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Abstract

In many applications one wants to compute
conditional probabilities given a Bayesian
network. This inference problem is NP-hard
in general but becomes tractable when the
network has low tree-width. Since the infer-
ence problem is common in many application
areas, we provide a practical algorithm for
learning bounded tree-width Bayesian net-
works. We cast this problem as an integer
linear program (ILP). The program can be
solved by an anytime algorithm which pro-
vides upper bounds to assess the quality of
the found solutions. A key component of our
program is a novel integer linear formulation
for bounding tree-width of a graph. Our tests
clearly indicate that our approach works in
practice, as our implementation was able to
find an optimal or nearly optimal network for
most of the data sets.

1 INTRODUCTION

A Bayesian network is a representation of a joint prob-
ability distribution. It consists of a structure and pa-
rameters. The structure is represented by a directed
acyclic graph (DAG) that expresses the conditional de-
pendencies and independencies between variables. Pa-
rameters, on the other, determine conditional proba-
bility distributions associated with each variable.

One common task with Bayesian networks is infer-
ence, that is, computing conditional probabilities of
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some variables given some other variables. The infer-
ence problem is known to be NP-hard for both the ex-
act (Cooper, 1990) and the approximate (Dagum and
Luby, 1993) variant. Inference is, however, tractable
if the network has bounded tree-width1. Actually,
bounding tree-width is necessary for tractable infer-
ence; bounding any other property of the network
keeps inference intractable in the worst-case (Chan-
drasekaran et al., 2008; Kwisthout et al., 2010). Thus,
if an application requires that one has to be able to
infer fast it is necessary that the network has bounded
tree-width.

The Bayesian network is not always given. However,
if one has access to samples from the distribution one
can learn the network from data. Learning the struc-
ture of a Bayesian network is NP-hard (Chickering,
1996; Chickering et al., 2004). Despite of this, ex-
act algorithms have been developed actively in recent
years. Approaches have included dynamic program-
ming (Koivisto and Sood, 2004; Silander and Myl-
lymäki, 2006; Parviainen and Koivisto, 2009; Malone
et al., 2011) and branch-and-bound (de Campos et al.,
2009). Maybe the most promising approach so far is
integer linear programming. The state-of-the-art inte-
ger linear programming algorithms have been able to
find provably optimal networks for data sets of over
100 variables (Jaakkola et al., 2010; Cussens, 2011;
Cussens and Bartlett, 2013).

To ensure that it is possible to infer fast in the
learned network, one can learn a Bayesian network
with bounded tree-width. However, this does not come
without drawbacks. To be able to represent a joint
probability distribution exactly, a Bayesian network
has to express all the dependencies in the underlying
distribution. Arcs in a Bayesian network encode de-

1Here the bounded tree-width means that tree-width is
bounded by some small constant. In this case the time
requirement for inference grows linearly with the number
of nodes.
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pendencies between random variables and sometimes
dependencies cannot be represented by a low tree-
width network. Thus, forcing a Bayesian network to
have a bounded tree-width often makes it impossible
to represent the underlying distribution exactly. How-
ever, in some applications it may be beneficial to trade
exactness of the representation of the distribution for
efficiency of inference. In this case, the modeler should
use the largest tree-width bound that renders inference
fast enough for the application in question.

Research on learning bounded tree-width Bayesian
networks has been limited so far. It has been known
for a long time that trees, that is, networks with
tree-width one, can be learned in polynomial time
(Chow and Liu, 1968). Although there are several
publications on related graphical models (Karger and
Srebro, 2001; Srebro, 2001; Bach and Jordan, 2002;
Chechetka and Guestrin, 2007; Kumar and Bach,
2013) we are aware of only two publications concern-
ing learning bounded tree-width Bayesian networks in
general. First, Elidan and Gould (2008) have pub-
lished a heuristic algorithm that is fast but gives no
guarantees on the quality of the output. Second, re-
cently Korhonen and Parviainen (2013) introduced a
dynamic programming algorithm that is guaranteed to
find an optimal network. However, their algorithm is
extremely slow and of little practical use.

