
Exact Learning of Bounded Tree-width Bayesian Networks

Janne H. Korhonen Pekka Parviainen
University of Helsinki

Dept. of Computer Science and HIIT
Helsinki, Finland

Royal Institute of Technology
CSC and Scilifelab
Stockholm, Sweden

Abstract

Inference in Bayesian networks is known to be
NP-hard, but if the network has bounded tree-
width, then inference becomes tractable. Not
surprisingly, learning networks that closely
match the given data and have a bounded
tree-width has recently attracted some atten-
tion. In this paper we aim to lay groundwork
for future research on the topic by studying
the exact complexity of this problem. We
give the first non-trivial exact algorithm for
the NP-hard problem of finding an optimal
Bayesian network of tree-width at most w,
with running time 3nnw+O(1), and provide an
implementation of this algorithm. Addition-
ally, we propose a variant of Bayesian net-
work learning with “super-structures”, and
show that finding a Bayesian network con-
sistent with a given super-structure is fixed-
parameter tractable in the tree-width of the
super-structure.

1 INTRODUCTION

1.1 Bayesian network learning

Bayesian networks are used widely to represent joint
probability distributions. Typically, the first step in
using a Bayesian network to model some problem is
learning the network from the input data. That is, we
have to learn a directed acyclic graph (DAG) and the
parameters associated with each variable, so that the
model describes the original data “well”. Learning the
parameters given a structure is an easy task, so in the
recent years research has mostly focused on learning
the structure. One of the main approaches to structure

Appearing in Proceedings of the 16th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2013, Scottsdale, AZ, USA. Volume 31 of JMLR: W&CP
31. Copyright 2013 by the authors.

learning is so-called score-based methods (Cooper and
Herskovits, 1992; Heckerman et al., 1995), where the
idea is to assign each possible structure a score based
on how well it fits the data and try to find a structure
that maximises the score.

In this paper, we study the Bayesian structure learning
as a combinatorial problem using an abstract score-
based framework. In this framework, we are given a
node set N of size n and for each node v ∈ N and each
parent set S ⊆ N \ {v} a local score fv(S). The goal
is to find a DAG A that maximises the sum

f(A) =
∑
v∈N

fv(Av) ,

where Av is the parent set of v, i.e., the set of nodes u
such that there is an arc from u to v in A. This prob-
lem is NP-hard (Chickering, 1996; Chickering et al.,
2004), the best known exact algorithm being a Bell-
man–Held–Karp style dynamic programming that runs
in time 2nnO(1) (Silander and Myllymäki, 2006).

1.2 Learning with bounded tree-width

Once the network has been learned, we want to use
it to compute conditional probabilities of some sets
of variables given some other sets of variables. This
inference problem in Bayesian networks is also NP-
hard (Cooper, 1990). However, if the network (or
more precisely its structure) has low tree-width, exact
inference is tractable even for large networks. Thus,
learning models of bounded tree-width enables us to
limit the time required for inference. Specifically, we
have a trade-off between the fit of the network and
the speed of inference, since if the “true” network has
high tree-width, bounding the tree-width can lead to
under-fitting.

More formally, given local scores fv as before and a
constant w, we want to find a DAG A that maximises
the score f(A) among the DAGs of tree-width at most
w. Here the tree-width of a DAG is defined as the
tree-width of its moralised graph (Elidan and Gould,
2008); the moralised graph of a DAG A is an undirected

Exact Learning of Bounded Tree-width Bayesian Networks

graph that includes an edge {u, v} ∈ E for every arc
uv ∈ A and an edge {u,w} ∈ E for every pair of arcs
uv ∈ A and wv ∈ A. Defined this way, the tree-width
of a network matches its inference complexity1.

While there have been some studies on learning undi-
rected models with bounded tree-width using approxi-
mation algorithms (Karger and Srebro, 2001; Srebro,
2001), heuristics (Bach and Jordan, 2002), and PAC-
learning (Chechetka and Guestrin, 2008), the corre-
sponding problem for Bayesian networks remains poorly
understood. The only result of this vein we are aware
of is a heuristic algorithm for learning bounded tree-
width Bayesian network structures by Elidan and Gould
(2008). Our main motivation for the work presented in
this paper is to fill this gap and lay groundwork for fu-
ture investigations of the topic. Specifically, we aim to
establish basic theoretical results for learning bounded
tree-width Bayesian network structures, especially in
the sense of exact algorithmics.

Unfortunately, learning Bayesian network structures
remains difficult when the tree-width is bounded. While
learning an optimal tree, i.e., a Bayesian network with
tree-width 1, can be done in polynomial time (Chow
and Liu, 1968), a straightforward reduction from a
corresponding result for Markov networks shows that
finding an optimal Bayesian network of tree-width at
most w is NP-hard for any fixed w ≥ 2; see Section 2.3.

1.3 Learning in exponential time

Since learning bounded tree-width Bayesian networks
is NP-hard, the natural question from the perspec-
tive of exact algorithmics is to study exponential-time
algorithms for the problem. As our main result, we
obtain a single-exponential time algorithm for bounded
tree-width Bayesian structure learning.
Theorem 1. Given a node set N of size n, an integer
w and scoring functions fv for each node v ∈ N , we can
find a DAG A with tree-width at most w maximising
score f(A) =

∑
v∈N fv(Av) in time 3nnw+O(1) and

space 2nnw+O(1).

