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Abstract— In this paper we compare multi hypothesis
localisation (MHL)—which is a mobile robot localisation
method based on multi hypothesis tracking—with six other
methods reported in the literature. The comparison is per-
formed using a standard set of test data and corresponding
evaluation tools, thus facilitating a direct comparison of the
obtained results. The experiments show that MHL compares
favourably to all other methods in terms of recovering when
the robot has been kidnapped. When using a validation gate
for filtering out noisy measurements, MHL and the standard
extended Kalman filter both perform as well as all other
reported methods in terms of accuracy while being faster to
compute.

I. INTRODUCTION

Localisation is one of the most important problems
in mobile robotics. Thus a large number of localisation
methods have been proposed over the last years. However,
as is often the case in robotics, scientific comparisons
and thus progress has been hampered by researches using
different sensors and locomotion systems and by having
tested their algorithms in different environments.

A noteworthy exception was therefore when Gutmann
et al. [9], [10] decided to test a number of localisa-
tion algorithms on the same problem. They did that by
recording a one hour run of a robot in a RoboCup-like
environment with known landmarks and a system for
recording ground truth. Using this recording, six different
localisation methods were tested as reported in [10]. The
tests were conducted to determine accuracy, robustness
to noisy and sparse data and the ability to handle the
kidnapped robot problem.

Since it is unrealistic to expect one pair of researchers to
test all available localisation methods, and since it is prob-
ably scientifically sounder to let people test their “own”
methods, Gutmann and Fox explicitly left out testing multi
hypothesis localisation (MHL) methods which use a set
of Gaussians (a Gaussian mixture) to represent the pose1

of the robot. Instead they encouraged other researches to
perform this test. This paper presents the results of exactly
that endeavour.

1position and orientation

Gutmann and Fox kindly provided us with the data
files they used for testing their algorithms and with the
corresponding evaluation tools. We therefore believe that
the results presented in this paper can directly be compared
with the results presented in [10].

II. RELATED WORK

As mentioned in the Introduction, a large body of
research towards solving the mobile robot localisation
problem exists. The two most commonly used groups of
probabilistic localization methods are the Kalman filter
based methods and the Monte Carlo localisation methods.
Some examples of Kalman filer based localisation are
found in e.g., [5], [11], [3], [16]. For examples of the latter
category we refer to [17], [7]. For a general overview of
the most common methods for mobile robot localisation
see for example [2], [12].

Since it is outside the scope of this paper to review and
evaluate all of this, we will concentrate on the methods
presented in [10] which are the ones we compare us with
and which furthermore represent well state of the art in
probabilistic robot localisation.

Gutmann and Fox present and test the following meth-
ods:

Extended Kalman filter (EKF) The EKF is the
“classical” probabilistic method for integrating uncertain
information for the purpose of pose tracking [1], [16].
The main drawback of the Kalman filter method is that
its probability density function is unimodal (a Gaussian)
and thus it is not well suited for representing situations
where the robot pose is ambiguous. Also, since it is a
model-based approach, it requires that the process can be
reasonably well modelled. Advantages of the Kalman filter
is that it is a precise, simple and fast method which is
rather well understood.

Markov localisation combined with EKF (ML-EKF)
This method combines grid based Markov Localisation
(ML) with an extended Kalman filter [8]. The idea is to
use the coarse but robust grid-based method to keep the
overview over the situation and to “supervise” a Kalman
filter which is thereby made less sensitive to model errors



and the problems with its unimodal probability distribu-
tion. The ML part of this approach only maintains a 2D
probability grid for the positions.

Monte Carlo Localisation (MCL) As an alternative
to the fixed discretisation offered by a grid as in ML—
with its associated high computational cost—sample based
techniques have emerged [6]. The probability distribution
is here represented by a set of weighted samples. The
weight of the samples, which tell how well it matches
sensor data, determine how likely they are to be re-
sampled into the next iteration. The stronger ones will
survive and the resources are shifted to where they are
needed. Without modifications the MCL algorithm suffers
from the problem that unless there already are samples
in an area, this area cannot attract new samples. This
leads to a situation where many samples are needed to
do global localisation and where the kidnapped robot
situation typically fails.

