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Abstract. Bayesian networks (BNs) are an appealing model for causal and non-
causal dependencies among a set of variables. Learning BNs from observational
data is challenging due to the nonidentifiability of the network structure and
model misspecification in the presence of unobserved (latent) variables. Here,
we investigate the prospects of Bayesian learning of ancestor relations, includ-
ing arcs, in the presence and absence of unobserved variables. An exact dynamic
programming algorithm to compute the respective posterior probabilities is de-
veloped, under the complete data assumption. Our experimental results show that
ancestor relations between observed variables, arcs in particular, can be learned
with good power even when a majority of the involved variables are unobserved.
For comparison, deduction of ancestor relations from single maximum a pos-
teriori network structures or their Markov equivalence class appears somewhat
inferior to Bayesian averaging. We also discuss some shortcomings of applying
existing conditional independence test based methods for learning ancestor rela-
tions.

1 Introduction

Directed acyclic graphs (DAGs) provide a convenient formalism for representing re-
lationships among a set of variables in terms of conditional independencies (CIs) [17,
18]. To enable quantitative reasoning, a DAG is often attached to a probability mea-
sure that obeys exactly the CIs represented by the DAG. While the probability measure
alone would of course suffice for probabilistic inference on the variables, the DAG
contains additional structure that supports particularly causal interpretations: an arc be-
tween two variables represents a direct cause–effect relationship. The pair of the DAG
and the measure is sometimes called a Bayesian network; the modifier “Bayesian” sug-
gests a degree-of-belief interpretation of probability, which is applicable also when,
for instance, the causal mechanisms are believed to be deterministic but just unknown
to the modeller. Often a single Bayesian network is used for simultaneous modelling
of several “similarly behaving” vectors of variables; then a node of the DAG corre-
sponds to several random variables that are often treated as observations. If the nodes
are observed, that is, the values of the respective random variables are known, standard
principles of statistical inference can be implemented to derive more or less uncertain
conclusions about the Bayesian network model, especially the DAG.
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While automatic construction, or learning, of such DAGs from observational data
is desirable, the task is notoriously challenging. First, a set of CIs can be represented
by a number of different DAGs that form a so-called Markov equivalence class. Thus,
the assumed “data generating DAG” cannot be identified by the represented CIs only.
Second, if there are unobserved nodes at work, it may be that no DAG on the observed
nodes can represent exactly the CIs among them. Then, the DAG model is misspecified
in a way that directly affects the end result of statistical inference: the DAG. Third,
the combinatorial and constrained nature of the DAG model brings major challenges
concerning modeling complexity and, in particular, computational complexity.

To address these challenges, the art of learning DAGs from data has been devel-
oped in two rather distinct directions. Constraint-based methods [17, 18] rely on testing
CIs. While the approach is not particularly suitable for importing prior knowledge, nor
for efficient use of data, nor for managing nonidentifiability issues, it has given arise
to a profound theory for dealing with unobserved variables. On the other hand, score-
based methods [1, 11], particularly Bayesian ones [9, 15], excel in flexibility and statis-
tical efficiency in the translation of what was known prior the observations to what is
known a posteriori, including a proper treatment of nonidentifiability. For example, in
the Bayesian approach there is no need to infer a single maximum a posteriori (MAP)
DAG or its Markov equivalence class when there are many other almost equally good
DAGs—instead, one may report structural features, e.g., arcs, that have a high poste-
rior probability. As a drawback, it seems difficult to extend the Bayesian approach to
handle the issue of unobserved nodes in a computationally efficient manner. Indeed, the
score-based methods are often applied ignoring unobserved nodes altogether: either one
refuses to make any conclusions, especially causal, about the DAG; or, one makes such
conclusions at an unquantified risk of erroneous claims. While there are some notable
exceptions that employ various score-driven heuristics to discover unobserved nodes
[3–5, 8], principled methods are yet to be developed.

Motivated by these concerns, this paper investigates the potential of Bayesian learn-
ing of structural features of DAGs on the observed nodes only. Are there structural fea-
tures that can be reliably learned from observational data, even if there may be some
unobserved nodes at work? We find this question highly relevant and interesting, since
the popular score-based methods for structure learning ignore unobserved nodes, which,
however, are expected to be present in typical practical scenarios.

As a natural candidate for such a structural feature we consider ancestor relations.
A node s is an ancestor of another node t if there is at least one directed path from s to
t. An arc from s to t can be viewed as a special case of ancestor relations. The idea of
learning ancestor relations from data is, of course, not new. Spirtes et al. [19] investigate
constraint-based learning of ancestor relations using the FCI algorithm in a small-case
empirical study. Their results suggest that reliable learning of ancestor relations is pos-
sible in the presence of unobserved nodes; however, direct comparison to our methods
is not reasonable, as the predictions by FCI are unquantified and predictions are not
necessarily made for all pairs of nodes. A Bayesian treatment is given by Friedman and
Koller [9]: under the supposition that there are no unobserved nodes, DAGs are sam-
pled (via node orderings) from their posterior distribution using a Markov chain Monte
Carlo simulation and the posterior probabilities of ancestor relations, also called path
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features, are estimated based on the sampled DAGs; based on the posterior probabili-
ties, the ancestor relation is either claimed to hold or not to hold, potentially depending
on the relative costs of making incorrect positive or negative claims.