The proof of Theorem 1 is given in Section 5.

Somewhat disappointingly we are not able to match the
2nnO(1) algorithm for unrestricted Bayesian network
structure learning. Indeed, it seems to us that the
added restriction of the bounded tree-width makes the
problem more challenging.

On the practical side, we have implemented the algo-
rithm of Theorem 1, and it works well for small n and

1To avoid confusion, we point out that this definition
differs from the definition of tree-width for directed graphs
given by Johnson et al. (2001).

w. We also experimented with using this implemen-
tation to find small bounded tree-width networks for
real-world data; see Section 6.

Although the exponentiality hinders the application of
the algorithm for all but a small number of nodes, we
argue that having even an exponential exact algorithm
for the problem is essential for further investigations
of the topic. Principally, it provides a baseline against
which approximation algorithms and heuristics can
be tested, and it may also prove to be useful as a
component of such algorithms. Furthermore, being
able to generate examples of optimal bounded tree-
width networks enables explorative studies of their
properties.

We also note that in the recent years there has been a lot
of interest in exponential time algorithms for learning
the structure of a Bayesian network (Ott and Miyano,
2003; Singh and Moore, 2005; Silander and Myllymäki,
2006) and related tasks, like computing posterior prob-
abilities of structural features (Koivisto and Sood, 2004;
Koivisto, 2006; Tian and He, 2009; Kang et al., 2010;
Parviainen and Koivisto, 2011). Most of the algorithms
run in 2nnO(1) time but some of them have running
time 3nnO(1) which matches our algorithm. In line
with our experiments, other algorithms with running
time 3nnO(1) been implemented and tested successfully
with networks of up to 20 nodes (Tian and He, 2009;
Kang et al., 2010; Parviainen and Koivisto, 2011).

1.4 Learning with super-structures

The dynamic programming algorithm of Theorem 1
implicitly contains a subroutine that, given an undi-
rected graph G, finds an optimal DAG whose moralised
graph is a subgraph of G. Indeed, this problem is fixed-
parameter tractable with regard to the tree-width of
the graph G, as formalised in the following theorem,
whose proof we give in Section 4.
Theorem 2. For any fixed w, given an n-vertex graph
G = (N,E) of tree-width at most w and scoring func-
tions fv for each node v ∈ N , we can find a DAG A
whose moralised graph is a subgraph of G maximising
the score in time and space O(n).

Specifically, the running time of our algorithm is
O
(
(w + 1)! · w · 3w · n

)
if we are given a suitable tree-

decomposition of G. As it is usual with algorithms
based on tree-decompositions, the bottle-neck is the
construction of a tree-decomposition from G; see Sec-
tion 2.1.

This observation is related to the super-structure ap-
proach for learning Bayesian networks, presented by
Perrier et al. (2008), where we are given an undirected
graph G, called the super-structure, and the goal is to

Janne H. Korhonen, Pekka Parviainen

find the highest-scoring DAG such that there is, for
each arc in the DAG, a corresponding undirected edge
in G, i.e. the skeleton of the DAG is a subgraph of the
super-structure. Recently Ordyniak and Szeider (2010)
have shown that in this setting, if both the tree-width
and the maximum degree of the super-structure are
bounded by constants, an optimal DAG can be found
in linear time. However, the tree-width of the super-
structure alone does not bound the running time of
the algorithm or the tree-width of the resulting DAG,
and Ordyniak and Szeider in fact show that learning
optimal Bayesian network with given super-structure is
W [1]-hard when the complexity parameter is the tree-
width of the super-structure. Intuitively, the reason
for this is that the tree-width of a DAG is defined to
be the tree-width of its moralised graph, and moral-
ising can introduce edges that are not present in the
super-structure.

2 PRELIMINARIES

2.1 Tree-width

For an undirected graph G = (V,E), we use the con-
vention that E is a set of two-element subsets of V . We
write {u, v} for an edge between nodes u and v. We
also denote n = |V |.

A tree-decomposition of an undirected graph G = (V,E)
is a pair (X, T), where X = {X1, X2, . . . , Xm} is a col-
lection of subsets of V and T is a tree on {1, 2, . . . ,m},
such that

1.
⋃m
i=1 Xi = V ,

2. for all edges {u, v} ∈ E there exist i with u ∈ Xi

and v ∈ Xi, and

3. for all i, j and k, if j is on the (unique) path from
i to k in T , then Xi ∩Xk ⊆ Xj .

The width of a tree-decomposition (X, T) is defined
as maxi |Xi| − 1. The tree-width of an undirected
graph G is the minimum width over all possible tree-
decompositions of G. In a sense, the tree-width of a
graph describes how close the graph is to a tree; graphs
of tree-width 1 coincide with trees. For a fixed w and
graph G with tree-width w, a tree-decomposition of
width w can be found in time O(n) (Bodlaender, 1996).

A nice tree-decomposition of a graph G = (V,E) is a
tree-decomposition (X, T) along with a fixed root node
r for T such that each node i ∈ {1, 2, . . . ,m} is either

1. a leaf with no children and |Xi| = 1,

2. a forget node that has one child j and Xi = Xj \
{v} for some v ∈ Xj ,

3. a introduce node that has one child j and Xi =
Xj ∪ {v} for some v /∈ Xj , or

4. a join node that has two children j and k and
Xi = Xj = Xk.

