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Abstract— The dynamic window approach (DWA) is a well
known navigation scheme developed by Fox et. al. [1] and
extended by Brock and Khatib [2]. It is safe by construction and
has been shown to perform very efficiently in experimental setups.
However, one can construct examples where the proposed scheme
fails to attain the goal configuration. What has been lacking is a
theoretical treatment of the algorithm’s convergence properties.
Here we present such a treatment by merging the ideas of the
DWA with the convergent but less performance-oriented scheme
suggested by Rimon and Koditschek [4]. Viewing the DWA as a
Model Predictive Control (MPC) method and using the Control
Lyapunov Function (CLF) framework of [4] we draw inspiration
from a MPC/CLF framework put forth by Primbs [3] to propose
a version of the DWA that is tractable and convergent.

Index Terms— Mobile Robots, Robot Control, Obstacle Avoid-
ance, Navigation Function, Model Predictive Control, Receding
Horizon Control, Lyapunov Function.

I. I NTRODUCTION

The problem of robotic motion planning is a well-studied
one, see for instance [10]. One of the early approaches is arti-
ficial potential fields, where the robot is driven by the negative
gradient of a sum of potentials from different obstacles and
the goal. Many of these methods suffer from the problem of
local minima, i.e. positions different from the goal, where the
robot could get stuck. The most refined method along these
lines is perhaps [4], where advanced mathematics is applied
to construct an artificial potential function without such local
minima. Other approaches have used ideas from fluid mechan-
ics or electro magnetics [18],[19] to construct functions free of
local minima, but they are in general computationally intensive
and therefore ill suited for dynamic environments.

There is also a direction of research towards biologically
motivated, non-model-based methods. These include fuzzy or
neural approaches and the behavior-based paradigm described
in e.g. [12]. A recent attempt to incorporate mathematical
formalism into such frameworks can be seen in [8], but
they are still in general hard to analyze from a convergence
perspective. In cluttered environments the exact shape of the
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robot must be taken into account; these aspects have been
investigated in [16], [13]. Most work however, as well as our
study, assume a circular or point shaped robot.

We build our proposed scheme on the combination of a
model-based optimization scheme and a convergence-oriented
potential field method. A large class of model-based tech-
niques use optimization to choose from a set of possible tra-
jectories, [1], [2], [14], [15]. We argue that these optimization
based techniques can be seen as applications of a Model Pre-
dictive Control approach (or, equivalently, a Receding Horizon
Control approach). Having made this observation, we look at
the method of Exact Robot Navigation using Artificial Poten-
tial Functions put forth by Rimon and Koditschek [4]. After
constructing a continuously differentiable navigation function
(artificial potential) Rimon and Koditschek use Lyapunov
theory to prove convergence. Bounded control and safety is
shown, but the method has the drawback of almost never
using the full control authority and is furthermore not suited
for dynamic environments where fast response to changes is
essential. Inspired by Primbs [3] we present a way to merge
the convergent Koditschek scheme with the fast reactive DWA.
This is done by casting the two approaches in a MPC and CLF
framework respectively and combining the two as suggested
by Primbs. The conceptual flowchart of this combination is
depicted in Figure 1.

Primbs ’99 MPC/CLF Framework

Convergent DWA

Control Lyapunov Function (CLF)Model Predictive Control (MPC)

(DWA), Fox et. al. ’97
Dynamic Window Approach Exact Robot Navigation

using Art. Pot. Functions

Fig. 1. The idea of the proposed approach can be seen as combining
elements from the original DWA with a construction guaranteeing convergence
proposed by Rimon and Koditschek. This is done with inspiration from a
MPC/CLF framework suggested by Primbs.



The organization of this paper is as follows. In Section II
we review the work of [1] and [2] as well as [3]. Then, we
explain our proposed scheme in detail in Section III. In Section
IV we discuss the theoretical properties of our approach and
in Section V we give a simulation example. The conclusions
can be found in Section VI. This paper builds on our earlier
work [5], [6].

II. PREVIOUS WORK USED IN THISPAPER

In this section we discuss the ideas of Figure 1 in some
detail.

A. The Dynamic Window approach and its extension

The Dynamic Window approach [1] is an obstacle avoidance
method that takes into account the dynamic and kinematic
constraints of a mobile robot (many of the vector field and
vector field histogram approaches do not). The basic scheme
involves finding theadmissible controls, those that allow
the robot to stop before hitting an obstacle while respecting
the above constraints. Then an optimization is performed
over those admissible controls to find the one that gives the
highest utility in some prescribed sense. There are different
suggestions for the utility function in [1] and [2], including
components of velocity alignment with preferred direction,
large minimum clearances to obstacles, possibility to stop at
the goal point and the norm of the resulting velocity vector
(large being good).