Our present work contributes to this line of research by (a) giving a dynamic pro-
gramming algorithm that computes the exact posterior probabilities of ancestor rela-
tions and by (b) studying the statistical power of learning such relations in the presence
of unobserved nodes. From a computational point of view, ancestor relations present a
new algorithmic challenge, as they do not fall in the class of modular features [9, 15];
see also a recent discussion by Tian et al. [21]. As can be expected, the computational
complexity of the exact algorithm is exponential; the algorithm runs in O(3nn2) time
and O(3n) space on n-node instances. While such exponential complexity, of course,
renders the algorithm computationally feasible only for relatively small instances, one
should note that such moderately exponential time algorithms, that is, algorithms whose
base constant is quite small, have attracted substantial interest in the context of Bayesian
networks; see, e.g., Tian and He [20] and Kang et al. [12]. Both our algorithm and the
power study assume that the prior over DAGs is of a restricted form, namely order-
modular in the sense of Koivisto and Sood [15]; see also Friedman and Koller [9]. An
order-modular prior generally assigns different prior probabilities to different DAGs
within a Markov equivalence class. Compared to the uniform prior, this is, however,
neither a disadvantage nor an advantage in general (besides the computational advan-
tage), since the modeller’s subjective prior may well be better represented with an order-
modular prior than with the uniform prior. We also stress that, while our approach is
fully Bayesian, the model is misspecified (does not fully represent the modeller’s be-
liefs regarding unobserved nodes). Thus, the present work should be viewed as a study
of the robustness of Bayesian averaging to model misspecification.

The remainder of the paper is structured as follows. We begin in Section 2 by re-
viewing a modular Bayesian network model [9, 15]. Then we give a dynamic program-
ming algorithm for exact computation of the target posterior probabilities. Section 3 re-
ports on empirical results concerning the statistical efficiency of learning ancestor rela-
tions and directed or undirected arcs with a varying number of observed nodes and data
points per node. As an obvious (heuristic) alternative to Bayesian averaging, we also
consider the deduction of ancestor relations from single MAP DAGs or their Markov
equivalence classes. We also report on and discuss results obtained by the constraint-
based algorithm, FCI [19] Finally, we summarize in Section 4.

2 Bayesian Discovery of Ancestor Relations

Our Bayesian network model relates a DAG on n nodes with m random variables
per node (often treated as the observations or data; see below) by defining a joint
probability measure on them.1 Without any loss in generality we let the node set be
N = {1, 2, . . . , n} and identify a DAG with its arc set A ⊆ N ×N ; the set of parents
of node v is Av = {u : uv ∈ A}. If a DAG contains a directed path from u to v, then

1 Note that while the m variables will be independent and identically distributed given a fully
specified model, a Bayesian model also includes priors over the parameters and operates on
exchangeability, not on independence.
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u is called an ancestor of v, and v a descendant of u. With each node v we associate a
sequence of random variables Dv = Dv1Dv2 · · ·Dvm; we write D for D1D2 · · ·Dn.
A joint probability measure p(A,D) is composed as p(A,D) = p(A)p(D|A) with the
following structure. By standard interpretation of conditional independencies on a DAG
we have

p(D|A) =
∏
v∈N

p(Dv|DAv
, Av) ;

for our purposes it is irrelevant how the local conditional measures p(Dv|DAv , Av) are
further specified. For computational convenience, we define an order-modular prior for
the DAG A. To this end, the joint prior of the DAG A and a linear order L ⊆ N × N
on N is specified by

p(A,L) =
∏
v∈N

ρv(Lv)qv(Av) ,

where Lv = {u : uv ∈ L} consists of the predecessors of v in L and ρv and qv are non-
negative functions. The prior for the DAG is obtained by marginalizing the joint prior,
that is, p(A) =

∑
L⊇A p(A,L). Note that the sum is over all topological orderings of

the DAG and that the set inclusion notation is valid (L is a superset ofA). Note also that
in practice the functions need to be specified only up to some normalization constant,
e.g., ρv(Lv) ∝ 1 and qv(Av) ∝ 1/

(
n−1
|Av|
)
, as the normalization constant will cancel in

the quantities of our interest.
We consider a setting where the values of D, called the data, are observed, and

we are interested in the posterior probability that the DAG A contains some specified
structural feature. We will focus on two kinds of events that relate two nodes: uv is an
arc in A, denoted u→v; s is an ancestor of t in A, denoted s; t.

2.1 Computation

From an algorithmic point of view, it is convenient to compute the posterior probability
of a structural feature f(A) given the dataD as the ratio p(f(A), D)/p(D). Letting f be
a 0–1-valued indicator function, we have p(f(A), D) =

∑
A f(A)p(D|A)p(A), where

the sum is over all DAGs onN . Koivisto and Sood [15] show that if f(A) factorizes into
a product of family-wise indicators fv(Av), then the probabilities can be computed by
dynamic programming (DP) across the node subsets of N in time O(n22n) and space
O(n2n); furthermore, the arc events u→v can be handled simultaneously for all the
n(n− 1) node pairs uv within the same bounds [14].