For fixed w, if we are given a tree-decomposition
of G with width w, we can construct a nice tree-
decomposition of width w and a linear number of nodes
in time O(n) (Kloks, 1994). Thus, if we are given a
graph of tree-width w, we can also obtain a nice tree-
decomposition of width w and a linear number of nodes
in time O(n), since some tree-decomposition of width
w can be found in linear time, as noted above.

We will in particular need the following basic property
of the tree-decompositions.
Lemma 3 (Separation Property). Let G = (V,E) be
a graph with tree-decomposition (X, T), and let i, j and
k be nodes in T such that j is on the path from i to k.
Then there is no edge {u, v} ∈ E with v ∈ Xi \Xj and
u ∈ Xk \Xj.

Finally, we give a well-known alternate characterisa-
tion of tree-width. The family of k-trees is defined
inductively as follows.

1. A (k + 1)-clique is a k-tree.

2. If G = (V,E) is a k-tree and C ⊆ V is a k-clique,
then graph obtained by adding a new vertex v and
an edge uv for each u ∈ C is a k-tree.

The k-trees are maximal graphs with tree-width k,
that is, a graph has tree-width k if and only if it is a
subgraph of some k-tree; see e.g. van Leeuwen (1990).

2.2 Bayesian Networks

Aside from the definitions given in Sections 1.2 and 1.4,
we will use the following conventions when discussing
Bayesian networks and the structure learning problem.

A directed graph is a pair (N,A), where N is the node
set and A ⊆ N × N is the arc set. We write uv for
arc (u, v) ∈ A. When there is no ambiguity about the
node set, we identify a directed graph by its arc set.
Throughout this paper, we denote n = |N |.

A node u is said to be a parent of node v if the arc set
contains an arc from u to v, that is, uv ∈ A. If u is a
parent of v, then v is a child of u. We denote the set
of the parents of v in A by Av.

As a consequence of the definition of the tree-width
of of a DAG (see Section 1.2), we have that if the
tree-width of a DAG is w, then the in-degree must be
bounded by w, as {v} ∪Av is a clique in the moralised

Exact Learning of Bounded Tree-width Bayesian Networks

graph M , and a graph with k-clique has tree-width at
least k − 1. The reverse does not hold, and a graph
with maximum in-degree ∆ can have tree-width larger
than ∆.

In the structure learning problem, we are given the
local scores fv(S) for each node v ∈ N and each parent
set S ⊆ N \ {v} as input. The output is a DAG that
has maximal score. As noted above, parent sets S of
size more than w are not eligible when we want the
DAG to have tree-width at most w. Thus, we assume
that the input consist only of the scores for parent sets
of size at most w and has size O

(
n
(
n
w

))
. For structure

learning with super-structures, we may further assume
that we are given scores only for parent sets that are
compatible with the super-structure, in which case the
input has size O(n2w). We will not, however, consider
the representation of the input in more detail, and
in the rest of the paper we will assume that we can
access scores fv(S) in constant time. This does not
have significant effect on the analysis.

Finally, we define functions f̂v by f̂v(S) =
maxT⊆S fv(T). That is, f̂v(S) is the highest local score
when the parents of node v are chosen from S. For
any set X, the values f̂v(S) for all sets S ⊆ X can
be computed from the values of fv in O

(
|X|2|X|

)
time

and O
(
2|X|

)
space using dynamic programming (Ott

and Miyano, 2003).

2.3 Hardness

Srebro (2000) has shown that the problem of finding a
subgraph of an input graph G with tree-width at most
w and maximum number of edges is NP-hard for any
fixed w ≥ 2. The NP-hardness of learning bounded
tree-width Bayesian network structures follows by a
straightforward reduction.
Theorem 4. Finding an optimal Bayesian network
structure with tree-width at most w under a given scor-
ing function is NP-hard for any fixed w ≥ 2.

Proof. Let G = (V,E) be an undirected graph. Let
N = V ∪E, and define a score function on N by setting
fe({v, u}) = 1 for each edge e = {v, u} ∈ E, and let
fv(S) = 0 for any other node v ∈ N and potential
parent set S ⊆ N \ {v}. This transformation can be
computed in polynomial time.

Now we note that there is a subgraph (V, F) of G with
|F | = m and tree-width at most w if and only if there
is a DAG D on N with f(D) = m and tree-width
at most w; furthermore, if we are given one, we can
compute the other in polynomial time. Since finding
the maximum bounded tree-width subgraph is known
to be NP-hard, the claim follows.

3 DECOMPOSING DAGS

In this section, we establish results that will be used to
prove the correctness of the algorithms we give later on.
The intuitive idea is that if (N,A) is a DAG of low tree-
width, then there is a small set X ⊆ N whose removal
will split A into two or more connected components.
We can exploit this property by finding optimal DAGs
that can act as these separate components, and then
“glue” these DAGs together at X. We now proceed to
formalise these ideas.

Let N be a set of nodes and let X ⊆ N with |X| = k.
For a permutation σ = σ1σ2 . . . σk of X and a set
S ⊆ X, we say that a DAG A is a (σ, S)-DAG on N if
the node set of A is N , it holds that A is compatible
with σ, that is, A ∪ {σpσp+1 : p = 1, 2, . . . , k − 1} is
acyclic, and for each v ∈ X \ S we have that Av = ∅.
For a (σ, S)-DAG A on N , we define the S-score of A
as fS(A) =

∑
v∈S∪(N\X) fv(Av). That is, the nodes in

X that are required to have empty parent sets do not
contribute to the score.

