
Improved Predictability of Reactive Robot Control

using Control Lyapunov Functions

Petter Ögren*

Department of Autonomous Systems

Swedish Defence Research Agency

SE-164 90 Stockholm, Sweden

petter.ogren@foi.se

Abstract— Model based robot control approaches are often
designed to allow the verification of certain system properties
such as safety or goal convergence. However, designing such
controllers is often very time consuming, and most of the time
it is not possible to add additional control objectives without
jeopardizing the previously proved system properties.

So-called reactive control approaches, such as the subsump-
tion architecture, potential field methods and voting schemes
offer an alternative to the model based approaches. These
methods are inherently modular and thus straightforward
to apply to problems when there are a number of control
objectives that needs to be met at the same time, e.g., navigation,
collision avoidance and formation maintenance. The basic idea
is to design one controller for each objective, and then merge
the different controller outputs. The problem is that the result
of this merging of different outputs is hard to analyze and
predict in detail.

This paper describes an attempt to narrow this gap between
the modularity of reactive approaches and the predictability
of model based methods using a concept similar to Control
Lyapunov Functions (CLFs). By assigning a CLF-like scalar
function to each control objective, signifying to what extent
that objective is met, the predictability is improved in two
ways. Firstly, the user can prioritize between not only different
objectives, but also between different levels of satisfaction in
different objectives. Secondly, the time derivatives of these func-
tions can be used to find controls that maintain an important
objective that is currently met, while striving to satisfy another,
less important one that is not met.

I. INTRODUCTION

The field of Robotic control can loosely be divided into

model based and reactive control approaches. In model based

control, a mathematical model of the dynamic or kinematic

behavior of the robot is used to synthesize a controller and

analyze and prove attractive system properties such as safety

or goal convergence.

Model-based approaches to robot control with multiple

objectives include [7], [12], [8]. These approaches perform

well, but are tailor made to the specific problems they

address, and adding additional objectives to be met is often

difficult or impossible without spoiling the structures being

used in the proofs.

Non model based methods include [2], [13], [1], [4],

[11], [6], [9], [10]. A nice overview can be found in [2],

*The author was funded by the Swedish defence materiel administration
(FMV) through the Technologies for Autonomous and Intelligent Systems

(TAIS) program, 297316-LB704859.

and a common idea is to design one controller for each

control objective and then merge the outputs in some clever

fashion. This merging can be either a selection of the most

important controller at each time instant, or a fusion of a set

of control signals into a single output. Examples of selection

schemes are the subsumption architecture [4], and the TCA

system, [11], while fusion methods include the potential field

approach [6], voting schemes [9], fuzzy rules [10], and the

dynamical systems approach, [1].

In this paper we propose a framework called Behavior

Control Lyapunov Functions (BCLFs). These are scalar

functions describing to what extent each control objective is

met. They are furthermore chosen in such a way that there is

always a choice of control signal such that they decrease. It is

our hope to use these functions to combine the modularity of

the reactive approaches with the predictability of the model

based approaches.

This framework will enable two things. Firstly, the oper-

ator can prioritize not only between different objectives, but

also between different levels of satisfaction, i.e. keeping a

safety distance of 1m might be more important than reaching

the goal on time, which in turn is more important than

keeping the ideal safety distance of 2m. Secondly, the robot

controller can use the time derivatives of the BCLFs to

choose controls preserving a more important objective that

is already met, while aiming at achieving a less important

objective.

The organization of this paper is as follows. In Section II

we review the basic idea of Lyapunov theory and discuss the

structure of reactive architectures. Section III then presents

the BCLF framework and some analytical properties. Finally,

the approach is illustrated by simulation examples in Section

IV and conclusions are drawn in Section V.

II. BACKGROUND: LYAPUNOV THEORY AND REACTIVE

ARCHITECTURES

In this Section we will describe the two main ideas built

upon in this paper.