Motivated by the need for fast inference and the defi-
ciencies of the existing algorithms, we present a new
algorithm for learning bounded tree-width Bayesian
networks from data. We take the so-called score-based
approach (Cooper and Herskovits, 1992; Heckerman
et al., 1995) which is based on assigning a score to
each structure, depending on how well it fits to the
data. The score-based approach makes it easy to com-
pare “goodness” of different structures even when the
structures do not express all the dependencies among
variables. This makes the score-based approach a nat-
ural choice in constrained structure learning, such as
the present case.

Learning the structure of a bounded tree-width
Bayesian network is known to be an NP-hard problem
(Korhonen and Parviainen, 2013). Thus, there is little
hope for exact polynomial time algorithms. Further,
the results of Korhonen and Parviainen (2013) suggest
that adding the requirement of bounded tree-width
makes learning of Bayesian networks more complex
and time-consuming than in the case of unbounded
tree-width Bayesian networks. Encouraged by the ear-
lier results on using integer linear programming to
learn Bayesian networks, we formulate the problem
of learning bounded tree-width Bayesian network as
an integer linear program (ILP). The objective func-
tion corresponds to the score of the network. Our

ILP has two sets of constraints: one set guarantees
that the structure is a valid DAG and another that
its tree-width is below a given threshold. This pro-
duces an anytime algorithm: If the algorithm is let
run long enough, it will always return an optimal so-
lution. On the other hand, if it is aborted earlier, it
will return a feasible solution, that is, some DAG with
bounded tree-width. The algorithm also provides an
upper bound for the score, making it possible to assess
the quality of the solution.

We continue by introducing the necessary preliminar-
ies on Bayesian networks and tree-width. Then in Sec-
tion 3 we present the theoretical results behind our
ILP. We formulate the ILP in Section 4. We proceed
to present practical details and performance results in
Section 5. Finally we discuss some future directions in
Section 6.

2 PRELIMINARIES

2.1 Bayesian Networks

In this paper we are interested in the structure of a
Bayesian network. The structure of a Bayesian net-
work is represented by a directed acyclic graph (DAG).
A DAG is denoted by (N,A), where N is the node set
and A is the arc set. If there is an arc from node u to
v we say that u is a parent of v and v is a child of u.
The set of the parents and the children of v in A are
denoted by Av and Av, respectively. The cardinality
of N is denoted by n. If there is no ambiguity about
the node set we identify a DAG by its arc set A. A
complete directed graph is called a tournament.

In this paper, we consider the score-based approach
to structure discovery in Bayesian networks. In this
approach each DAG is assigned a score based on how
well it fits to the data. We are particularly interested
in decomposable scores, where the score of a DAG is
a sum of local scores. Formally, the score of a DAG A
is defined to be

f(A) =
∑
v∈N

f(v,Av),

where local scores f(v,Av) are computed from the
data. We note that this approach subsumes many
commonly used scores like BIC and BDeu.

Usually it is necessary to restrict the number of po-
tential parent sets. To this end, we denote a family of
potential parent sets for node v by Fv. By convention
f(v, S) = −∞ if S /∈ Fv. Commonly, the modeler sets
a maximum size for parent sets. Note that the number
of potential parent sets can be reduced also by various
pruning methods; see, for example, de Campos and Ji
(2011).



Pekka Parviainen, Hossein Shahrabi Farahani, Jens Lagergren

2.2 Tree-width

An undirected graph is denoted by G = (V,E), where
V is the vertex set and E is the edge set.

A tree decomposition of G is a pair (X,T ), where X =
{X1, X2, . . . , Xm} is a collection of subsets of V and
T is a tree on X, such that

1. ∪mi=1Xi = V ,

2. for all edges {u, v} ∈ E, there exists i with u ∈ Xi

and v ∈ Xi, and

3. for all i, j and k in {1, 2, . . . ,m}, if Xj is on the
(unique) path from Xi to Xk in T then Xi∩Xk ⊆
Xj .