In the following, we assume that N is some node set,
andX, N1 andN2 are subsets ofN such thatN1∪N2 =
N and N1 ∩N2 = X. Furthermore, we assume that σ
is a permutation of X and S ⊆ X.
Lemma 5. Let Z ⊆ S. If A is a (σ, Z)-DAG on N1
and B is a (σ, S \ Z)-DAG on N2, then A ∪ B is a
(σ, S)-DAG on N . Furthermore, we have

fS(A ∪B) = fZ(A) + fS\Z(B) .

Proof. The claim follows almost directly from the defi-
nitions; the only non-trivial step to verify is that A∪B
is in fact acyclic. To see that A ∪B is acyclic, assume
that there is a directed cycle C in A∪B. Since both A
and B are acyclic, there must be a node σi on cycle C.
But since both A and C are compatible with σ, each
maximal segment of C that consists only of edges in A
or only of edges in B goes from a node σj to a node σ`
for j < `, and thus the cycle cannot return to σi.

For a (σ, S)-DAG A on N , we say that a decomposition
of A over N1 and N2 is a pair (B,C), where B is a
(σ, Z)-DAG on N1 and C is a (σ, S \ Z)-DAG on N2
such that A = B ∪ C and Z ⊆ S. Note that if A has
such a decomposition (B,C), then by Lemma 5 we
have fS(A) = fZ(B) + fS\Z(C).
Lemma 6. Suppose that A is an (σ, S)-DAG on N
and suppose there are no arcs in A between N1 \X and
N2\X, and no v ∈ N , u ∈ N1\X and w ∈ N2\X such
that uv ∈ A and wv ∈ A. Then there is a decomposition
of A over N1 and N2.

Proof. Let Z = {v ∈ S : Av ⊆ N1}. Then the
DAGs B = {uv : v ∈ Z ∪ (N1 \ X)} and C =

Janne H. Korhonen, Pekka Parviainen

{uv : v ∈ (S \ Z) ∪ (N2 \X)} clearly have the desired
properties.

Lemma 7. Suppose that A is a family of (σ, S)-DAGs
on N and that for each Z ⊆ S, we have that BZ is a
family of (σ, Z)-DAGs on N1 and CZ a family of (σ, Z)-
DAGs on N2. If each A ∈ A has a decomposition (B,C)
over N1 and N2 such that B ∈ BZ and C ∈ CS\Z for
some Z ⊆ S, and for each Z ⊆ S and DAGs B ∈ BZ
and C ∈ CS\Z it holds that B ∪ C ∈ A, then

max
A∈A

fS(A) = max
Z⊆S

(
max
B∈BZ

fZ(B) + max
C∈CS\Z

fS\Z(C)
)
.

Proof. Fix A ∈ A. Since A decomposes into B ∈ BZ
and C ∈ CS\Z for some Z ⊆ S, we have

fS(A) = fZ(B) + fS\Z(C)
≤ max
B∈BZ

fZ(B) + max
C∈CS\Z

fS\Z(C)

≤ max
Z⊆S

(
max
B∈BZ

fZ(B) + max
C∈CS\Z

fS\Z(C)
)
.

On the other hand, since B ∪ C ∈ A for all B ∈ BZ
and C ∈ CS\Z , there is a DAG in A with S-score

max
Z⊆S

(
max
B∈BZ

fZ(B) + max
C∈CS\Z

fS\Z(C)
)
.

4 LEARNING WITH
SUPER-STRUCTURES

We prove Theorem 2 first. The proof of this theorem
will act as a preliminary for the proof of Theorem 1 in
the next section.

To prove Theorem 2, we use dynamic programming
on the tree-decomposition of the underlying super-
structure. We will assume that parent sets that are
not compatible with the super-structure graph G have
score of −∞ and will thus not be picked by the algo-
rithm. That is, if for v ∈ V we have that S ⊆ V \ {v}
contains a node u such that {u, v} /∈ E, or nodes u and
s such that {u, s} /∈ E, then fv(S) = −∞.

Let G = (V,E) be the super-structure graph and let
(X, T) be a nice tree-decomposition of G with root r
and X = {X1, X2, . . . , Xm}. For 1 ≤ i ≤ m, we denote
by Vi the union of bags below Xi in the tree.

Intuitively, our algorithm will proceed by computing
for each node i in T an optimal (σ, S)-DAG on Vi for
each permutation σ of Xi and S ⊆ Xi. We will show
that these can be computed by starting from the leaves
of T and proceeding upwards in the tree. Finally, in
the root r, we will have the optimal (σ,Xi)-DAG on
V for each permutation of Xi; taking the one with
the best score gives us the desired optimal Bayesian
network.

To formalise the intuition given above, let i ∈
{1, 2, . . . ,m} and let k = |Xi|. For a permutation
σ = σ1σ2 . . . σk of Xi and S ⊆ Xi, we define

gi(σ, S) = max
A

fS(A) , (1)

where A ranges over (σ, S)-DAGs on Vi such that the
moralised graph of A is a subgraph of G[Vi]. It follows
immediately from this definition that the best DAG
on V has score maxσ gr(σ,Xr), where σ ranges over
the permutations of the root bag Xr. Furthermore,
we note that it suffices to show how these scores can
be computed, as the optimal DAG can then be recov-
ered using standard techniques; see e.g., Silander and
Myllymäki (2006).