A. Control Lyapunov Functions

The ideas below were first presented in 1892 by the

Russian mathematician Aleksandr Lyapunov, and they build

upon a very natural observation: if the energy of a system

decreases monotonically everywhere, except at a local energy

2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
Acropolis Convention Center
Nice, France, Sept, 22-26, 2008

978-1-4244-2058-2/08/$25.00 ©2008 IEEE. 1274

minimum, then the system will end up in that minimum. The

definition below is taken from a paper by Artstein [3].

Definition 1 (Control Lyapunov Function): A positive

definite C1 function V (x) : R
n → R

+ is called a control

Lyapunov function if,

infu
(

∇V T f(x, u)
)

< 0, ∀x 6= 0.

This definition is motivated by the fact that if V is a control

Lyapunov function, then the right choice of control u(x)
will make it decrease and conclusions about stability and

convergence can be made.

Remark 1: In Section III we will make significantly

stronger assumptions than the ones above, in order to prove

finite time properties in a straightforward manner. So even

though we do not use the above definition explicitly, the ideas

of this paper rest heavily upon the Lyapunov framework.

We now move on to the area of reactive control architec-

tures.

B. Reactive Architectures

In a book by Arkin [2] a number of reactive control

approaches are described in detail. Arkin summarizes the

idea as follows. “Simply put, reactive control is a technique

for tightly coupling perception and action, typically in the

context of motor behaviors, to produce timely robotic re-

sponse in dynamic and unstructured worlds.”[2, p. 22]

Formation

Behaviors

More

Avoid

Obstacle

Move-to

Goal

SENSING Arbitration ACTIONS

Fig. 1. A typical reactive architecture, from [2, p. 112-114]. Note how all
individual controllers (behaviors) work in parallel.

A typical reactive architecture is seen in Figure 1. The

different controllers are called behaviors and work in par-

allel, each describing its own complete sensor-to-actuator

mapping. The desired actuator commands of the behaviors

are then merged by an arbitrator. There are mainly four

suggested ways of arbitration:

1) Suppression: A strict hierarchy of behaviors is defined,

where the highest active one makes the call. For

example, the Avoid-obstacle can override the

Move-to-goal behavior if there is an obstacle close

by. This is the arbitration mechanism suggested by

Brooks in the subsumption architecture [5] .

2) Selection: A variable hierarchy where both the agent’s

goals and sensory information governs what behavior

gets control.

3) Voting: All behaviors are allowed to vote on their

preferred action. The choice with the most votes is

then executed.

4) Vector summation: All behavior outputs are in the form

of a vector, e.g. either desired velocity or accelera-

tion. These vectors are then summed, and in some

implementations normalized, to get the desired motor

command.

Having reviewed the ideas of reactive robot control as well

as some basic Lyapunov theory we are ready to describe what

we mean by Behavior Control Lyapunov Functions and how

they can be used to do arbitration in a more transparent and

predictable way.

III. THE BEHAVIOR CLF FRAMEWORK

In this section we will describe how to translate a set of

mission objectives and priorities into Behavior CLFs and a

priority table. We then characterize what control sets meet the

different objectives. Finally, based on these sets a controller

is proposed.

A. Mission Objectives and Priority Tables

The first step in the controller design is to state a number

of mission objectives and a corresponding set of scalar

functions describing to what degree those objectives are met.

The user then supplies a priority table with information about

what objectives are more important than others.

In a ground robot setting the mission objectives might be

as follows

• Arrive at the goal location within the given time.

• Avoid static obstacles with a given safety margin.

• Avoid collisions with other robot with a given safety

margin.

• Move in some desired formation with other robots.

Ideally, the mission can be performed while accomplishing

all these objectives. There are however situations where the

objectives are contradicting, and a tradeoff decision has to be

made. For example, when the robot is moving in formation

with some other robots who have different goal locations.

Then there is a tradeoff of staying in formation, or leaving

the formation to reach the goal location. Below we propose

to use scalar functions and a priority table to make sure that

such tradeoffs are made in a transparent and predictable way.