The width of a tree decomposition is defined as
max |Xi| − 1. The tree-width of an undirected graph
G is the minimum width over all tree decompositions
of G.

A skeleton of a directed graph (N,A) is an undirected
graph (N,E), where an edge {u, v} is included in E if
and only if there is an arc uv in A. A moralized graph of
a directed acyclic graph (N,A) is an undirected graph
(N,E), where an edge {u, v} is included in E if and
only if there is an arc uv in A or there are arcs us and
vs in A for some s. The tree-width of a DAG is defined
as the tree-width of its moralized graph (Elidan and
Gould, 2008). It should be noted that a node and its
parents form a clique in the moralized graph. Thus,
the number of parents lower bounds the tree-width.

There are several equivalent characterizations for tree-
width. For our purposes, it is useful to consider the
elimination ordering formulation. To this end, let us
consider triangulated graphs. An undirected graph
is called triangulated (or chordalized) if all cycles of
length 4 or more have a chord, that is, an edge between
two non-adjacent vertices. Every graph can be trans-
formed into a triangulated graph by adding edges. The
width of a triangulated graph is the size of its largest
clique minus one. The tree-width of a graph equals to
the minimum width over all of its triangulations.

A graph can be triangulated using an elimination or-
dering formulation. It is well known that, given an
ordering of vertices, a graph can be triangulated by
going through all vertices in that order and for each
vertex adding an edge between its higher numbered
neighbors; these edges are called fill-in edges. It is also
known that if a graph is triangulated then there exists
a perfect elimination order, that is, an order such that
the above procedure does not add any edges. Comput-
ing the width of a triangulated graph given a perfect
elimination order is easy: it is the maximum number
of higher numbered neighbors over all vertices.

A k-tree is defined as follows. A clique of k+1 vertices
is a k-tree. Given a k-tree, a new k-tree can be formed
by adding a new node adjacent to exactly k vertices
that form a clique in the original k-tree. It should be
noted that k-trees are maximal graphs of tree-width
k, that is, every graph with tree-width at most k is
a subgraph of at least one k-tree. A k-tree with n
vertices has (n− k)k +

(
k
2

)
edges.

2.3 Problem Statement

Our goal is to find a Bayesian network structure that
has bounded tree-width and maximizes the score.

Problem 1 Given local scores f(v, S) for all v ∈ N
and S ∈ Fv and a parameter k, find a DAG A such
that the score f(A) is maximized and tree-width of A
is at most k.

3 BOUNDING TREE-WIDTH

On a high level, it is easy to represent Problem 1 as
a constrained optimization problem: One maximizes
the score of a directed graph under constraints that
the graph must be acyclic and tree-width of its mor-
alized graph is at most k. The key question is how to
formulate the constraints so that the program is fast
to solve.

One straightforward way to formulate Problem 1 as
an integer linear program would be to take existing
formulations for acyclicity and tree-width and com-
bine them. Initially, we merged the ILPs for learning
(unbounded tree-width) Bayesian networks by Cussens
(2011) and computing tree-width of an undirected
graph by an elimination ordering formulation (Grig-
oriev et al., 2011). However, we were not satisfied
with the results of our preliminary tests with this ap-
proach. Therefore, we present another approach con-
trolling tree-width.

We work with two directed graphs that are represented
by sets of binary variables. The first set of variables,
zSv for all v ∈ N and S ∈ Fv, encodes the structure
of the Bayesian network. In other words, zSv takes
value 1 when the parent set of v is S; the graph im-
plied by this encoding is called the z-graph. For guar-
anteeing the acyclicity of the z-graph, we use cluster
constraints by Cussens (2011). To guarantee that the
z-variables encode a graph with tree-width at most k,
we introduce an auxiliary variable set for controlling
tree-width. The y-variables, yij are defined, for techni-
cal reasons explained later in this section, for i, j ∈ N ′,
where N ′ is a superset of N . The y-variables encode
a directed graph, called the y-graph, whose skeleton is
a k-tree such that the moralized graph of the z-graph
is its subgraph.
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Now the question is what kind of conditions are needed
to guarantee that the y-graph is a k-tree. To this end,
we introduce a new graph that we call a root graph.