Brock et. al. [2] extended the work in [1] by looking
at holonomic robots (Fox et. al. considered synchro drive
ones) and more importantly by adding information about
connectivity to the goal. The latter was done by replacing
the goal direction term with the gradient of anavigation
function defined as the length of the shortest (unobstructed)
path to the goal [10]. Thus, they were able to eliminate the
local minima problems present in so many obstacle avoidance
schemes (hence the term “Global” in the title of [2]).

The experimental results reported in [1] and [2] are excel-
lent, showing consistent safe performance at speeds up to 1.0
m/s with a Nomadic Technologies XR4000 robot, [2]. The
results demonstrate an algorithm that is safe by construction
(in the sense that the robot never hits obstacles) and displays
high efficiency in extensive experimental tests. But although
Brock and Khatib argue that the use of a navigation function
makes the approach “Global”, it is never formally shown. In
fact, examples can be constructed where the robot enters a
limit cycle, never reaching the goal or actually consistently
moves away from the goal (see Section III-D).

B. Exact Robot Navigation using Artificial Potential Fields

One of the main contributions of [4] is the clever con-
struction of a special artificial potential. This potential has
no local minima except the global minimum at the goal. It is
furthermore continuously differential and attains its maximum
value at all the obstacle boundaries.

Combining such a potentialNF (r), where r ∈ IR2 is
position, with a kinetic energy term one can construct a control

CLF MPC
Global information Local information
Stability oriented Performance oriented
Off-line analysis On-line computation
Hamilton Jacobi Bellman type Euler-Lagrange type

TABLE I

COMPLEMENTARY PROPERTIES OF THE TWO APPROACHES.

Lyapunov function as

V (r, ṙ) =
1
2
ṙT ṙ +NF (r).

The dynamics̈r = u and the controlu = −∇NF + d(r, ṙ),
whered(r, ṙ) is a dissipative force, yieldṡV ≤ 0 and stability
in the Lyapunov sense.

The controls are bounded since∇NF is continuous on a
compact set. Further, the fact thatV̇ ≤ 0 and NF (r) =
NFmax at the obstacle boundaries guarantees against colli-
sions if the initial velocity is small enough. The construction
is however only valid ina priori known ‘generalized sphere
worlds’ containing obstacles of specific categories. To adjust
the scheme to a specific robot requires a scaling ofNF to
make the maximal∇NF (r) smaller than the robot control
bound. This in turn will make the vast majority of prescribed
control signals far below the bound resulting in very slow
progress towards the goal.

We draw inspiration from the work in [4]; however, we relax
the constraints on∇NF from continuous to piecewise con-
tinuous and remove the requirement thatNF (r) = NFmax at
the boundaries. By doing this we hope to gain computational
efficiency in calculating (and recalculating in case of new
information) theNF and also to allow quite general obstacle
shapes. Removing these constraints furthermore gives the
possibility to add the constraint||∇NF (r)|| = k, used to
enhance performance.

C. Control Lyapunov Functions and Model Predictive Control

In an interesting paper by Primbs, Nevistic and Doyle, [3],
the connection between Control Lyapunov Functions (CLF)
and Model Predictive Control (MPC) is investigated (MPC
is also known as Receding Horizon Control, RHC). They
note the complementary properties shown in Table 1. In view
of these properties they suggest the following framework to
combine the complementary advantages of each approach. The
control law is chosen to satisfy a short-horizon optimal control
problem under constraints that ensure the existence of a CLF.
The problem becomes one of finding a controlu and a CLF
V (x) that satisfy (1) through (4) as follows:

infu(·)

∫ t+T

t

(q(x) + uTu)dτ (1)

s.t. ẋ = f(x) + g(x)u (2)
∂V

∂x
(f + gu) ≤ −εσ(x(t)) (3)

V (x(t+ T )) ≤ V (xσ(t+ T )), (4)

where q(x) is a cost on states,ε > 0 is a scalar,T > 0 is
the horizon length,σ(x) is a positive definite function andxσ



is the trajectory when applying a pointwise minimum norm
control scheme (for details see [3]). This formulation inspires
our choice of a more formal, continuous time formulation
of the Dynamic Window Approach, allowing us to prove
convergence.