The computation of the posterior probabilities of ancestor–descendant relationships
seems more challenging, as the existence of directed path between two fixed nodes is a
global property that does not factorize into independent local properties. We next give
a DP algorithm that for every node subset S computes its contribution to the target
probability, p(s; t,D), assuming the nodes in S are the first |S| nodes in the linear
order L; the contribution is a sum over all possible DAGs, AS , on the node set S. The
key difference to the existing DP algorithms for arc probabilities or for the maximum
posterior probability is that, aside from the set S, we need to keep a handle on the nodes
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in S that are descendants of the source node s. To this end, we define a set T ⊆ S such
that t ∈ T if and only if s is an ancestor of t or t = s. Thus, every DAG on S determines
exactly one such set T ⊆ S.

Furthermore, for sets S and T ⊆ S and a linear order LS ⊆ S×S on the respective
node set S ⊆ N , we use the shorthand

A(LS , S, T ) = {AS ⊆ LS : ∀v ∈ S (s;v in AS iff v ∈ T ) } ;

in words,A(LS , S, T ) contains a particular DAG AS on S if and only if AS is compat-
ible with LS and AS contains a path from s to every node v ∈ T , and not to any other
node in S.

Our dynamic programming algorithm will compute a function gs(S, T ), defined for
all S ⊆ N and T ⊆ S by

gs(S, T ) =
∑
LS

∑
AS∈A(LS ,S,T )

∏
v∈S

ρv(Lv)βv(Av) ,

βv(Av) = qv(Av)p(Dv|DAv , Av) ,

where the outer summation is over all linear orders LS on S. Intuitively, gs(S, T ) is
the sum of p(A,D,L) over all DAGs AS and linear orders L, with AS ⊆ L, such that
S are the first nodes in the order L and there is a path from s to v ∈ S in AS if and
only if v ∈ T . That the values gs(S, T ) are sufficient for computing the target quantity
p(s; t,D) is shown by the following result.

Lemma 1.

p(s; t,D) =
∑

T :s,t∈T
gs(N,T ) .

Proof. The definitions directly yield

p(s; t,D) =
∑
L

∑
A⊆L

s; t in A

∏
v∈N

ρv(Lv)βv(Av) ,

the outer summation being over all linear orders L on N .
We next break the inner summation into two nested summations by observing that

the sets A(L,N, T ), for s, t ∈ T , form a partition of the set A(L) = {A ⊆ L :
s; t in A}: indeed, each DAG A ∈ A(L) determines precisely one node set T such
that A contains a path from s to v for exactly the nodes in v ∈ T . Thus we have

p(s; t,D) =
∑
L

∑
T :s,t∈T

∑
A∈A(L,S,T )

∏
v∈N

ρv(Lv)βv(Av)

=
∑

T :s,t∈T

∑
L

∑
A∈A(L,S,T )

∏
v∈N

ρv(Lv)βv(Av)

=
∑

T :s,t∈T
gs(N,T ) .

This completes the proof. 2
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From the algorithmic point of view, the pair (S, T ) is sufficient for enabling a fac-
torization of the sum over the AS into independent sums over the parent sets Av , for
v ∈ S. Indeed, we have the following recurrence.

Lemma 2.

gs(S, T ) = 1 for S \ {s} = ∅ and s ∈ T ,

gs(S, T ) = 0 for S \ {s} = ∅ and s /∈ T ,

gs(S, T ) =
∑
v∈S

gs(S \ {v}, T \ {v})ρv(S \ {v})β̄v(S, T ) for S \ {s} 6= ∅,

where

β̄v(S, T ) =


∑

Av⊆S\{v}
Av∩T 6=∅

βv(Av) if v ∈ T ,

∑
Av⊆(S\{v})\T

βv(Av) if v ∈ S \ T .

Proof. Proof is by straightforward induction on the size of S. First, observe that the
sum over LS in the definition of gs(S, T ) breaks into a double-summation, in which the
outer summation is over the last node v ∈ S in the order LS and the inner summation
is over all linear orders, LS\{v}, on the remaining nodes S \ {v}. Second, observe that
the summation over AS ∈ A(LS , S, T ) breaks into a double-summation, in which the
outer summation is over the DAGs AS\{v} ∈ A

(
LS\{v}, S \ {v}, T \ {v}

)
and the

inner summation is over the parent sets Av ⊆ S \ {v} satisfying the requirement that
(a) if there is no path from s to v (i.e., v /∈ T ), then there must be no path from s to u
for any parent u ∈ Av of v, and (b) if there exists a path from s to v (i.e., v ∈ T ), then
there must exist a path from s to u for at least one parent u of v. 2

Figure 1 illustrates the requirements on choosing parent sets for the node v in the
last equation in Lemma 2. In Figure 1(a) v ∈ T , that is, it is required that there is a
path from s to v. Now, we can choose any parent set for v as long as at least one of the
parents is in T . On the other hand, in Figure 1(b) v /∈ T , that is, it is required that there
is no path from s to v. Now, we have to choose the parents of v from S \ T .