Let N be the node set of the original problem. We
notice that in an acyclic graph whose skeleton is a k-
tree there is, for each i ∈ {0, 1, . . . , k− 1}, exactly one
node with i children. This kind of constraints are dif-
ficult to express as linear constraints. To circumvent
this problem, we introduce a set R of auxiliary vari-
ables; we call members of R as roots. A root graph
G = (N ∪R,A) is a directed graph such that

1. there are no directed cycles of length 3 in G,

2. for each vertex v ∈ N there are k children that
form a tournament,

3. the size of R is k, the nodes in R form a tour-
nament and the nodes in R do not have children
outside R,

4. The induced subgraph G[N ] has exactly (n−k)k+(
k
2

)
arcs, and

5. for each set W ⊆ N , |W | ≥ k it holds that induced
subgraph G[W ] has at most (|W |−k)k+

(
k
2

)
arcs.

Further, a semi-root graph H = (N∪R,A) is a directed
graph such that the conditions (1)–(4) hold.

Next, we will show that induced subgraph G[N ] is a
k-tree. To do that, we need to show that a root graph
G has no directed cycles. To this end, we start by
proving couple of results that will be needed to prove
the acyclicity. An arc uv is called a prime arc if v has
no parents in the children of u. Note that because of
conditions (1) and (2), if a node in a semi-root graph
has an outgoing arc it also has an outgoing prime arc.
Notice also that if uv is a prime arc then Au\{v} ⊆ Av.
A directed cycle C = (v1v2 . . . vl) is called a prime
cycle if each arc between consecutive nodes is a prime
arc.

Next, we will prove a result that are used in a later
proofs.

Lemma 1 For a prime cycle C = (v1v2 . . . vl),( ⋃
1≤i≤l

Avi

)
\ {v1, v2, . . . , vl} ⊆ Avl .

Proof. Notice that since C is a prime cycle, for each
1 ≤ i ≤ l − 1 it holds that Avi \ {vi+1} ⊆ Avi+1 and
hence it follows inductively that, for each 1 ≤ j ≤ l,( ⋃

1≤i≤j

Avi

)
\ {v1, v2, . . . , vj} ⊆ Avj .

We conclude the proof. �

Armed with the previous lemma, we will move to show
that if a semi-root graph has a prime cycle of length
4 or more then there exists an induced subgraph that
has “too many” arcs. We will also show that if there
is a cycle in a semi-root graph then there is a prime
cycle.

Lemma 2 Assume that C = (v1v2 . . . vl) is a prime
cycle on a semi-root graph G = (N ∪ R,A). Let K =
Avl \ {v1, v2, . . . , vl} and G′ = G[K ∪ {v1, v2, . . . , vl}].
Let n′ and m′ be the number of nodes and arcs, respec-
tively, of G′. Then

m′ > (n′ − k)k +

(
k

2

)
.

Proof. Notice that by the construction of G, C
contains no roots and hence |Avi | = k for i ∈ [l]. Also
it follows from Lemma 1 that Avi belongs to G′ for
each i ∈ [l]. Hence, G′ has lk outgoing arcs from
{v1, v2, . . . , vl}. Moreover, K ⊆ Avl and thus G′[K] is

a tournament and has
(|K|

2

)
arcs. So,

m′ = lk +

(
|K|
2

)
.

However, vl has k children and one of its children, i.e.,
v1, belongs to {v1, v2, . . . , vl} and thus |K| ≤ k − 1.
Consequently, l ≥ (n′ − k) + 1 and

lk +

(
|K|
2

)
> (n′ − k)k +

(
k

2

)
.

The lemma follows. �

Lemma 3 If a semi-root graph G has a cycle, then it
has a prime cycle.

Proof. Assume that among all cycles, C =
(v1v2 . . . vl) starts with a maximum number of con-
secutive prime arcs (from v1). Assume that C is not a
prime cycle, vivi+1 is the first non-prime arc of C and
viu is a prime arc.