To make the four robot objectives above explicit in terms

of functions and inequality constraints we first write

V1:TOA = t +
||p − pgoal||

vnom

(1)

V2:OA = − min
o∈(obst)

||p − o||

V3:CA = − min
q∈(robots)

||p − q||

V4:F = Σ
q∈(robots) |(||p − q|| − 30)|

1275

where V1:TOA is the estimated time of arrival (TOA), V2:OA

is the negative distance to the closest obstacle, used for

obstacle avoidance (OA), V3:CA is the negative distance to

the closest robot, used for collision avoidance (CA), V4:F is

the formation (F) fitness function, p is the robot position, and

the time t is assumed to be part of the state x. The distances

are measured in negative numbers in order for all objectives

to be stated in the form Vi ≤ bij .

After having defined the scalar functions we need a set of

inequalities to decide when a mission objective is satisfied.

Instead of just writing one inequality for each objective, the

user supplies a priority table such as the one below. Column

0 is always satisfied for technical reasons explained below.

Column 1 contains the first priority of the robots, in this

case to keep V2:OA ≤ −1, i.e., having a safety margin of at

least 1m to all obstacles. Column 2 then contains the second

priority of the robots, having the same safety margin to all

other robots, i.e. V3:CA ≤ −1. Column 3 adds the objective

of reaching the goal before t = 400, i.e. V1:TOA ≤ 400 and

so on. Note that Column 5 contains the desired safety margin

of V3:CA ≤ −15, thus if the robot is able to arrive within

t = 250, the safety margin of 15m is used. But if both of

these can not be achieved, t = 250 is more important, and

instead a safety margin of 1m is used, see Column 4.

The main idea of this approach is then to choose controls

that decrease the functions, and thus satisfy the inequalities

and the corresponding objectives in the order described in

the table below. For this to work, the functions must have

some particular properties defined below. The following three

sections are slightly more technical, but the main idea is as

simple as described above.

B. Behavior Control Lyapunov Functions

We will now formally define what we mean by Behavior

Control Lyapunov Functions (BCLF)

Definition 2 (BCLF): Given a system ẋ = f(x, u), a

bounded set of admissible controls Uadm, a piecewise C1

function V : R
n → R, and scalars b and ǫ > 0. Then V is a

BCLF for the bound b and ǫ if

min
u∈Uadm

∇V T f(x, u) ≤ −ǫ, ∀x : V (x) ≥ b.

With this definition we can state the following Lemma.

Lemma 1: If V is a BCLF, for b, ǫ, then there exists a

control sequence that achieves the objective V (x) ≤ b in

finite time.

Proof. Assume we start at some x = x0. Apply the control

u∗ = argminu∈Uadm
∇V T f(x, u). Then V̇ ≤ −ǫ and hence

the bound b will be reached in time t ≤ V (x0)−b

ǫ
.

Note that we will use a kinematic robot model, ẋ =
u, ||u|| ≤ vmax, throughout this paper. This is the case that

is most similar to the reactive robot approaches since most

of them use the desired robot velocity as output. However,

the framework is open to using dynamic robot models, with

more complex BCLFs. There are no general restrictions as

to what kind of system ẋ = f(x, u) can be.

bij 0 1 2 3 4 5 6 7

V1:TOA ≤ ∞ ∞ ∞ 400 250 250 250 0
V2:OA ≤ ∞ −1 −1 −1 −1 −1 −1 −1
V3:CA ≤ ∞ ∞ −1 −1 −1 −15 −15 −15
V4:F ≤ ∞ ∞ ∞ ∞ ∞ ∞ 8 8

Given a priority table with {bij} values, such as the one

above, one can formally define the current priority level as

follows.

Definition 3 (CPL): Given a set of BCLFs, Vi, and

bounds, bij , such that bi0 = ∞,∀i. Let the Current Priority

Level (CPL) or jCPL(x), be given by

jCPL(x) = max{j : Vi(x) ≤ bij , ∀i}

i.e. jCPL(x) is the rightmost column of {bij}, where all

constraints are satisfied.