The evaluation of the values gs(S, T ) using the recurrence is complicated by the fact
that the inner summation, β̄v(S, T ), is over exponentially many sets Av and, further-
more, there is a condition that depends not only on the set S but the set T . Fortunately,
the inner summation can be precomputed for each v ∈ N and S ∈ N \ {v}. Indeed, if
v /∈ T , then the sum is over all subsets Av of (S \ {v}) \ T ; if v ∈ T , then the sum is
over all the remaining subsets of S \ {v}. Thus, it suffices to precompute

β̂v(U) =
∑

Av⊆U

βv(Av)

for all U ⊆ N \ {v}; the sums for the cases v /∈ T and v ∈ T are then obtained as
β̂v((S \ {v}) \ T ) and β̂v(S \ {v})− β̂v((S \ {v}) \ T ), respectively. The function β̂v
is known as the zeta transform of βv (over the subset lattice of N \ {v}), which can be
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(a) (b)

Fig. 1. Choosing parent sets for a node v ∈ S when (a) v ∈ T and (b) v /∈ T .

computed, given βv , by the so-called fast zeta transform algorithm (see, e.g., [13, 15])
in time O(n2n) and space O(2n).

In summary, the values gs(S, T ) for all S ⊆ N and T ⊆ S can be computed in time
O(n3n) and space O(3n). The precomputation of the inner sum takes time O(n22n)
and space O(n2n) as noted above. Thus, the posterior probability that there exist a path
from s to t, where s and t are two fixed nodes, can be computed in time O(n3n) and
space O(3n). To compute the posterior probabilities for all node pairs st, it suffices
to repeat the computations for each possible s ∈ N , for the values gs(S, T ) actually
contain the sufficient information regarding all possible descendant nodes t. Thus, in
total, the time requirement is O(n23n).

3 Experiments

Next we study how learning ancestor relations performs in practice. Our approach is
to generate data from a known Bayesian network, called the ground truth, and com-
pare the learned arcs and ancestor relations to the ground truth. Obviously, the learning
performance is not expected to be perfect: when there are unobserved nodes at work,
we easily learn arcs that are not present in the ground truth; this happens especially
when an unobserved node is a common parent of two nodes that are not connected by
an arc; namely, the two nodes are marginally dependent, and thus, in absence of the
common parent, it is likely that we learn an arc between them, a false positive. On the
other hand, we may expect that much of the structure can be learned even in presence
of unobserved nodes. For example, if an unobserved node has exactly one child and one
parent in the ground truth, both observed, then it is likely that the two arcs through the
unobserved node in the middle will be just contracted to a single arc, which encodes
a correct ancestor relation. We call the graph obtained from the ground truth by such
contractions—that is, by connecting each parent of an unobserved node to every child
of the node—the shrunken ground truth.

We have implemented the algorithm of Section 2.1 for Bayesian learning of ancestor
relations in Matlab. In the experiments discussed next, we have used the BDeu score
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with the equivalent sample size of 1, a uniform prior over linear orders on the nodes,
and a uniform prior over parent sets of size at most a user-defined bound, which we set
to 6.

3.1 Challenges of Learning Ancestor Relations

It is instructive to examine some representative challenges we face when learning an-
cestor relations and arcs. We consider a Bayesian network whose DAG is shown in
Figure 2(a). All 14 variables are binary. The parameters of the network, that is, the prob-
ability of a node taking the value 1 given a particular value combination of its parents
was drawn uniformly at random from the range [0, 1] for each node and value combina-
tion of its parents. We generated 10 000 samples from the Bayesian network and learned
ancestor relations from the data. Note that there are 16 arcs and 39 ancestor–descendant
pairs in the ground truth. The DAG has quite a large Markov equivalence class, 140
graphs in total, and so one cannot expect reliable deduction of ancestor relations from
a single MAP DAG.

For clarity of presentation, we discuss our findings mainly in terms of arcs instead
of ancestor relations. Figure 2(b) shows arcs that are assigned a posterior probability of
0.5 or larger. Suppose we claim every arc or ancestor relation with probability 0.5 or
larger to be present. Then, in total there are 12 true positive arcs, 4 false positive arcs,
20 true positive ancestor relations, and 4 false positive ancestor relations. Inspection
reveals that the ancestor relation errors are due to a few flipped arcs. For example, in
the ground truth there is a path from node 1 to eight different nodes. Thus, flipping the
arc from 1 to 2 causes one false positive and eight false negative ancestor relations.
While arc errors are rather independent, one flipped arc can lead to numerous ancestor
relation errors, as seen earlier. It should also be noted that arc flips that are prone to
cause a larger number of ancestor relation errors are also more probable. Namely, an
arc is easily flipped when it does not break or create any v-structure, which is typically
the case when one of the nodes is a source node in the ground truth.

The presence of unobserved nodes leads to claiming arcs between nodes that are
only marginally dependent. In Figure 2(c) we see a DAG constructed from the arcs
with probability 0.5 or larger when nodes 1, 4, 7, and 11 are discarded. Node 1 does
not have children, so its disappearance should not affect the structure among the rest of
the nodes. However, the removal of nodes 4, 7, and 11 affects the rest of the nodes: For
instance, node 11 is a common cause of nodes 13 and 14, and so an arc appears between
nodes 13 and 14. Also, nodes 5 and 6, which are parents of node 7 in the ground truth,
have become parents of node 10, a child of node 7 in the ground truth. Similarly, the
removal of node 4 leads also to appearance of some direct arcs from its parents to its
children. After discarding the unobserved nodes, the shrunken ground truth contains 14
arcs and 18 ancestor relations. The algorithm finds 8 true positive arcs, 6 false positive
arcs, 11 true positive ancestor relations, and 7 false positive ancestor relations. This
suggests that ancestor relations can sometimes be learned as well as individual arcs.

