickly.
The estimated end position differs considerably from the real
end position. The SLAM estimate on the other hand (right),
is much more accurate. During this run, the robot acquired 17
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Fig. 10. A test run in the office environment. The robot trajectory was
estimated once from only odometry (left) and once from the SLAM system
(right).

Fig. 11. Estimated robot trajectory with final robot position (the “first” robot
is the real robot, whereas the robot behind visualizes the robot position at the
end of the buffer. The latter is used for trajectory and landmark estimation).
Green dots are landmarks, red dots are landmarks which were redetected in
loop-closing situations.

landmarks, found 21 matches to the database (one landmark
can be detected several times) and all of the matches were
correct (cf. Tab. I, row 1). The estimated landmark positions
and the matches are displayed in Fig. 11. Notice that more
than half of the landmarks are redetected when revisiting an
area. More results from the office environment are shown in
row 2–5 of Tab. I. The three occurring false matches belong
always to the same object in the world: the lamp in Fig. 6 left.

More experiments were performed in the atrium environ-
ment. A comparison between the estimated robot trajectory
from odometry data and from the SLAM system is visualized
in Fig. 12. In this example, the system operated in active
camera mode (cf. sec. VIII-B). Also here, the big difference in
accuracy of the robot trajectory is visible. The corresponding
number of landmark detections and matches is shown in Tab. I,
row 6. Results from additional runs are shown in rows 7-
9. Note that the percentage of matches with respect to the
number of all landmarks is smaller in the atrium area than
in the office environment since a loop can be only closed at
a few places. Also in this environment, all the false matches
belong to identical lamps (cf. Fig. 6 right).

In the presented examples, the few false matches did
not lead to problems, the trajectory was estimated correctly
anyway. Only the falsely matched landmarks are assigned a
wrong position. But note that more false matches might cause
problems for the SLAM process. The detection quality could

environment camera # landmarks # correct # false
control matches matches

office passive 17 21 0
office active 36 31 2
office passive 18 23 1
office passive 21 21 0
office active 34 16 1
atrium active 57 14 1
atrium active 61 15 3
atrium active 50 8 2
atrium passive 19 1 1

TABLE I
MATCHING QUALITY FOR DIFFERENT TEST RUNS IN TWO ENVIRONMENTS.

2ND COLUMN: PASSIVE/ACTIVE CAMERA CONTROL. 3RD COLUMN: THE
NUMBER OF MAPPED LANDMARKS. 4TH/5TH COLUMN: THE NUMBER OF

TIMES A CURRENT LANDMARK WAS MATCHED TO AN ENTRY IN THE
DATABASE. MATCHES ARE ONLY COUNTED, IF THE CORRESPONDING

LANDMARK HAD NOT BEEN SEEN FOR AT LEAST 30 FRAMES. NOTE THAT
A LANDMARK CAN ALSO BE MATCHED SEVERAL TIMES.

Fig. 12. A test run in the atrium area. The robot trajectory was estimated
once from only odometry (left) and once from the SLAM system (right).

be improved by collecting evidence for a match from several
landmarks.

B. Passive versus Active Camera Control

In this section, we compare the passive and the active
camera mode of the visual SLAM system. We show that with
active camera control, more landmarks are mapped with a
better distribution in the environment, more database matches
are obtained, and that loop closing occurs earlier and even in
situations where no loop closing is possible in passive mode.

From Tab. I, it can be seen that the test runs with active
camera control result in more mapped landmarks than the
runs with passive camera. Although this is not necessarily an
advantage — we claim actually that the sparseness of the map
is an advantage — it is favorable if the larger number results
from a better distribution of landmarks. That this is the case
here can be seen e.g. in the example in Fig. 13: landmarks
show up in active mode (right), where there are no landmarks
in passive mode (left).

Loop closing occurs usually earlier in active mode. For
example in Fig. 11, the robot is already able to close the loop
when it enters the doorway (position of front robot in figure)
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Fig. 13. Atrium environment: the estimated robot trajectory in passive (left,
cf. Tab. I row 9) and active (right, cf. Tab. I row 8) camera mode (the 1st
robot is the real robot, the 2nd a virtual robot at the end of the buffer).
Landmarks are displayed as green dots. In passive mode, the robot is not able
to close the loop. In active mode, loop closing is clearly visible and results
in an accurate pose estimation (see also videos on http://www.informatik.uni-
bonn.de/∼frintrop/research/aslam.html).
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Fig. 14. The robot pose uncertainty computed as the trace of Prr (covariance
of robot pose) for passive and active camera mode.

by directing the camera to the landmark area on its left. In
passive mode, loop closing only occurs when the robot itself
moved to face this area. An earlier loop closing leads to an
earlier correction of measurements and provides time to earlier
go back to other behaviours like exploration.

In active mode, the robot closed a loop several times in the
atrium. This is visible from the small jumps in the estimated
trajectory in Fig. 13 right. The final pose estimate is much
more accurate here than in passive mode. Fig. 14 displays a
comparison of the robot pose uncertainty in passive and active
mode, computed as the trace of Prr (covariance of robot pose).
The two loop closing situations in active mode around meter
30 and 50 reduce the pose uncertainty considerably, resulting
at the end of the sequence in a value which is much lower
than the uncertainty in passive mode.

IX. DISCUSSION AND CONCLUSION

In this paper, we have presented a complete visual SLAM
system, which includes feature detection, tracking, loop clos-
ing and active camera control. Landmarks are selected based
on biological mechanisms which favor salient regions, an
approach which enables focusing on a sparse landmark rep-
resentation. We have shown that the repeatability of salient
regions is considerably higher than the one of regions from
standard detectors. Additionally, we presented a precision-
based matching strategy, which enables to intuitively choose a
matching threshold to obtain a preferred matching precision.

The active gaze control module presented here enabled to
obtain a better distribution of landmarks in the map and to re-
detect considerably more landmarks in loop closing situations
than in passive camera mode. In some cases, loop closing is
actually only possible by actively controlling the camera.

While we obtain a good pose estimation and a high
matching rate, further improvements are always possible and
planned for future work. For example, we plan to collect
evidence for a match from several landmarks together with
their spatial organization as already done in other systems.
Also determining the salience of a landmark not only in the
image but in the whole environment would help to focus
on even more discriminative landmarks. Using the precision
value of a match could be very helpful to improve the system
performance too. Adapting the system to deal with really large
environments could be achieved by removing landmarks which
are not redetected to keep the number of landmarks low, by
database management based on search trees, indexing [53],
[49], and by using hierarchical maps as in [11]. Also testing
the system in outdoor environments is an interesting challenge
for future work.
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