The values gi(σ,Xi) can be computed using dynamic
programming on the tree-decomposition, starting from
the leaf nodes and going up in the tree. There are four
cases to consider, depending on the type of node Xi.

Leaf: Xi = {v} for v ∈ N . Then we have gi(v, ∅) = 0
and gi(v, {v}) = fv(∅).

Forget: Node i has a child j and Xi = Xj \ {v} for
v ∈ Xj . Now Vi = Vj , and directly by definition we
have that

gi(σ, S) = max
ητ=σ

gj(ηvτ, S ∪ {v}) (2)

for all permutations σ of Xi and S ⊆ Xi. Computing
(2) directly for all σ and S takes O(k2kk!) time.

Introduce: Node i has a child j and Xi = Xj ∪ {v}
for v /∈ Vj . First, we compute values f̂u(S) for u ∈
Xi and S ⊆ Xi \ {u}, which takes O(k2k) time as
noted in Section 2.2. Now suppose that σ = ηvτ is a
permutation of Xi and S ⊆ Xi. Denote by Pσ,u the
set of elements of Xi that appear before u in σ. Then
we have that

gi(σ, S) = max
Z⊆S\{v}

(
gj(ητ, Z) +

∑
u∈S\Z

f̂u(Pσ,u)
)
. (3)

To verify that (3) is correct, consider any (σ, S)-DAG A
on Vi. Since by Lemma 3 there are no edges {u, v} ∈ E
for u ∈ Vi \Xi, Lemma 6 implies that A interpreted as
a (ητ, S \ {v})-DAG has a decomposition (B,C) over
Vi \ {v} and Xi, where B is a (ητ, Z \ {v})-DAG on
Vi\{v} and C is a (σ, S\Z)-DAG onXi for some Z ⊆ S.
Furthermore, the moralised graphs of both B and C are
subgraphs of G. Finally, we note that the maximum
score for a (σ, Z)-DAG on Xi is

∑
u∈Z f̂u(Pσ,u). The

correctness of (3) now follows from Lemma 7.

Evaluating (3) for all σ and S can be done in time
O(k3kk!).

Join: Node i has children j and `, and Xi = Xj = X`.
By Lemma 3, there are no edges between Vj \Xi and

Exact Learning of Bounded Tree-width Bayesian Networks

V` \ Xi in G. Thus any (σ, S)-DAG A on Vi has a
decomposition (B,C) over Vj \Xi and V` \Xi. Since
moralised graphs of both B and C are subgraphs of G,
Lemma 7 implies that

gi(σ, S) = max
Z⊆S

(
gj(σ, Z) + g`(σ, S \ Z)

)
. (4)

Evaluating (4) for all σ and S takes O(3kk!) time.

Summing the running times over all nodes in T , we
obtain the following.
Theorem 8. Given a graph G, a nice tree-
decomposition (X, T) of G, and scoring functions fv
for each node v, we can find a DAG A whose moralised
graph is a subgraph of G maximising the score in time
O
(
(w + 1)! ·w · 3w · n

)
, where w is the tree-width of G.

As noted in Section 2.1, a nice tree-decomposition of
the super-structure graph G can be obtained from G in
O(n) time. Thus, we obtain Theorem 2 as a corollary.

5 EXACT LEARNING WITH
BOUNDED TREE-WIDTH

We will now proceed to prove Theorem 1 by giving
a dynamic programming algorithm for the problem.
This algorithm is based on the same ideas as the
super-structure algorithm in Section 4, but here we
perform dynamic programming over all possible tree-
decompositions of width w. In the following, let w be
a fixed tree-width bound.

As noted in Section 2.1, each graph of tree-width w is
a subgraph of a w-tree. It follows that each graph G =
(V,E) of tree-width w has a rooted tree-decomposition
(X, T) such that each bag Xi has size w + 1, and for
adjacent i and j we have that |Xi ∩Xj | = w. By
applying an obvious transformation to (X, T), we have
that G also has a rooted tree-decomposition (Y, Q) such
that each bag has size w + 1 and each node i in Q is
either

1. a leaf with no children,

2. a swap node that has one child j such that Yi =
(Yj \ {u}) ∪ {v} for some u ∈ Yj and v /∈ Yj , or

3. a join node that has two children j and ` such
that Yi = Yj = Y`.

Furthermore, by the construction we can assume that
for a join node i with children j and `, both Vj
and V` contain vertices not in Xi. We will call
a tree-decomposition satisfying these conditions fat.
Thus, each graph G of tree-width w has a fat tree-
decomposition of width w.

Let now N be a node set and let X ⊆ N . For a permu-
tation σ of X and S ⊆ X, we say that a (σ, S)-DAG A
on N is rooted if A has a fat tree-decomposition with
root r and Xr = X. Furthermore, we say that A is join-
rooted or swap-rooted if there is a fat tree-decomposition
where the root node is of the corresponding type.

Now for X ⊆ N with |X| = w + 1, a permutation σ of
X, and sets S ⊆ X and M ⊇ X, we want to compute

g(σ, S,M) = max
A

fS(A) ,

where A ranges over rooted (σ, S)-DAGs on M with
tree-width at most w. Computing these values is suf-
ficient for finding an optimal DAG of tree-width w,
as the optimal DAG is rooted at some X ⊆ N with
|X| = w + 1, thus has score maxX,σ g(σ,X,N), where
X ranges over (w + 1)-subsets of N and σ ranges over
permutations of X.