If u /∈ C then C ′ = (v1v2 . . . viuvi+1 . . . vl) is a cy-
cle on G and it starts with more prime arcs than C
contradicting the assumption that C starts with the
maximum number of prime arcs. We conclude that
u ∈ C.

Assume u = vj . If j < i then (vj . . . vi) is a prime
cycle and if j > i then (v1 . . . vivjvj+1 . . . vl) is a cycle
starting with more prime arcs than C contradicting the
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assumption that C starts with the maximum number
of prime arcs.

We conclude that G has a prime cycle. �

Now we are ready to prove that root graphs are acyclic.

Lemma 4 If G is a root graph then there are no di-
rected cycles in G.

Proof. We notice that, by the definitions of a root
graph and semi-root graph, G is a semi-root graph
such that for each set W ⊆ N , |W | ≥ k it holds that
induced graph G[W ] has at most (|W |−k)k+

(
k
2

)
arcs.

Thus, by Lemmas 2 and 3, G has no directed cycles. �

Now, the following lemma implies that the skeleton of
an induced subgraph G[N ] of a root graph is a k-tree.

Lemma 5 Let G = (N∪R,A) be a directed graph such
that (1) there are no directed cycles, (2) for each vertex
v ∈ N there are k children that form a tournament, (3)
the size of R is k, the nodes in R form a tournament
and the nodes in R do not have children outside R, and
(4) the induced subgraph on N has (|N |−k)k+

(
k
2

)
arcs.

Then the skeleton of G[N ] is a k-tree.

Proof. We proof this lemma by induction on the
number of nodes.

First, let us proof that if |N | = k then the skeleton
of G[N ] is a clique. By the definition of G the in-
duced subgraph G[N ] has k(k − 1)/2 arcs, that is, a
tournament. It is easy to see that this tournament can
be constructed without violating the other constraints.
The skeleton of a tournament is a clique and thus the
claim follows.

Now, assume that G has n > k nodes and the lemma
holds for any smaller graph. Since (1) and (3) hold,
there is a node v ∈ N with no parents. By inductive
assumption, the skeleton of G \ {v} is a k-tree.
Moreover, by (2) the children of v are a clique in the
skeleton of G \ {v}. We also note that by (2) and
(4) all the children of v need to be in N . Thus, by
the definition of k-tree, the skeleton of G is a k-tree. �

Lemma 5 implies that to guarantee bounded tree-
width it is sufficient that the y-graph is a root graph.
Note that the proof of the lemma actually implies that
the direction of the arcs in G, in a natural way, induce
a perfect elimination order of its skeleton.

4 INTEGER LINEAR PROGRAM

We are now ready to formulate Problem 1 as an in-
teger linear program (ILP). We start by devising the
objective function. To this end, recall that we intro-
duced a set of binary variables zSv, where v ∈ N and
S ∈ Fv, to represent the directed graph. Variable zSv

takes value 1 if S is the parent set of v and 0 otherwise.
We want to maximize the score. Thus, our objective
function is

max
∑
v∈N

∑
S∈Fv

f(v, S)zSv.

To guarantee that variables zSv represent a DAG with
bounded tree-width, we introduced an auxiliary vari-
able set yij encoding a root graph. We use a short-
hand N ′ = N ∪R. The conditions derived in Section 3
translate to the following linear constraints:

∑
S∈Fv

zSv = 1 ∀v ∈ N, (1)

∑
j∈N ′\{i}

yij = k ∀i ∈ N, (2)

∑
i∈N

∑
j∈N\{i}

yij = nk − k(k + 1)/2, (3)

zSi − yij − yji ≤ 0 ∀i ∈ N, j ∈ S, S ∈ Fi, (4)

zSv − yij − yji ≤ 0 ∀i, j ∈ S, v ∈ N,S ∈ Fv, (5)

yij + yil − yjl − ylj ≤ 1 ∀i, j, l ∈ N ′, (6)

yij = 0 ∀i ∈ R, j ∈ N, (7)

yij = 1 ∀i, j ∈ R, i < j

in lexicogr. order, (8)

yij + yji ≤ 1 ∀i, j ∈ N ′, (9)

yij + yjl + yli ≤ 2 ∀i, j, l ∈ N ′, (10)