Three methods with different flavours of MCL were
tested in [10] as described below:

Sensor Resetting Localisation (SRL) In SRL [15] the
idea is to draw a fraction of the samples in the re-sampling
not from the previous set, but instead directly based on
where the measurements indicate that there should be
samples. Two different parameter settings are evaluated
in the experiment in [10], and are referred there to as
SRL1 and SRL2. The difference in setting is the amount
of samples added based on observations.

Adaptive MCL (A-MCL) Adaptive MCL [4] extends
SRL with a schema for adaptively determining how many
samples should be added.

Mixture MCL (Mix-MCL) Mixture MCL [18] also
draws samples from the observations but the samples are
properly weighted, with the probability assigned to the
position where the sample is placed. This probability is
typically estimated based on a grid approximation.

In previous work [13] we have shown that MHT based
localisation (MHL) is efficient not only for pose tracking
but also for solving the global localisation problem, i.e.
to determine the robot pose without any prior information
given about this pose. The method was tested in two dif-
ferent real world environments on two different robots. It
was never experimentally verified that MHL could handle
kidnapping, but this will be tested in this paper. In the
work presented in this paper we made slight adaptations
to the method presented in [13], mainly to account for the
somewhat different environment. The resulting method is
presented in detail in the following section.

III. MULTI HYPOTHESIS LOCALISATION

The basic idea behind MHL is to alleviate the inherent
problems of using a single Gaussian by using a number of
these to represent the robot pose, thus effectively creating

a mixture of Gaussians enabling the representation of any
given probability distribution of the robot pose. Normally,
each EKF tracks one hypothesis about the robot. By
adding and removing such hypotheses it can furthermore
be achieved that the robot pose is robustly tracked al-
though the behaviour of the robot and the environment
violates the model assumptions of the single EKFs.

Therefore, with MHL it is in principle possible to
maintain the advantages of EKFs while not having to
suffer from the drawbacks. The price for this is that we
need a sensible method for adding and deleting hypotheses
and for estimating the probability of each hypothesis being
the correct one, i.e. its weight in the Gaussian mixture.

A. Data Association

One of the prerequisites for using the EKF is the that
the measurement noise is zero-mean. The data association
problem makes this a true challenge in localisation. Unless
it is possible to correctly establish the correspondence
between a measurement and a feature in the map the
estimation process is at risk of breaking down.

A common way to tackle the data association problem
is to use a validation gate. The gate defines a region
within which the measurement must fall to be associated
with a certain map feature. Let νk � i be the innovation and
Sk � i the measurement covariance given when matching a
measurement with the ith map feature at time k.

Using the Mahalanobis distance, ρk � i, between the mea-
surement and the ith map feature, the gate can be defined
as

ρk � i � νk � iS � 1
k � i νT

k � i � γ � (1)

where γ gives the size of the gate.

B. Hypothesis Generation

Since all hypotheses in the mixture have to be updated
in each move-observation cycle it is preferable to have
as few Gaussians as possible. Therefore new hypotheses
should not be introduced randomly but only where there
is reason to believe that the robot is, i.e. where the
corresponding weight of the Gaussian would be larger
that some ε , where ε � 0. This is only possible if
the observations are used to guide the insertion of new
hypotheses.

To make the description more concrete we consider the
case where the landmarks in the map are of point type.
Each observation, o, is a triple, � L � r� b � , consisting of the
landmark id, L, the measured range to the landmark, r,
and the bearing, b. The position, xL, of each landmark is
known from the map � . If the robot from one position
observes two different landmarks, A and B, it is possible
to estimate the pose of the robot by calculating the
intersection of the two circles with centres xA and xB and
radii rA and rB, respectively. When such an intersection
falls inside the area where the robot is known to move, we



thus add a new hypothesis at this point. Given the position
of the new hypothesis and the observation bearings, bA and
bB, it is also possible to estimate the hypothesis angle.

Since the robot however only rarely observes two land-
marks at the time, we relaxed this constraint and also
generate new hypotheses when two different landmarks
are seen in two consecutive observations. Here we simply
ignore the movement between the two observations assum-
ing that the resulting error on the intersections is negligible
compared to the error due to the range uncertainties.