We will now show that these values can be computed
using dynamic programming, starting from setsM ⊆ N
with |M | = w + 1. For any set M with |M | = w + 1
and a permutation σ of M , we note that a (σ, S)-DAG
A on M has a fat tree-decomposition whose root r is a
leaf node with Xr = M . Thus, any (σ, S)-DAG on M
is rooted, and we have that

g(σ, S,M) =
∑
u∈S

f̂u(Pσ,u) ,

as σ completely specifies the order of nodes in any
(σ, S)-DAG on M .

On the other hand, if M ⊆ N with |M | > w + 1, then
the optimal rooted (σ, S)-DAG on M can be either
join-rooted or swap-rooted. Therefore, we compute
values

J(σ, S,M) = max
B

fS(B) ,

where B ranges over join-rooted (σ, S)-DAGs on M
with tree-width at most w, and

K(σ, S,M) = max
C

fS(C) ,

where C ranges over swap-rooted (σ, S)-DAGs on M
with tree-width at most w. Then we have that

g(σ, S,M) = max
{
K(σ, S,M), J(σ, S,M)

}
.

The one special case is the setsM with |M | = w+2, as
then there cannot be a join-rooted (σ, S)-DAG on M .
Thus, for M with |M | = w + 2, we have g(σ, S,M) =
K(σ, S,M).

Join. First, we show how values J(σ, S,M) can be
computed. In the following, letM1 andM2 be sets such
that M1 ∪M2 = M and M1 ∩M2 = X. Furthermore,
assume that M1 6= X and M2 6= X.

Janne H. Korhonen, Pekka Parviainen

Lemma 9. If A is a rooted (σ, Z)-DAG on M1 and
B is a rooted (σ, S \ Z)-DAG on M2, then A ∪B is a
join-rooted (σ, S)-DAG on M . Moreover, if A and B
have tree-width at most w, so does A ∪B.

Proof. The claim follows from Lemma 5 and from
the observation that we can obtain the desired
tree-decomposition for A ∪ B by adding the tree-
decompositions of A and B as the children of a new
root node r with Xr = X.

Lemma 10. If A is a join-rooted (σ, S)-DAG on M ,
then there are setsM1 andM2 such thatM1∪M2 = M ,
M1 ∩ M2 = X, M1 6= X, M2 6= X and A has a
decomposition (B,C) over M1 and M2 such that both
B and C are rooted at X. Moreover, if A has tree-width
at most w, so does B and C.

Proof. Let (X, T) be a tree-decomposition of A with
root r such that Xr = X and r is a join node with
children i and j. Let M1 = Vi and M2 = Vj . Now by
Lemma 3 and Lemma 6, A has decomposition (B,C)
over M1 and M2. Noticing that the subtree of (X, T)
rooted at i is a tree-decomposition of B and the sub-
tree of (X, T) rooted at j is a tree-decomposition of
C completes the proof, as both of these have width w
and root bag X.

For fixed M1 and M2, Lemma 9 implies that we can
apply Lemma 7 similarly as in the join case of the
super-structure algorithm, obtaining that the S-score
of the best join-rooted (σ, S)-DAG that decomposes
over M1 and M2 is

h(M1,M2) = max
Z⊆S

(
g(σ, Z,M1) + g(σ, S \ Z,M2)

)
.

As the optimal join-rooted (σ, S)-DAG on M decom-
poses over some M1 and M2 by Lemma 10, we have
that

J(σ, S,M) = max
M1∩M2=X
M1∪M2=M
M1,M2 6=X

h(M1,M2) . (5)

Evaluating (5) directly for fixed σ, S and M can be
done in time

O
(
n · 2|M\X| · 2|S|

)
= O

(
n · 2|M |+|S|−(w+1)) .

Swap. We now show how values K(σ, S,M) can be
computed. The following lemmas are analogous to
Lemmas 9 and 10, and we omit their proofs.
Lemma 11. Let Y ⊆M with |Y | = w, and u ∈M \Y
and v /∈M . Furthermore, let σ = ηvτ be a permutation
of Y ∪ {v} and γ = ζuρ be a permutation of Y ∪ {u}
such that ητ = ζρ. If A is a (σ, S1)-DAG on Y ∪ {v}
and B is a rooted (γ, S2)-DAG on M , then A ∪B is a
swap-rooted (σ, S1 ∪ S2)-DAG on M ∪ {v}. If B has
tree-width at most w, then so does A ∪B.

Lemma 12. Let A be a swap-rooted (σ, S)-DAG on
M . Then there are nodes v ∈ X and u ∈M \X such
that, when we let σ = ηvτ and Y = (X \ {v}) ∪ {u},
there is a permutation γ = ζuρ of Y with ζρ = ητ ,
a (σ, S1)-DAG B on X and a rooted (γ, S2)-DAG C
on M \ {u} such that A = B ∪ C. Furthermore, the
tree-width of C is at most the tree-width of A.