∑
i∈W

∑
S∈Fi:S∩W=∅

zSi ≥ 1 ∀W ⊆ N, (11)

∑
i∈W

∑
j∈W

yij ≤ (|W | − k)k +
(
k
2

)
∀W ⊆ N,

|W | ≥ k, (12)

yij ∈ {0, 1} ∀i, j ∈ N ′, (13)

zSi ∈ {0, 1} ∀i ∈ N,S ∈ Fi. (14)
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Here the constraints (1) and (14) guarantee that each
node has exactly one parent set. The constraints (11)
are the cluster constraints and together with the two
previous constraints they guarantee the acyclicity of
the z-graph. The constraints (9) guarantee that the
y-graph is a simple graph. The constraints (4) and (5)
guarantee that the moralized graph of the z-graph is
a subgraph of the y-graph. The constraint (6) guaran-
tees that the y-graph the fill-in edges implied by the
elimination order are added, that is, the children of
each node form a tournament. The constraint (10)
guarantees that the y-graph has no 3-cycles. The con-
straints (7) and (8) introduce the set R and guarantee
the desired properties. The constraint (3) guarantees
that the induced subgraph of the y-graph on N has as
many arcs as a k-tree should have. The constraint (12)
guarantees that none of the induced subgraphs of the
y-graph has too many arcs. Thus, together with the
constraint (13) constraints (3), (7), (8), (10), and (12)
guarantee that the y-graph is a root graph. Finally, the
constraint (2) guarantees that the graphs have tree-
width at most k.

5 SOLVING THE ILP IN
PRACTICE

We used CPLEX 12 to solve our integer linear pro-
gram. CPLEX uses a branch-and-cut algorithm to
solve ILP. It starts with solving a relaxation of the
original ILP. Then it starts to tighten the relaxation
by adding cuts and branching. In the cutting phase the
branch-and-cut algorithm adds new constraints (cut-
ting planes) that cut out the current solution without
cutting out any solutions that are feasible in the orig-
inal ILP. In the branching phase the problem is split
into two subproblems by fixing values of some variable.
To speed up the algorithm it is essential to find “deep”
cuts that tighten the relaxation fast. Further, it is es-
sential to keep the branching tree small by pruning the
tree whenever one finds good feasible solutions.

To scale up and speed up CPLEX, we added cus-
tom algorithms for finding cutting planes and heuris-
tics for finding “good” feasible solutions. The cuts
are described in Section 5.1 and the heuristics in Sec-
tion 5.2. Customized parts were implemented using
Python. Our implementation called TWILP is avail-
able as open source software2.

5.1 Sub-IP

One practical problem with our program is that the
constraints (11) and (12) consists of one constraint for
each node subset, that is, 2n constraints in total. This

2https://bitbucket.org/twilp/twilp/

is too much to be explicitly included in the program.
Therefore, we start by solving a relaxation and add
constraints as cutting planes whenever needed. To this
end, it is important to find “good” cutting planes. One
way to do this is to solve sub-IPs that try to maximize
the distance between the plane and the current solu-
tion. For cluster constraints (11) we use the sub-IP
introduced by Cussens (2011).

To find good cutting planes for the y-variables, we try
to maximize the distance between the current solution
and a cutting plane in a similar fashion as Cussens
(2011). Let ŷij be the value of yij in the current so-
lution. Now the distance of a cutting plane for set
W ⊆ N from the current solution is∑

i∈W
∑

j∈W\{i} ŷij − |W |k + k(k + 1)/2√∑
i∈W

∑
j∈W\{i} 1

.

Following Cussens, we ignore the denominator and at-
tempt to maximize the numerator.

To this end, we introduce new binary variables Ii for
all i ∈ N which takes value 1 if and only if i ∈W and
Iij for all i ∈ W and j ∈ W \ {i} which takes value 1
if and only both i and j are in W . Now our objective
function is

max
∑
i∈N

∑
j∈N\{i}

ŷijIij − k
∑
i∈N

Ii.