Note that demanding bi0 = ∞ for all i guarantees that the

CPL is always defined. The control objective of the robot can

now be stated in terms of maximizing the CPL, i.e. move the

system as far down the priority table as possible.

C. Control Sets that Satisfy Different Mission Objectives

We will now make explicit the relationship between con-

trols and CPLs.

To increase the CPL the controller must strive to satisfy

the constraints in the next column of the table in section III,

while not violating the constraints of the current column.

Below we will see how this can be made more precise.

Definition 4 (Control Sets): Fix k > 0 and let ǫ > 0 be

the same as in Definition 2. Given a set of BCLFs, Vi, with

corresponding bounds, bij . Let

Usat(x) = {u : V̇i(x, u) ≤
1

k
(bij−Vi(x)), j = jCPL(x),∀i},

the set of controls satisfying the bounds of the CPL. Let

furthermore

Inext(x) = {i : Vi(x) ≥ bi(j+1), j = jCPL(x)},

the set of objectives to be focused on and

Uinc(x) = {u : V̇i(x, u) ≤ −ǫ,∀i ∈ Inext(x)},

the set of controls aiming to increase the CPL.

Remark 2: The constant k governs how fast a satisfied

bound bij can be approached. If the worst possible u ∈
Usat is chosen, then we have equality in the constraints,

V̇i(x, u) = 1
k
(bij − Vi(x)), and Vi approaches bij exponen-

tially, with the time constant k.

We will now characterize the sets that guarantee the

satisfaction of the CPL and the future increase in PL.

Lemma 2: If a system starts at x(t0) = x0, and the chosen

controls u satisfy

u ∈ Usat(x),

then jCPL(x0) ≤ jCPL(x(t)), ∀t > t0, i.e. the CPL will

not decrease. If furthermore

u ∈ Usat(x) ∩ Uinc(x),

1276

then jCPL(x0) < jCPL(x(t)) will be satisfied in finite time,

i.e. the CPL will increase.

Proof. Assume that there was a decrease in CPL at some

state x̂. Then bij = Vi(x̂) and V̇i(x̂, u) > 0 for some i = î.

But since u ∈ Usat(x) we have V̇î(x, u) ≤ k(bîj−Vî) = 0,

which contradicts the assumption. This proves the first part

of the Lemma. For the second part we note that jCPL(x0) <

jCPL(x(t)) in time t < maxi∈Inext(x)
Vi−bi(j+1)

ǫ
, similarly

to Lemma 1.

Remark 3: Note that in cases where a tradeoff must be

made, e.g., two robots are traveling in formation but have

goal locations in different places. Then there are no way for

both robots to stay in formation and arrive at their goal po-

sitions in time. Thus the sets Usat(x) and Usat(x)∩Uinc(x)
might be empty, depending on the current priority level. The

sets are however a clear representation of the controls that

guarantee kept or increased CPLs.

The question of what control to choose in the recom-

mended set is the topic of the next section.

D. Controller Synthesis

As seen above, choosing a control in Usat and Usat∩Uinc

is attractive, but as noted in Remark 3, one or both of these

sets might be empty. Below we define the set Usat∗ that is

never empty and identical to Usat whenever Usat 6= ∅.

In cases when Usat is empty the CPL can probably not

be sustained and is about to drop one or more levels. In

these situations we propose to search the priority table to find

the highest PL that can be satisfied in the near future. The

controls are then chosen to satisfy this level. To formalize

this we make the following definition.

Definition 5: Let k be the same as in Definition 4. Let

furthermore

jCPL∗(x) = max{j : Vi(x) ≤ bij , (2)

∃u ∈ Uadm :

V̇i(x, u) ≤
1

k
(bij − Vi(x)), ∀i}

and

Usat∗(x) = {u ∈ Uadm : (3)

V̇i(x, u) ≤
1

k
(bij − Vi(x)),

j = jCPL∗(x),∀i},

i.e. jCPL∗(x) is the rightmost column of {bij}, where all

constraints are satisfied, and there is a nonempty set, Usat∗,

of controls that does not immediately violate them.