For comparison, we also learned a partial ancestral graph (PAG) from the data
with unobserved nodes using the fast causal inference (FCI) algorithm [18], which is
designed for causal discovery with unobserved variables. The output graph is shown in
Figure 2(d). An arc marked with two arrowheads indicates that the algorithm claims the
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(a) (b) (c) (d)

Fig. 2. Graphs. (a) The ground truth, from which 10 000 samples were generated. (b) Arcs with
posterior probability at least 0.5. The arrowheads >, �, and I indicate that the probability is in
the interval (0.5, 0.8], (0.8, 0.99], or (0.99, 1], respectively. (c) Arcs with posterior probability at
least 0.5 when nodes 1, 4, 7, and 11 are not observed. (d) A partially directed graph learned using
the FCI algorithm when nodes 1, 4, 7, and 11 are not observed.

two nodes have a common (unobserved) cause; the symbol ◦ is a wildcard, indicating
that there can be an arrowhead or there is no arrowhead. The results are generally in
good agreement with the ground truth. The FCI algorithm is able to detect the unob-
served parent of nodes 12 and 13. However, it is not sure whether there is an unobserved
parent between nodes 13 and 14, and it is unable to detect the unobserved parent be-
tween nodes 12 and 14. It also finds an unobserved parent between nodes 8 and 9,
which is not in agreement with the ground truth. As the wildcards assigned by the FCI
algorithm do not quantify the uncertainty about the associated arcs, but the algorithm
is ignorant regarding some ancestor relations, the algorithm may loose statistical power
in detecting such relations; we will examine and discuss this issue further in the next
section.

3.2 A Simulation Study

We generated synthetic data by a procedure adopted from Koivisto [14]. One hundred
BNs on 14 binary nodes and maximum indegree 4, each with 10000 data points were
obtained as follows.

1. Draw a linear order L on the node set {1, 2, . . . , 14} uniformly at random (u.a.r.).
2. For each node v independently:

(a) let dv be the number of predecessors of v in L;
(b) draw the number of parents of v, denoted as nv , from {0, 1, . . . ,min{4, dv}}

u.a.r.;
(c) draw the nv parents of v from the predecessors of v in L u.a.r.;
(d) for each value configuration of the parents: draw the probability of a sample

getting the value 1 from the uniform distribution on range [0, 1].
3. Draw 10000 samples independently from the BN.
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From each data set 24 subsets were generated by discarding ` = 0, 2, 4, 6, 8, 10
randomly picked nodes and the associated data, and by including the first m =
100, 500, 2000, 10000 data points.

Our Bayesian method was applied to each data set and the performance of learning
arcs and ancestor relations was summarized by ROC curves; see Figure 2. The ROC
curve is obtained by setting a threshold for the posterior probability (of arcs or ancestor
relations), and every time the posterior probability exceeds the threshold, we claim
the respective arc or ancestor relation is present. Comparing these claims to the arc
and ancestor relations that actually hold in the (shrunken) ground truth, we obtain true
positives (TP) and false positives (FP) rates. By varying the threshold the pairs of these
rates form a ROC curve, which shows the learning power (TP rate) as a function of FP
rate.

As expected, the more data we have, the easier it is to learn both ancestor relations
and arcs. Likewise, the task becomes harder as the number of unobserved nodes grows.
(We note that the results for undirected arcs in the case of no unobserved nodes are in
good agreement with Koivisto’s [14] results for this particular setting.) The results (Fig-
ure 2) also suggest that the power of learning directed and undirected arcs is about the
same, however, the power of learning ancestor relations being slightly smaller. The run-
ning times of the algorithm for 10, 12, and 14 observed nodes were roughly 3 minutes,
40 minutes, and 8 hours, respectively.

We then compared our Bayesian averaging approach to the deduction of structural
features from a single MAP DAG. Two ways to pick a MAP DAG were considered:
an optimistic and a random approach. In the optimistic approach we chose a member
of the Markov equivalence class of a MAP DAG that yields the largest true positives
rate, and used its true and false positives rates. This approach is arguably unrealistic in
practice but serves as an upper bound for any approach based on a single MAP DAG.
In the random approach we averaged the true and false positives rates over all DAGs
in the Markov equivalence class of a MAP DAG; the averaged rates correspond to the
respective expectations if one picks such a DAG at random. The true and false positives
rates for these two approached are shown in Tables 1 and 2; column “diff.” shows the
difference between the true positives rates of the MAP DAG approach and the Bayesian
averaging approach (the averages of the false positives rate being matched, of course);
a negative value indicates that the Bayesian averaging approach is more powerful.

The results suggest that the random MAP DAG approach performs significantly
worse than Bayesian averaging. On the other hand, the optimistic MAP DAG approach
performs sometimes better than Bayesian averaging, especially when the data are abun-
dant and there are many unobserved nodes.