To ensure the conditions mentioned above we require
the following conditions

2Iij − Ii − Ij ≤ 0 ∀i ∈ N, j ∈ N \ {i} (15)

Ii + Ij − Iij ≤ 1 ∀i ∈ N, j ∈ N \ {i}. (16)

To ensure that the plane is a cutting plane, that is, it
cuts the current solution, we require that∑

i∈N

∑
j∈N\{i}

ŷijIij − k
∑
i∈N

Ii > −k(k + 1)/2. (17)

Finally, we are interested only on sets with more than
k + 1 variables. Thus, we have∑

i∈N
Ii > k + 1. (18)

5.2 Feasibility heuristics

In our preliminary tests, we found out that the cuts
often quickly give relatively tight upper bounds. How-
ever, the program sometimes failed to find any feasi-
ble integer solutions in a reasonable time. To speed
up finding good feasible solutions we added a custom

https://bitbucket.org/twilp/twilp/
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Table 1: ILP’s performance on various data sets. n is the number of vertices in each data set, k is the upper
bound on the tree-width of the network, and score is the BDe score of the network. The column “Unbounded”
consists of scores of optimal unbounded tree-width Bayesian networks. Gap OPT means that the solution is
guaranteed to be optimal.

Dataset k = 2 k = 3 Unbounded

Name Sample size n Score Gap Score Gap Score

Water 10000 32 -128948.06 0.00 -128806.35 0.00 -128705.65
Water 1000 32 -13265.71 0.00 -13262.34 OPT -13262.34
Water 100 32 -1501.67 0.00 -1500.97 OPT -1500.97
adult 32561 15 -352224.55 OPT -351481.63 0.00 -351151.29
alarm 10000 37 -105501.64 OPT -105327.36 0.01 -105278.25
alarm 1000 37 -11259.78 0.00 -11243.83 0.00 -11240.35
alarm 100 37 -1371.12 0.00 -1369.78 0.01 -1349.23
asia 10000 8 -22466.40 OPT -22466.40 OPT -22466.40
asia 1000 8 -2318.65 OPT -2317.41 OPT -2317.41
asia 100 8 -245.64 OPT -245.64 OPT -245.64
carpo 10000 60 -177016.77 0.01 -175180.51 0.02 -174130.56
carpo 1000 60 -18100.04 0.02 -18300.05 0.03 -17718.95
carpo 100 60 -1966.74 0.04 -2045.31 0.10 -1848.37
hailfinder 10000 56 -502771.20 0.01 -500480.17 0.01 -497651.87
hailfinder 1000 56 -52473.96 OPT -52714.06 0.01 -52473.25
hailfinder 100 56 -6021.27 OPT -6019.47 OPT -6019.47
housing 506 14 -3295.40 OPT -3180.30 OPT -3080.14
insurance 10000 27 -134977.64 0.01 -135172.85 0.02 -132968.58
insurance 1000 27 -13991.96 0.01 -13919.09 0.00 -13887.35
insurance 100 27 -1694.77 0.00 -1687.68 0.00 -1686.23
kredit NA 18 -16695.67 OPT -16695.67 OPT -16695.67

feasibility heuristic that finds a feasible solution given
an infeasible one.

The feasibility heuristic starts by taking the solution of
current relaxation. Then it constructs a directed graph
in two different ways. First, by choosing for each node
a parent set with the highest value in the current solu-
tion and second by choosing for each node a parent set
with the highest local score given the node-parent set
variable has a non-zero value in the current solution.

Next, the heuristic considers both directed graphs sep-
arately and transforms them into feasible solutions. If
the resulting graph is cyclic the feasibility heuristic
uses the heuristic by Eades et al. (1993) to find a small
feedback arc set to be removed. After the removal
of the feedback arc set we have an DAG. Then, the
feasibility heuristic uses various heuristics, like mini-
mum fill-in and minimum cardinality, to find an upper
bound for tree-width of the DAG. If none of the tree-
width heuristics gives an upper bound that is smaller
than or equal to the desired tree-width, the feasibility
heuristic removes one arc from the DAG and tries the
tree-width heuristics again. This is repeated until the
solution is guaranteed to be feasible.