Lemma 3: The set Usat∗(x) is never empty.

Proof. The proof follows directly from the definition of

jCPL∗(x).

With these sets we are ready to address the controller

design issue.

It is clear that the objectives in Inext should be focused

on. We suggest the following:

u∗ = argminu∈Usat∗
Σi∈Inext

V̇i(x, u), (4)

or u∗ = argminu∈Usat∗
ΣiV̇i(x, u) if CPL is at maximum.

In the next section we will see how the proposed controller

performs in three different settings. However, we will first

comment on how this control structure compares to the other

arbitration alternatives that were reviewed in Section II. The

priority table and Usat, Uinc clearly borrows a lot from

the arbitration methods Selection and Suppression. Using

set intersection of Usat and Uinc is similar to Voting, in

that options that are acceptable relative to many mission

objectives are favored. Finally, minimizing a sum of V̇i(x, u)
resembles the arbitration method Vector summation. Thus the

BCLF framework borrows and merges a set of different ideas

from reactive robot control using a mathematic framework

inspired by CLFs.

It is now time to illustrate the approach with a set of

simulation examples.

IV. SIMULATION EXAMPLES

Before going into details about the simulations we would

like to emphasize two things, the first is that the proposed

scheme is a variation of reactive robot control and thus

the plots will look qualitatively very much like those of

any other reactive control scheme. However, the outcomes

are more predictable in the quantitative sense. For instance,

Figure 8 shows how the given priorities in terms of e.g.,

time of arrival, are taken into account in a way that is

not possible with the other reactive approaches. The second

thing we would like to emphasize is that the choice of

circular obstacles was made for simplicity. The proposed

scheme works perfectly well with nonconvex obstacles with

the modification of using a Navigation function such as the

one in [7] instead of the norm to measure goal distance in

Equation (1).

Three robots are simulated using the priorities of the table

in section III. In the first two simulations we do not use

the formation objective, V4:F of equation (1). Running the

simulation we get the results of Figure 2, 3 and 4. Figure

2 shows a top view, Figure 3 shows the evolution of the

BCLFs in equation (1) over time, and the left part of Figure

4 shows the sets Usat∗ and Uinc of the rightmost robot at

the beginning. Throughout this section we will use the term

rightmost robot to refer to the robot starting at (100,0) etc.

As can be seen in Figure 3, V1:TOA ≤ 200 for all times

and thus all the bij values in the first row of the table

in section III are satisfied except the one in column 7, an

estimated arrival time of t = 0. The second row contains

the obstacle avoidance margins. Note that the numbers are

negative due to the fact that all inequalities are ’≤’. It can

be seen from Figure 3 that V2:OA ≤ −1 for all times and

thus the obstacle margin of 1 is always satisfied. Finally, the

third row contains inter robot distance margins and again it

can be seen in Figure 3 that V3:CA ≤ −15 thus satisfying the

margins of 1 as well as 15 for all times. The fourth row is not

used in this scenario, and we conclude that all three robots

remain at jCPL∗ = 6 throughout the simulation. At this

CPL, Inext(x) = 1 and the controllers focus on decreasing

V1:TOA, i.e. moving towards the goal, while Usat∗ makes

1277

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Fig. 2. Three robots starting at (0,0), (50,0) and (100,0) with corresponding
goal locations at (50,100), (100,100) and (0,100). The large circles are
obstacles while the small filled circles are snapshots of robot locations every
50 s. The robot trajectories are shown as solid curves. The bij values used
are found in the table of section III. Note how the rightmost robot first turns
right to keep the 15m safety distance to the middle robot, but then chooses
to stop and pass on the left instead of heading towards the obstacle. The Vi

functions are plotted in Figure 3.