Furthermore, we compared our method to the deduction of ancestor relations from
the arc probabilities. To this end, we constructed a graph that consisted of the arcs whose
posterior probability was larger than 0.5, that is, the arc is more likely to be present than
absent, and deducted the ancestor relations from this graph. The results (Tables 1 and
2) show that the performance of the deduction of ancestor relations from arcs does
not differ significantly from learning ancestor relations directly. We further compared
the aforementioned approach to direct learning of ancestor relations. To this end, we
assumed that exactly the ancestor relations whose probability is more than 0.5 exist and
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Fig. 3. ROC curves. The data contain (a) 100, (b) 500, (c) 2000 or (d) 10000 samples over 14
nodes. The straight red line is the curve obtained by random guess. The data-generating graphs
contained on average 23.7 arcs and the shrunken ground truths on average 19.7, 15.9, 11.1, 7.0,
and 3.3 arcs for 12, 10, 8, 6, and 4 observed nodes, respectively.
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Table 1. Comparison of TP and FP rates for ancestor relations

Opt. MAP DAG Rand. MAP DAG Arcs > 0.5 FCI
m ` TP FP diff. TP FP diff. TP FP diff. TP FP diff.

100 0 0.41 0.19 -0.09 0.37 0.21 -0.14 0.20 0.04 -0.01 0.002 0.000 0.002
100 2 0.35 0.16 -0.07 0.30 0.18 -0.14 0.17 0.03 -0.01 0.001 0.000 -0.001
100 4 0.34 0.11 0.01 0.27 0.14 -0.11 0.16 0.03 -0.01 0.002 0.000 0.002
100 6 0.34 0.08 0.07 0.24 0.12 -0.08 0.15 0.03 -0.00 0.002 0.000 0.002
100 8 0.36 0.05 0.19 0.23 0.09 -0.01 0.12 0.03 0.00 0.003 0.000 0.003
100 10 0.31 0.04 0.16 0.17 0.09 -0.06 0.12 0.02 0.01 0.000 0.000 0.000
500 0 0.65 0.10 -0.04 0.61 0.13 -0.12 0.58 0.04 0.01 0.014 0.002 -0.218
500 2 0.61 0.11 -0.02 0.54 0.14 -0.13 0.50 0.05 0.01 0.014 0.002 -0.143
500 4 0.53 0.11 0.01 0.45 0.14 -0.12 0.42 0.06 0.02 0.010 0.001 -0.073
500 6 0.50 0.10 0.06 0.40 0.14 -0.11 0.35 0.06 -0.01 0.011 0.000 -0.028
500 8 0.48 0.07 0.19 0.33 0.12 -0.10 0.27 0.06 0.00 0.014 0.000 0.014
500 10 0.51 0.05 0.26 0.32 0.12 -0.10 0.27 0.06 -0.02 0.005 0.000 0.005

2000 0 0.84 0.06 0.02 0.78 0.08 -0.08 0.78 0.05 0.01 0.048 0.004 -0.482
2000 2 0.76 0.10 0.02 0.70 0.12 -0.09 0.69 0.07 0.02 0.047 0.005 -0.329
2000 4 0.67 0.12 0.01 0.60 0.15 -0.11 0.60 0.09 0.02 0.041 0.007 -0.217
2000 6 0.64 0.12 0.06 0.54 0.16 -0.10 0.51 0.09 0.01 0.037 0.004 -0.090
2000 8 0.59 0.12 0.14 0.45 0.17 -0.09 0.40 0.10 -0.00 0.020 0.002 -0.033
2000 10 0.69 0.07 0.36 0.44 0.18 -0.18 0.41 0.09 0.07 0.005 0.000 0.005
10000 0 0.93 0.02 0.07 0.86 0.06 -0.06 0.87 0.02 0.00 0.129 0.011 -0.660
10000 2 0.86 0.08 0.06 0.79 0.11 -0.08 0.79 0.07 -0.00 0.121 0.010 -0.410
10000 4 0.80 0.11 0.07 0.70 0.15 -0.11 0.70 0.09 0.01 0.100 0.015 -0.326
10000 6 0.73 0.13 0.11 0.62 0.18 -0.10 0.60 0.13 0.00 0.086 0.010 -0.199
10000 8 0.72 0.14 0.19 0.57 0.20 -0.09 0.54 0.14 0.02 0.037 0.006 -0.125
10000 10 0.84 0.09 0.38 0.57 0.21 -0.11 0.54 0.14 -0.03 0.014 0.002 -0.025

cross-tabulated the ancestor relations predictions for deducting the ancestor relations
from arcs and the direct computation of ancestor relations; see Table 3. Table 3 shows
the average number of the node pairs for which either both methods, only the deduction
from arc probabilities, only the direct computation of ancestor relation probabilities
or neither method claims an ancestor relation to be present. Table 3 also shows the
probability that the claim made by the direct computation is correct; NaN denotes that
no claims falling into the particular category were made. Most of the time, both methods
make the same predictions. Whenever the predictions differ, the prediction by direct
computation is usually slightly more probable to be correct. We also notice that the two
methods follow each other closely with larger datasets.

We also compared our method to the fast causal inference (FCI) method [18]; see
Tables 1 and 2. We found it quite challenging to make a fair comparison because FCI
outputs a partial ancestral graph (PAG) that cannot be directly compared to a DAG. We
decided to ignore the wildcard arcs and claim only arcs and ancestor relations that FCI
is sure about; this follows the approach of Spirtes et al. [19]. The results (Tables 1 and 2)
show that FCI is very conservative: it does not make many mistakes but it often answers
“don’t know“. This results in a relatively low statistical power of discovering arcs and
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Table 2. Comparison of TP and FP rates for arcs

Opt. MAP DAG Rand. MAP DAG Arcs > 0.5 FCI
m ` TP FP diff. TP FP diff. TP FP diff. TP FP diff.