After the above procedure is completed the feasibility
heuristic has produced two DAGs whose tree-width is
at most the desired bound. The feasibility heuristic
finishes by choosing the DAG that has higher score.

5.3 Results

We tested our implementation using data sets pro-
vided by Cussens (2011). Cussens sampled sets of 100,
1000, and 10000 observations from various Bayesian
networks and computed BDe scores for node-parent set
pairs. He restricted the maximum number of parents
to 3 and further pruned the scores using the method
by de Campos et al. (2009). This helped to reduce
the number of variables in the ILP. To compare our
method to the existing methods for learning bounded
tree-width Bayesian networks, we tested our imple-
mentation also with the data sets adult and housing
used by Korhonen and Parviainen (2013).

All experiments were performed on a system dual CPU
(AMD Opteron 6220) Supermicro nodes with 64 GBs
RAM per node.

We learned Bayesian networks with maximum tree-
width 2 and 3. In our tests, we allocated maximum 12
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hours of CPU time and 4 Gb of memory to CPLEX
for each problem instance. If CPLEX did not find a
provably optimal solution before it ran out of either
time or memory, we picked the best feasible solution
from the solutions pool. We used the default param-
eters of CPLEX in all the tests; various alternative
parameter combinations were tested but while some
instances were solved faster the overall performance
was not enhanced. The results from these tests are
shown in Table 1. For comparison, we present also
the scores of optimal networks learned without setting
an upper bound for the tree-width. The table shows
the score of the best network found and the propor-
tional gap between the score of the best network and
the upper bound for the score. More formally,

gap =
|sFEAS − sUB |
|sFEAS |

,

where sFEAS is the score of the best feasible integer
solution found and sUB is the upper bound for the
score. The gap OPT means that a provably optimal
network was found. While an optimal network is not
always found, the gap is very small in most smaller
networks. However, the algorithm seems to struggle
with carpo. Another point to note is that the algo-
rithm seems to often have problems with convergence.
That is, even if the algorithm has found an optimal
network it takes a very long time to prove it. On the
other hand, sometimes the algorithm quickly finds a
nearly optimal solution but fails to find to optimum.
For example, in the case of Water with 100 observa-
tions and tree-width 2 it took about 23 minutes to find
the current solution and the upper bound that give a
gap 0.00002. However, the algorithm did not manage
to improve either the solution or the upper bound for
the next 11 hours and 37 minutes.

It should be noted that in some cases a network with
tree-width bound 2 has a higher score than a network
with tree-width bound 3 (see, e.g., carpo with 100
and 1000 observations). This indicates that CPLEX
may sometimes get stuck in suboptimal solutions.

6 DISCUSSION

In this paper, we presented an integer linear program-
ming algorithm for learning Bayesian networks with
bounded tree-width. The current work raises interest-
ing questions for future research.

Our algorithm scales up to networks that are signifi-
cantly larger than the networks learned by Korhonen
and Parviainen (2013). However, there are still some
room for improvement. Especially, even though our al-
gorithm usually finds good upper bounds and feasible
solutions quickly, there are issues concerning proving

optimality. Another possibility is to consider alter-
native formulations for tree-width and study whether
they are easier to solve.

The second line of research is to study the quality of
the results, that is, how well the bounded tree-width
structures approximate the true underlying distribu-
tion. There has been a small scale study on this topic
(Beygelzimer and Rish, 2003) but an extensive investi-
gation is missing. As the main motivation for learning
Bayesian networks with bounded tree-width is facili-
tating exact inference, it is essential to know how close
the inferred conditional probabilities are from the true
conditional probabilities. If one wants to infer fast,
there are two alternative approaches: one can learn a
network with bounded tree-width and do exact infer-
ence or one can learn a network without constraints on
tree-width and do approximate inference. Therefore,
an empirical study to characterize the conditions un-
der which each of these approaches is better is needed.
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