0 50 100 150

0

50

100

150

200

250

300

Estimated Time of Arrival, V
1:TOA

0 50 100 150

−60

−50

−40

−30

−20

−10

0

Obstacle Distances (negative), V
2:OA

0 50 100 150

−50

−40

−30

−20

−10

Inter−Robot Distances (negative), V
3:CA

Fig. 3. The Vi functions of the scenario in Figure 2. Note how the inter
robot distances peak around t = 50 without violating the V3:CA ≤ −15

constraint. Note also that all estimated times of arrival are well within the
bound of 250 and obstacle distances within the −1 constraint.

sure that they do so without jeopardizing the objectives

already satisfied at jCPL∗ = 6. In the beginning, as shown

in the left part of Figure 4, Usat∗ = Uadm, i.e. none of the

currently satisfied objectives are close to not being met. As

can be seen in the right part of Figure 4, this is however not

the case for the next simulation.

The results of the second simulation run are shown in

Figures 5, 6 and 4. This simulation is identical to the first

one, with the one exception that the internal clock of the

rightmost robot is started at t = 100 instead of t = 0, as the

other robots. This fact makes the time of arrival objective,

t = 250, very close to not being met, as can be seen in

Figure 6.

The third simulation includes the formation objective, V4:F

and is shown in Figures 7, 8 and 9.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4. The control constraints of the rightmost robot at the start of the
two scenarios of Figure 2 (left plot) and Figure 5 (right plot). The left plot
illustrates the set Usat∗ as two solid circles, meaning that high velocity as
well as low velocity controls in all directions are allowed without violating
the current constraints. The dashed triangle illustrates the set Uinc and thus
the direction towards goal in this case. The right figure illustrates that only
high velocity commands in the north-west directions are allowed to satisfy
the current constraints which include the time of arrival constraint that is
close to being violated. Again, the dashed triangle denotes the set Uinc.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Fig. 5. The scenario of Figure 2 with the clock of the rightmost robot set
100s ahead, resulting in a time shortage to meet the time limit of t = 250.
Note how the middle robot has to make a sharp left turn while the rightmost
one only deviates slightly from its course.

As can be seen in Figure 8, all robots start with V4:F > 8,

i.e. they do not satisfy the formation objective and thus end

up at jCPL∗ = 5. This makes Inext(x) = 4 and the robots

move towards eachother while initially ignoring their goal

locations. After establishing a formation the robots reach

jCPL∗ = 6 as the only objective not being met is the ideal

time of arrival at t = 0. Thus the robots move towards

their individual goal locations making the formation rotate

slightly to avoid obstacles and account for the positions of

the different destinations. The controller constraints of the

rightmost robot at two separate time instants are shown in

Figure 9.

V. CONCLUSIONS

Reactive approaches are modular, and easy to understand

from a user point of view. However, they often lack the

mathematical rigor and predictability of model based control

schemes. In this paper we have tried to narrow this gap

by proposing an approach that combines the modularity of

reactive robot control methods with tools from Lyapunov

theory.

1278

0 50 100 150 200

100

150

200

250

300

Estimated Time of Arrival, V
1:TOA

0 50 100 150 200 250
−80

−60

−40

−20

0

Obstacle Distances (negative), V
2:OA

0 50 100 150 200
−60

−50

−40

−30

−20

−10

Inter−Robot Distances (negative), V
3:CA

Fig. 6. The Vi functions of the scenario in Figure 5. Note how the rightmost
robot starts out close to the constraint of the t = 250 arrival time. Note also
how all three robots are very close to the 15m safety distance constraint
from time t = 75 to t = 100. The unmodelled robot dynamics actually
makes the robot with time shortage fall just above the constraint resulting
in a new safety limit of 1m and thus a straight line trajectory, in Figure 5,
towards the goal from time t = 100.