100 0 0.34 0.05 -0.05 0.31 0.06 -0.10 0.26 0.03 0.00 0.003 0.000 0.003
100 2 0.30 0.06 -0.04 0.26 0.06 -0.11 0.22 0.02 0.00 0.002 0.000 -0.001
100 4 0.28 0.05 0.01 0.23 0.06 -0.08 0.18 0.02 0.00 0.003 0.000 0.003
100 6 0.28 0.04 0.05 0.21 0.06 -0.06 0.16 0.03 0.00 0.002 0.000 0.002
100 8 0.30 0.03 0.15 0.20 0.06 -0.02 0.13 0.03 0.00 0.003 0.000 0.003
100 10 0.31 0.03 0.15 0.18 0.07 -0.05 0.14 0.03 0.00 0.000 0.000 0.000
500 0 0.64 0.03 -0.03 0.60 0.03 -0.09 0.62 0.02 0.00 0.023 0.001 -0.273
500 2 0.55 0.03 0.00 0.50 0.04 -0.09 0.52 0.03 0.00 0.020 0.002 -0.153
500 4 0.46 0.04 0.02 0.41 0.05 -0.09 0.42 0.03 0.00 0.014 0.001 -0.076
500 6 0.42 0.04 0.06 0.34 0.06 -0.08 0.35 0.04 0.00 0.012 0.000 -0.026
500 8 0.42 0.04 0.18 0.30 0.07 -0.04 0.28 0.05 0.00 0.016 0.000 0.016
500 10 0.49 0.04 0.28 0.32 0.08 -0.08 0.30 0.07 0.00 0.005 0.000 0.005

2000 0 0.83 0.02 0.03 0.78 0.02 -0.06 0.81 0.02 0.00 0.075 0.003 -0.511
2000 2 0.71 0.03 0.02 0.66 0.04 -0.06 0.69 0.03 0.00 0.067 0.003 -0.319
2000 4 0.60 0.05 0.00 0.55 0.06 -0.08 0.59 0.04 0.00 0.054 0.005 -0.206
2000 6 0.55 0.05 0.05 0.47 0.07 -0.07 0.50 0.06 0.00 0.042 0.004 -0.088
2000 8 0.51 0.07 0.16 0.40 0.10 -0.05 0.41 0.08 0.00 0.023 0.002 -0.029
2000 10 0.65 0.06 0.33 0.43 0.12 -0.09 0.44 0.10 0.00 0.005 0.000 0.005

10000 0 0.93 0.01 0.08 0.87 0.02 -0.04 0.89 0.01 0.00 0.173 0.006 -0.672
10000 2 0.83 0.03 0.07 0.77 0.04 -0.05 0.80 0.03 0.00 0.146 0.006 -0.395
10000 4 0.75 0.05 0.08 0.67 0.06 -0.06 0.70 0.05 0.00 0.111 0.011 -0.304
10000 6 0.67 0.07 0.09 0.58 0.09 -0.06 0.61 0.08 0.00 0.090 0.009 -0.190
10000 8 0.64 0.09 0.15 0.52 0.12 -0.04 0.54 0.11 0.00 0.040 0.006 -0.118
10000 10 0.79 0.08 0.34 0.56 0.15 -0.09 0.58 0.14 0.00 0.015 0.002 -0.027

ancestor relations, sometimes significantly lower than that of the Bayesian averaging
approach (at matched FP rates).

One should notice, though, that FCI can discover unobserved nodes with some suc-
cess. However, usually the unobserved nodes that FCI “finds,” do not seem to match the
ones in the ground truth. For example, when the sample size is 2000 and there are no
unobserved nodes, FCI finds on average 6.0 unobserved nodes. And when there are two
unobserved nodes, only 11% of the “found” 4.8 unobserved nodes match the ground
truth. In general, as the number of unobserved nodes increases, the number of found
unobserved nodes decreases, but the percentage of correctly detected unobserved nodes
increases; for example, when there are 8 unobserved nodes 54% of the claimed 0.7
unobserved nodes are correct.

3.3 Real Life Data

We tested our algorithm on two real life datasets found in UCI machine learning repos-
itory [7]: ADULT (15 variables, 32561 samples) and HOUSING (14 variables, 506 sam-
ples). We discretized all continuous variables to binary variables using the median as
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Table 3. Ancestor Relations predicted by arcs and direct computation

Predicted Ancestor Relations Correct Predictions by dir. comp.
m ` both arcs direct none both arcs direct none