To simplify matters, each new hypothesis is initiated
with a standard covariance although it is in principle
possible to estimate this from the landmark positions and
the observation uncertainties.

In the experiments with MHL described in Section IV
all hypotheses were introduced using this mechanism, i.e.
initially no pose hypotheses exist.

C. Hypothesis Probability Estimation

In this section we describe how we estimate the weight
of the Gaussians, i.e. the probability that a given hypoth-
esis is correct.

If P � Hi � describes the probability of the i’th hypothesis
being correct, the new probability after the receipt of an
observation, oL, indicating that landmark L has been de-
tected, can—using Bayes’s inversion formula—be written
as:

P � Hi 	 oL � � P � oL 	Hi � P � Hi �
P � oL � (2)

where P � oL � is effectively a scale factor which ensures
that the P � Hi 	 oL � ’s sum to 1. This implicitly assumes that
one of the hypotheses is correct which, however, cannot
always be guaranteed. We therefore introduced a pseudo
hypothesis, H0, which is a hypothesis accounting for the
probability that all the real hypotheses are incorrect. For
more details on H0, please see [13].

In equation 2, the term P � oL 	Hi � expresses the probabil-
ity of making the observation, oL, given that the robot is
at the position described by Hi. This is normally estimated
using the map, � , and can be re-written as:

P � oL 	Hi � � P � oL 	 fL � P � fL 	Hi �
����
P � oL 	 � fL � P � � fL 	Hi �
��� (3)

where P � oL 	 fL � is the probability that an observation of
L is generated given that landmark L is seen by a sensor
and P � fL 	Hi �
��� is the probability that landmark L can be
seen given that the robot is at the position described by
Hi. In other words, P � oL 	 fL � is a model of the reliability
of the recogniser extracting landmarks from sensor data.

We dynamically estimate P � oL 	 fL � as the ratio between
the number of successfully and the totally tried landmark
matches of the currently best hypothesis. The logic behind

this is that if all observations are correct, they will all
match the best (hopefully correct) hypothesis, and vice
versa.

If a match between a hypothesis, Hi, and a landmark,
L, has been established, i.e. if the observation passed the
validation gate, we estimate P � fL 	Hi �
��� as follows: A
temporary hypothesis, C, is generated with centre, z:

z � xL � r �d � (4)

where �d � is a unit direction vector for the line �
connecting L and xi. The angle of C relative to Hi is
the same as the angle between � and the observation
bearing, b. This means that if the landmark is exactly
where it would be expected according to Hi, C and Hi
will coincide. The larger the deviation the further C and
Hi will be apart. The covariance of C is set equal to the
observation covariance with the modification that the angle
uncertainty is doubled to account for the fact that forcing
C onto � may increase the angle deviation.

Given Hi and C we can estimate of P � fL 	Hi ����� as [14],
[13]:

P � fL 	Hi �
��� � exp
� 1

2 � x̂i � z � Σ � 1
i � x̂i � z � T (5)

When a Hi has not been matched to any landmark we
assume that we have a random observation which has a
very small probability and use P � fL 	Hi ����� � δ , where δ
was fixed at 0.01 in our experiments.

D. Track Splitting

A standard component of MHT is track splitting. The
idea is to get robust against spurious measurements by
splitting hypotheses prior to updating them (whereby only
the original is updated), effectively making a “backup”.
If the copy and the original are still close together after
the update, they are merged again. If the observation was
noisy, this will normally not be the case, and due to the
backup, track is not lost.

E. Hypothesis Pruning

We use two standard mechanisms to prune the number
of hypotheses. We delete hypotheses for which P � Hi � �
η and return its probability mass P � Hi � to P � H0 � . We
also check if two hypotheses are virtually representing the
same pose. This happens for example basically every time
when the track is split and the data association was correct,
i.e. there is no split. To see if two hypotheses represent the
same pose, we check if the Mahalanobis distance between
the two hypotheses is below a certain value. If this is the
case, we remove the weaker of two hypotheses, i.e. the
one with the lowest P � Hi � . If everything is well-behaved,
this may eventually lead to the situation where only one
hypothesis exists.



