The last paragraph of the proof of Lemma 5 should be:

Second, consider the case $\sigma(j) \in \check{Y}$. Then $Y \setminus \{\sigma(j)\}$ is an ideal. To prove the correctness of step 3, it suffices, by the induction assumption, to show that $(Y)_{j-1}$ and $(Y \setminus \{\sigma(j)\})_{j-1}$ are disjoint and their union is $(Y)_j$. To this end, it suffices to observe that $(Y)_{j-1}$ consists of all subideals $I \supseteq Y \cap \{\sigma(j), \ldots, \sigma(n)\}$ of Y that do contain $\sigma(j)$, whereas $(Y \setminus \{\sigma(j)\})_{j-1}$ consists of all subideals $I \supseteq Y \cap \{\sigma(j), \ldots, \sigma(n)\}$ of Y that $I \supseteq Y \cap \{\sigma(j), \ldots, \sigma(n)\}$ of Y that do not contain $\sigma(j)$.

The second paragraph of Chapter 5 should be:

Let P be a partial order on N. Recall that we defined a "forward function" F^P that satisfies the recurrence

$$F^{P}(S) = \sum_{v \in S: S \setminus \{v\} \in \mathcal{I}(P)} \alpha_{v}(S \setminus \{v\}) F^{P}(S \setminus \{v\}),$$

where S is an ideal of P. Analogously, we define a "backward function" B^P by $B^P(\emptyset) = 1$ and

$$B^{P}(T) = \sum_{v \in T, N \setminus (T \setminus \{v\}) \in \mathcal{I}(P)} \alpha_{v}(N \setminus T) B^{P}(T \setminus \{v\}),$$

where T is nonempty and $N \setminus T$ is an ideal of P. Then we combine the forward and backward functions into

$$\gamma_v^P(A_v) = \sum_S q_v(S) F^P(S) B^P(N \setminus S \setminus \{v\}),$$

where A_v is a subset of $N \setminus \{v\}$ and S runs over all ideals of P with $A_v \subseteq S \subseteq N \setminus \{v\}$.