For Y ⊆ M with |Y | = w and a permutation γ of Y ,
we first compute an auxiliary function F defined by

F (γ, Z,M) = max
A

fZ(A) ,

where A ranges over rooted (σ, S)-DAGs on M such
that σ is a permutation of a set X ⊆ M , for some
v ∈ M \ Y we have X = Y ∪ {v} and S = Z ∪ {v},
and σ = ηvτ with ητ = γ. It follows directly from the
definition that we can evaluate F as

F (γ, Z,M) = max
v∈M\Y

max
ητ=γ

g
(
ηvτ, Z ∪ {v},M

)
. (6)

For a fixed v ∈ X, applying Lemmas 11 and 7 in a
similar fashion as in the introduce case of the super-
structure algorithm, we have that the maximum score
of a swap-rooted (σ, S)-DAG on M with tree-width at
most w such that the new node in the root bag is v is

κ(v) = max
Z⊆S\{v}

(
F (σ, Z,M \{v}) +

∑
u∈S\Z

f̂u(Pσ,u)
)
.

It then follows from Lemma 12 that the maximum score
can be obtained by optimising over v, that is, we have

K(σ, S,M) = max
v∈X

κ(v) . (7)

Finally, we note that evaluating (6) for fixed γ, Z and
M can be done in time O

(
w2), and when the required

values of F have been evaluated beforehand, (7) can
be evaluated in time O

(
2|S|w

)
.

The total number of tuples (σ, S,M) for all X ⊆ N is
(w + 1)!

(
n

w+1
)
2n. By summing the running times over

all these tuples and estimating
(
n

w+1
)
≤ nw+1/(w+ 1)!,

we have that the total running time of our exact al-
gorithm is 3nnw+O(1). Furthermore, we note that we
need to store all values of g during the dynamic pro-
gramming, meaning that the total space requirement
of the algorithm is 2nnw+O(1). Thus, we have proven
Theorem 1.
Remark 13. It is possible to recover a tree-
decomposition for width w for the optimal DAG with-
out extra computational cost in an obvious way.
Remark 14. By omitting the join step from the al-
gorithm described in this section we can obtain a
2nnw+O(1) time algorithm for finding networks of
bounded path-width.

Exact Learning of Bounded Tree-width Bayesian Networks

6 EXPERIMENTS

To complement our theoretical results, we constructed
a proof-of-concept implementation of the dynamic pro-
gramming algorithm of Theorem 1 and tested it on
real-world data sets2. In this section, we will discuss
the performance of our implementation and provide
examples of bounded tree-width networks on real-world
data sets.

The implementation was made in Python, using cython
compiler3 to compile the most computationally demand-
ing parts of the code to C, and the experiments were run
under Linux on blade servers with 2.53-GHz processors
and 32 GB of memory. We tested our implementation
on two datasets, Adult (15 variables, 32,561 samples)
and Housing (14 variables, 506 samples), downloaded
from the UCI machine learning repository (Frank and
Asuncion, 2010). We discretised all variables into bi-
nary variables, and as the local scores, we used BDeu
scores with equivalent sample size 1.

Finding optimal networks of tree-width at most 2 with
our algorithm took 13,086 and 3,220 seconds for Adult
and Housing respectively; the reported times are user
times measured using time and they include the dy-
namic programming itself and the recovery of the op-
timal network structure, but exclude the time needed
for computing the local scores. We also benchmarked
the implementation on various variable subsets of the
aforementioned datasets with w = 1, w = 2, and w = 3,
and the results were in line with theoretical bounds
of Theorem 1. For n = 14 and w = 3, our implemen-
tation ran into problems with memory requirements,
but this is mostly caused by an inefficient choice of
data structure for storing dynamic programming values
indexed by triples (σ, S,M), and these limits should
be circumventable by a good choice of data structures
and some careful algorithm engineering.

An example of optimal bounded tree-width networks
for Housing found is shown in Figure 1. The network
with unbounded tree-width is quite complex, with tree-
width at least 6, so the networks with tree-width 1
and 2 are rough approximations. Indeed, the optimal
network has score -3080, while the scores for bounded
tree-width networks are -3295 for w = 2 and -3479 for
w = 1. The optimal network with tree-width 2 has 23
arcs, meaning that is relatively dense, as a tree-width
2 network on 14 nodes can have at most 25 arcs. The
most connected node is NOX, with 9 neighbours, in
contrast to the optimal unbounded network, where
NOX has only 5 neighbours. This hints that the more
complex structure may allow representing dependencies

2The implementation is available at http://www.cs.
helsinki.fi/u/jazkorho/aistats-2013/.

3http://www.cython.org

indirectly. Overall, however, we do not feel that these
examples suggest any hitherto unknown features of
bounded tree-width networks as a model class. A more
thorough study is warranted in the future.

Acknowledgements

We thank Mikko Koivisto for useful comments. The
research was supported in part by the Helsinki Doctoral
Programme in Computer Science - Advanced Comput-
ing and Intelligent Systems (J.K.) and by the Finnish
Doctoral Programme in Computational Sciences (P.P.).

(a)

PTRATIO

BCRIM

ZNINDUS

CHAS

NOX

RM

AGE

RAD

TAXDISLSTATMEDV

(b)

PTRATIO

BCRIM

ZN INDUS

CHAS

NOX

RM

AGE

RAD

TAX

DIS

LSTAT

MEDV

PTRATIO

B

CRIM

ZN INDUS

CHAS

NOX

RM

RAD

TAX

DIS

LSTAT

MEDV

AGE

(c)

Figure 1: An optimal network for Housing for tree-
width bound (a) w = 1, (b) w = 2, and (c) unbounded
tree-width.

http://www.cs.helsinki.fi/u/jazkorho/aistats-2013/
http://www.cs.helsinki.fi/u/jazkorho/aistats-2013/
http://www.cython.org

Janne H. Korhonen, Pekka Parviainen

References
F. R. Bach and M. I. Jordan. Thin junction trees. In
Advances in Neural Information Processing Systems
14 (NIPS). MIT Press, 2002.