IV. EXPERIMENTS AND RESULTS

To complement the comparison made in [10] in a fair
way with the results using the MHL technique, the same
set of data is used. In short, the experiments are designed
to test accuracy, robustness to noisy and sparse data as well
as the ability to deal with the kidnapped robot problem.
The latter is particulary hard as the robot falsely believes
it knows where it is and thus first has to realise that it is
lost.

To further ease the comparison, results will be presented
for the standard EKF as well, just like in [10]. We will
present results of both EKF and MHL with and without
using a validation gate. From now on, let EKF and MHL
denote the case when we run the methods without a
validation gate and correspondingly EKF-V and MHL-V
when running with it.

All experiments were conducted with a single program
with one set of movement and sensor models, i.e. no
parameters were changed between tests. Two switches
were used: one to turn on and off the validation gate
and one to turn off the hypothesis generation and track
splitting, thus turning MHL into EKF. Since, in the EKF
experiments, no hypotheses were automatically generated,
one initial hypothesis was introduced at the known start
pose of the robot.

In the experiments we used the same sensor error model
as Gutmann and Fox which was 0.15 m per meter range
and a fixed angle of 10 degrees.

A. The Experimental Data

The experimental data were collected in a custom made
3x2 m environment with 6 landmarks with different colour
codes (see [10] for more details). In the experiments a
Sony AIBO ERS 2100 equipped with a CMOS camera
for detecting and identifying the landmarks was used.
The robot was joysticked around in the environment for
almost an hour collecting odometry and processed sensor
data in the form of landmark id, range and bearing in
a log file. All tests were carried out using files with data
derived from this original log file. To evaluate the accuracy
of the methods, a tag was added in the logfile when
the robot crossed special markers on the field. In total,
48636 landmarks, 8333 motion steps and 143 ground truth
positions were recorded.

B. Results

1) Sparse Data: To test performance with sparse data,
data files where created with only fractions of the observa-
tions left, ranging from all observations down to 1/256th
of the observations.

In Figure 1 the results from using the sparse data sets
are shown. The distance errors are shown with estimated
95% error bounds. The performance degrades gracefully

for all methods just like in [10]. The difference in perfor-
mance between the four methods is negligible.
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Fig. 1. The accuracy of the different methods when only a fraction of
the data is used.

2) Noisy Data: Since the log files are gathered with
real sensors, there is already a certain amount of naturally
occuring noise in the data. However, data sets were also
created where a procentage (from 10% to 80%) of the
observations were replaced by random landmark observa-
tions. Note that the observations are replaced by complete
outliers and not just made more uncertain by adding for
example Gaussian noise to them. In reality, complete
outliers might come from clutter that are recognized as
a landmark, for example when there are many robots on
the field.

Figure 2 shows the results for the four different methods
when applied to the noisy data sets. Notice how well
the EKF-V and MHL-V handle the noisy data. The
importance of the validation gates can here clearly be
seen when comparing with the results in [10]. It is also
clear from the figure that MHL, even when used without
a validation gate, improves robustness to noise. This is
due the the splitting of hypotheses which reduces the risk
of loosing track. The difference in performance for the
EKF compared to [10] might be explained by the use of
different motion models.
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Fig. 2. The localisation accuracy for different levels of noise.

The accuracy of EKF-V and MHL-V are comparable to
the results obtained by the best method tested by Gutmann
and Fox (A-MCL).



Method mean time [s] 95% interval [s]
EKF 1.85 0.39
MHL 0.74 0.19
EKF-V 12.2 3.9
MHL-V 0.67 0.13

TABLE I
THE TIME NEEDED TO RECOVER FROM KIDNAPPING.

3) Recovering from Kidnapping: To test the ability to
recover from kidnapping one data file was created where,
at 22 places, data from several seconds was removed (after
which the odometry was re-calculated to cover this up).
Looking at the odometry in the resulting log file it is not
possible to detect the kidnappings.