0 20 40 60 80 100 120

0

10

20

30

40

50

60

70

80

90

100

b

a

Fig. 7. The same scenario as in Figures 2 and 5, with the formation
maintenance objective added, V4:F . The snapshots are plotted every 35s

and dashed triangles show concurrent positions of the robots. Note how
the robots as before starts on the line y=0, but quickly move towards the
middle, to form a triangle formation. Once this is established, they move
north towards their respective goals. The obstacles, as well as the positions
of the different goal locations make the formation rotate clockwise and
finally dissolve in order for the robots to meet their arrival time constraints.

REFERENCES

[1] P. Althaus and H.I. Christensen. Behavior coordination in struc-
tured environments. Brill Academic Publishers: Advanced Robotics,
17(7):657–674, 2003.

[2] R.C. Arkin. Behavior-Based Robotics. MIT Press, Cambridge, MA,
1998.

[3] Z. Artstein. Stabilization with relaxed controls. Nonlinear Anal.,
7(11):1163–1173, 1983.

[4] R. Brooks. A robust layered control system for a mobile robot.
Robotics and Automation, IEEE Journal of [legacy, pre-1988],
2(1):14–23, 1986.

[5] Rodney Brooks. Elephants don’t play chess. Robotics and Autonomous

Systems (6), pages 3–15, 1990.

[6] O. Khatib. Real-Time Obstacle Avoidance for Manipulators and
Mobile Robots. The International Journal of Robotics Research,
5(1):90, 1986.

0 50 100 150 200 250

100

150

200

250

Estimated Time of Arrival, V
1:TOA

0 50 100 150 200 250

−60

−40

−20

0

Obstacle Distances (negative), V
2:OA

0 50 100 150 200 250

−50

−40

−30

−20

−10

Inter−Robot Distances (negative), V
3:CA

0 50 100 150 200 250

0

20

40

60

80

100

120

Formation Fitness, V
4:F

Fig. 8. The Vi functions of the scenario in Figure 7. Note how all robots
initially focus on meeting the formation constraint, which is satisfied around
t = 50. Then the formation moves north while respecting obstacle distances.
Finally, the formation constraint is violated in order to just meet the time
of arrival constraint at t = 250.

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 9. The controller constraints of the middle robot of the scenario in
Figure 7 at positions a (left plot) and b (right plot). At a the formation
and obstacle avoidance constraints jointly excludes all control options but
high velocity south, or low velocity south or south west. These are almost
opposite to the desired goal direction of north east. At b on the other hand,
only the obstacle avoidance constraint is active, enabling all high- and low
velocity commands away from the obstacle, as well as a few low velocity
commands moving slightly closer. Again, Uinc, in these cases pointing
towards the goal, is shown as a dashed triangle.

[7] P. Ogren and NE Leonard. Obstacle avoidance in formation. Pro-

ceedings of the IEEE International Conference on Robotics and

Automation, ICRA’03., 2, 2003.
[8] R. Olfati-Saber. Flocking for multi-agent dynamic systems: algorithms

and theory. IEEE Transactions on Automatic Control, 51(3):401–420,
2006.

[9] P. Pirjanian, H.I. Christensen, and J.A. Fayman. Application of
voting to fusion of purposive modules: an experimental investigation.
Robotics and Autonomous Systems, 23(4):253–266, 1998.

[10] A. Saffiotti, K. Konolige, and E.H. Ruspini. A multivalued logic
approach to integrating planning and control. Artificial Intelligence,
76(1-2):481–526, 1995.

[11] RG Simmons. Structured control for autonomous robots. IEEE

Transactions on Robotics and Automation, 10(1):34–43, 1994.
[12] HG Tanner. Flocking with obstacle avoidance in switching networks of

interconnected vehicles. IEEE International Conference on Robotics

and Automation, ICRA’04, 3, 2004.
[13] B.B. Werger. Cooperation without deliberation: A minimal behavior-

based approach to multi-robot teams. Artificial Intelligence,
110(2):293–320, 1999.

1279