H. L. Bodlaender. A linear time algorithm for find-
ing tree-decompositions of small treewidth. SIAM
Journal of Computing, 25:1305–1317, 1996.

A. Chechetka and C. Guestrin. Efficient principled
learning of thin junction trees. In Advances in Neural
Information Processing Systems 20 (NIPS), pages
273–280. MIT Press, 2008.

D. M. Chickering. Learning Bayesian networks is NP-
Complete. In Learning from Data: Artificial Intel-
ligence and Statistics V, pages 121–130. Springer-
Verlag, 1996.

D. M. Chickering, D. Heckerman, and C. Meek. Large-
sample learning of Bayesian networks is NP-Hard.
Journal of Machine Learning Research, 5:1287–1330,
2004.

C. K. Chow and C. N. Liu. Approximating dis-
crete probability distributions with dependence trees.
IEEE Transactions on Information Theory, 14(3):
462–467, 1968.

G. F. Cooper. The computational complexity of prob-
abilistic inference using Bayesian belief networks.
Artificial Intelligence, 42:393–405, 1990.

G. F. Cooper and E. Herskovits. A Bayesian method
for the induction of probabilistic networks from data.
Machine Learning, 9:309–347, 1992.

G. Elidan and S. Gould. Learning bounded treewidth
Bayesian networks. Journal of Machine Learning
Research, 9:2699–2731, 2008.

A. Frank and A. Asuncion. UCI machine learning
repository, 2010.

D. Heckerman, D. Geiger, and D. M. Chickering. Learn-
ing Bayesian networks: The combination of knowl-
edge and statistical data. Machine Learning, 20(3):
197–243, 1995.

T. Johnson, N. Robertson, P.D. Seymour, and
R. Thomas. Directed tree-width. Journal of Combi-
natorial Theory, Series B, 82(1):138–154, 2001.

E. Y. Kang, I. Shpitser, and E. Eskin. Respecting
Markov equivalence in computing posterior proba-
bilities of causal graphical features. In 24th AAAI
Conference on Artificial Intelligence (AAAI), pages
1175–1180. AAAI Press, 2010.

D. Karger and N. Srebro. Learning Markov networks:
Maximum bounded tree-width graphs. In 12th ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 392–401, 2001.

T. Kloks. Treewidth: computations and approximations.
Springer, 1994.

M. Koivisto. Advances in exact Bayesian structure
discovery in Bayesian networks. In 22nd Conference
on Uncertainty in Artificial Intelligence (UAI), pages
241–248. AUAI Press, 2006.

M. Koivisto and K. Sood. Exact Bayesian structure
discovery in Bayesian networks. Journal of Machine
Learning Research, 5:549–573, 2004.

S. Ordyniak and S. Szeider. Algorithms and complexity
results for exact Bayesian structure learning. In 26th
Conference on Uncertainty in Artificial Intelligence
(UAI), pages 8–11, 2010.

S. Ott and S. Miyano. Finding optimal gene networks
using biological constraints. Genome Informatics,
14:124–133, 2003.

P. Parviainen and M. Koivisto. Ancestor relations
in the presence of unobserved variables. In Euro-
pean Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases
(ECML PKDD), pages 581–596. Springer, 2011.

E. Perrier, S. Imoto, and S. Miyano. Finding optimal
Bayesian network given a super-structure. Journal
of Machine Learning Research, 9:2251–2286, 2008.

T. Silander and P. Myllymäki. A simple approach
for finding the globally optimal Bayesian network
structure. In 22nd Conference on Uncertainty in
Artificial Intelligence (UAI), pages 445–452. AUAI
Press, 2006.

A. P. Singh and A. W. Moore. Finding optimal
Bayesian networks by dynamic programming. Tech-
nical Report CMU-CALD-05-106, Carnegie Mellon
University, June 2005.

N. Srebro. Maximum likelihood Markov networks: An
algorithmic approach. Master’s thesis, Massachusetts
Institute of Technology, 2000.

N. Srebro. Maximum likelihood bounded tree-width
Markov networks. In 17th Conference on Uncertainty
in Artificial Intelligence (UAI), pages 504–511. AUAI
Press, 2001.

J. Tian and R. He. Computing posterior probabilities
of structural features in Bayesian networks. In 25th
Conference on Uncertainty in Artificial Intelligence
(UAI), pages 538–547. AUAI Press, 2009.

J. van Leeuwen. Graph algorithms. In Handbook of
theoretical computer science, Vol. A, pages 525–631.
Elsevier, 1990.

	INTRODUCTION
	Bayesian network learning
	Learning with bounded tree-width
	Learning in exponential time
	Learning with super-structures

	PRELIMINARIES
	Tree-width
	Bayesian Networks
	Hardness

	DECOMPOSING DAGS
	LEARNING WITH SUPER-STRUCTURES
	EXACT LEARNING WITH BOUNDED TREE-WIDTH
	EXPERIMENTS