Table I shows the results. We can see that the MHL
methods recover quite quickly. This is probably due to
the observation-driven addition of hypotheses and to the
probabilistic formulation of hypothesis weight, which en-
ables the method to quickly “switch” to a new hypothesis.
What is interesting to see is that EKF recovers much faster
than EKF-V which is due to the fact that the validation
gate will filter out all measurements until the Kalman filter
has accumulated a significant pose uncertainty from the
robot movements. So where the validation gate improves
robustness to noise it hampers recovery. The difference in
recover time for the EKF compared to the one reported
in [10] could be a result of using different motion models.

The times for MHL to recover are about 2.5 times faster
than the best times reported by Gutmann and Fox (ML-
EKF and A-MCL).

4) Computational resources: One of the major advan-
tages of the EKF is that it is computationally efficient.
The claim we made in the beginning of the paper was
that MHL would inherit this property. To test this thesis
we have measured the computation time needed by the
prediction step, the update step and the total computation
time for processing the entire data set just like in [10].
The timing test was carried out on a Pentium-III 1GHz
laptop computer. The computation time for the EKF was
3.8µs and 8.5µs for the time per iteration to do prediction
and update respectively. The total computation time for
the whole log file was 0.7 s. The times are similar to the
values reported in [10] which is an indication that the rest
of the values can be compared with those results as well.

As most of the time is spent in the update step in all
algorithms we take a closer look at the update time as a
function of the amount of noise in the data in Figure 3.
We can see that the MHL method required a bit more
time than the EKF which comes from having to update
more than one hypothesis. Since there is always only one
hypothesis when running EKF, whether or not a gate is
used, there is no difference between those two. There is
however a significant difference between MHL and MHL-
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Fig. 3. The computation time for the update step for the different
methods as a function of the noise level.

V. When not using the validation gate the track splitting
produces more hypotheses that are not pruned away by
merging, which increases the computational cost.

The plot in Figure 3 nicely illustrates the dynamic
way MHL works: When everything is well-behaved, only
very few hypotheses exist (in the no-noise experiment
an average of 1.3) making the method computationally
about as efficient as the EKF. When encountering noisy
observations or some irregularities as e.g. kidnapping,
more hypotheses will (at least for a while) exist in parallel
demanding more resources but ensuring good accuracy
and fast recovery.

The computation times for EKF, EKF-V and MHL-V (at
low noise levels) are almost an order of magnitude lower
than those reported in [10] for the ML-EKF and MCL
methods. Depending on the implementation (e.g. fixed
sample set size or not) the computation time for the
methods reported in [10] will also depend on the noise
level.

V. DISCUSSION AND CONCLUSION

Localisation is one of the most important problems in
mobile robot navigation and benchmark tests are important
for scientific and practical progress. In this paper we have
taken up the ball from Gutmann et al. and tested the EKF
and MHL with and without a validation gate on a standard
set of data.

The test data were designed to reveal the methods’
ability to cope with noise, sparse data and kidnapping.
With respect to sparse data, all methods tested here and
in [10] exhibit good, effectively identical performance.

On noisy data, the methods without a validation gate
as expected perform rather poorly, MHL however being
somewhat more robust than the EKF due to the track
splitting technique. With the validation gate, both methods
perform quite well, MHL being just as good as the
best of the methods reported in [10] but requiring less
computation time. Drawback of the validation gate is that
it also efficiently prevents the EKF to recover once track
is lost, e.g. due to kidnapping. This, however, is not a



problem with the MHL method that will quickly generate
new hypotheses to recover track.

In the kidnapping experiment, MHL and MHL-V recov-
ered about 2.5 times faster than the best of the methods
in [10]. We think this is mainly due to the observation-
driven addition of hypotheses and to the probabilistic
formulation of hypothesis weights.

The timing analysis proved that MHL is potentially as
computationally efficient as the EKF, however dynami-
cally demanding more resources when needed due to e.g.
noisy observations.

On the basis of these results we think it is safe to
conclude that MHL is a viable, computationally efficient
alternative to the grid- and sample-based relocalisation
methods. The cost for this is that MHL relies more on
models of the process than the other methods which may
tend to make the algorithms somewhat more elaborate.

Although we have in [13] shown that MHL performs
well in normal indoor scenes, the less model-based ap-
proaches may have some advantages in environments
which are harder to model and where ambiguous land-
marks etc. are common. To examine this, however, is the
subject of future work.
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