100 0 13.6 1.1 1.8 165.5 0.61 0.64 0.50 0.79
100 2 8.3 0.4 0.9 122.4 0.63 0.59 0.61 0.79
100 4 5.3 0.3 0.5 84.0 0.63 0.52 0.59 0.78
100 6 3.1 0.2 0.2 52.5 0.62 0.56 0.57 0.78
100 8 1.4 0.1 0.0 28.4 0.59 0.25 1.00 0.77
100 10 0.6 0.0 0.0 11.4 0.68 NaN 1.00 0.77
500 0 30.5 0.5 1.3 149.7 0.82 0.48 0.53 0.88
500 2 20.7 0.4 0.6 110.2 0.76 0.77 0.48 0.86
500 4 12.7 0.5 0.6 76.3 0.70 0.65 0.35 0.84
500 6 7.0 0.2 0.3 48.5 0.66 0.81 0.63 0.82
500 8 3.3 0.1 0.1 26.5 0.61 0.56 0.45 0.79
500 10 1.3 0.0 0.0 10.6 0.60 0.33 NaN 0.79
2000 0 39.7 0.2 0.4 141.8 0.85 0.82 0.39 0.93
2000 2 28.4 0.2 0.4 103.0 0.76 0.55 0.61 0.91
2000 4 18.6 0.2 0.4 70.8 0.69 0.47 0.30 0.88
2000 6 10.6 0.2 0.3 44.9 0.64 0.70 0.47 0.86
2000 8 5.2 0.1 0.1 24.6 0.58 0.89 0.54 0.82
2000 10 2.0 0.1 0.1 9.9 0.61 0.25 0.60 0.82

10000 0 40.9 0.1 0.4 140.7 0.92 0.60 0.61 0.96
10000 2 31.2 0.2 0.3 100.3 0.79 0.78 0.32 0.94
10000 4 21.6 0.1 0.2 68.0 0.71 0.60 0.36 0.91
10000 6 13.3 0.2 0.2 42.3 0.60 0.68 0.53 0.88
10000 8 7.2 0.0 0.1 22.7 0.57 0.75 0.44 0.85
10000 10 2.8 0.0 0.0 9.1 0.58 0.67 0.00 0.84

the cutpoint. Furthermore, we transformed the variable “native-country”, which had 40
distinct values, of the ADULT dataset to a binary variable where 0 corresponded to value
“USA” and 1 to all other values. For both datasets we set the maximum indegree to be
4.

Here, we do not know the ground truth and thus we have to resort to other compar-
isons. We investigate whether learning ancestor relations uncovers some information
that cannot be obtained simply analyzing the arc probabilities. To this end, we deduct
ancestor relations both from the ancestor relations probabilities and the arc probabil-
ities. For ADULT, we have 210 potential ancestor relations. Both methods imply the
presence of the same 79 ancestor relations. For HOUSING the methods are in almost as
good agreement as for the ADULT. For 71 ordered pairs, both methods claim that an an-
cestor relation is present and for 110 pairs that an ancestor relation is not present. There
is, however, one node pair for which the deduction from arcs suggests that there is no
ancestor relation while the deduction from ancestor probabilities claims the opposite.
This discrepancy is, though, due to the arbitrariness of the threshold. We notice that the
posterior probability of an arc between the two nodes in question was 0.49 while the
probability of an ancestor relation was 0.53.
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4 Discussion

A key assumption in Bayesian network models is that all nodes relevant for capturing
the dependencies of the associated variables are included in the model. One can argue
that this assumption rarely holds in practice, and so the model is misspecified. Note,
however, that in practice, every complex enough model is misspecified in one way or
another. The issue, in general, calls for robustness studies, disregarding whether the
adopted statistical paradigm is a frequentist or a Bayesian one. In this paper we have
studied the power of Bayesian structure discovery in Bayesian networks that do not
explicitly model latent variables.

We contributed with two positive findings. First, we showed that Bayesian learn-
ing of ancestor relationships is computationally feasible when the number of observed
nodes is moderate, say, fewer than 20. The algorithm resembles the dynamic program-
ming algorithm of Koivisto and Sood [15] for computing the posterior probabilities of
modular features, the main difference being in handling the nonmodularity of ancestor
relations, which explains the somewhat larger computational complexity; this suggests
that recent discussions of the limitation of the “exact Bayesian approach” to modular
features [2, 21] may be overly pessimistic. For larger networks on, say, more than 20
nodes, the dynamic programming algorithm becomes computational infeasible and one
has to resort to heuristic methods, in particular, Markov chain Monte Carlo [6, 9, 10,
16].

Second, our simulation study shows that ancestor relations can be discovered with
reasonable power even when a large fraction of the nodes in the underlying data gen-
erating model are unobserved. For instance, with a sample of 10000 data points on 10
nodes, around 75 % of the ancestor relations that hold on the data generating network
on 14 nodes are correctly detected at a false positive fraction of 12 %.

We also found that the presented Bayesian averaging approach outperforms some
of its obvious rivals: the deduction of ancestor relations from a single MAP DAG and
the popular constraint-based algorithm, FCI [19]. On the other hand, we found that full
Bayesian averaging performs only marginally better than partial Bayesian averaging,
that is, first inferring arcs based on their marginal posterior probabilities, with some
fixed threshold, and then deducing ancestor relations from the so constructed DAG; this
suggests that partial Bayesian averaging should be the method of choice when the num-
ber of nodes is about 20–30. Although someone may perceive the competitiveness of
partial Bayesian averaging as a drawback for full Bayesian averaging, it should be noted
that the insight about the competitiveness of partial Bayesian averaging was gained by
being able to perform full Bayesian averaging. An intriguing open question we did not
address this work is, how well some existing score-based heuristics [4] to discover un-
observed nodes perform in terms of learning arcs and ancestor relations.
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