III. A P ROVEN CONVERGENTDYNAMIC WINDOW

APPROACH

In the main parts of this paper we will use the notation
x = (r, ṙ) = (rx, ry, ṙx, ṙy) for the state of the system. We
adopt the robot model from [2], which is basically a double
integrator in the planër = u, r ∈ IR2 with bounds on the
control ||u|| ≤ umax and on the velocity||ṙ|| ≤ vmax. Note
that it was shown in [9] that an off-axis point on the unicycle
robot model described by

ṙx = v cos θ,
ṙy = v sin θ,
θ̇ = ω,

v̇ = F/m,

ω̇ = τ/J,

can be feedback linearized tör = u. For the environment we
assume that the robot’s sensors can supply an occupancy grid
map, i.e. a rectangular mesh with each block being marked as
either free or occupied, over the immediate surroundings. Here
the size of the robot must be taken into account and additional
safety margins can be added. A position marked as free means
that the robot doesn’t intersect any obstacles when occupying
that position. Thus a map can be incrementally built as the
robot moves around. We assume, as did Brock and Khatib,
that the simultaneous localization and mapping (SLAM, see
e.g. [20]) problem is solved for us. In cases where we are
given a probabilistic occupancy grid a heuristic weighting in
the utility function (10) is conceivable.

A. Navigation Function

In our setting, the navigation functionNF (r), [10], [2], [4]
approximately maps every free space position to the length of
the shortest, collision-free path going from that position to the
goal point. Note that this version, taken from [2] is slightly
different (e.g. noC2 property) from the definition in [4]. To
be more precise we make the following definition.

Definition 3.1 (Navigation Function): By a Navigation
Function (NF ) we mean a continuous function defined on
the simply connected part of the obstacle-free space⊂ IR2,
containing the goal point and mapping to the real numbers.
A NF has only one local minimum, which is also the
global minimum. The set of local maxima is of measure
zero. ∇NF is piecewise continuous and the projection of
the left and right limits along the discontinuity edges satisfy
eT∇leftNF (r) = eT∇rightNF (r), where e ∈ IR2 is the
direction of the edge and∇left(right)NF (r) is the gradient
on each side of it.

Before investigating how to construct such a function in
detail we note that it is shown in [2] how to deal with the case
when the robot at first only knows its immediate surroundings

by use of its sensors. The idea is to assume free space at the
unknown positions and then recalculate the navigation function
when sensor data showing the opposite arrives. In this way
the robot guesses good paths and updates them when new
information arrives. The information is immediately taken into
account in the optimization (10) thus avoiding collisions. The
less urgent recalculation of the Navigation Function is then
done. These updates are made at a time scale much slower
than the actual motion control so in our considerations below
we assume the map to be static. Brock and Khatib, [2], used
the gradient of the navigation function as the desired heading
instead of using just the goal direction as Fox did [1].

To compute the navigation function we will use a technique
similar to the one suggested in [2]. There, however, theNF
was piecewise constant in the grids; here, we need a local-
minima-free continuous function defined on all free space
making things somewhat more complicated. The basic idea is
to solve the shortest path problem in a graph discretization
and then make a careful continuous interpolation for the
positions in between the discretization points. An example of
the discretization can be seen in Figure 2.
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Fig. 2. The graph discretization and computed shortest path distances. The
shaded squares correspond to an obstacle.

Lemma 3.1 (Construction of NF): A Navigation Function
can be created by the following procedure:

1) Make a graph out of the rectangular mesh of the obstacle
grid map, with vertices at the corners of each square
and edges along the square edges. Remove vertices and
edges that are in the interior of obstacles.

2) One of the vertices is chosen as goal point.
3) Solve the shortest path problem in the graph (can be

done with polynomial time algorithms, [11]). Mark each
vertex with the corresponding path length and let this
length be the value ofNF at the vertex.

4) Divide the squares into triangles by drawing a diagonal
through the corner with highest NF value (this is shown
to be unique below).

5) In the interior of each resulting triangle, letNF (r) be
a linear interpolation betweenNF at the three vertices,
i.e. let the value ofNF (r) be a plane intersecting the
three vertices.



Proof: We begin by showing that there are no local minima
on the graph vertices and edges. Note that for a given pair
of vertices(A,B), if one path betweenA andB has even
(odd) length (in multiples of the edge lengthl), so has any
other path. Therefore, two neighbors cannot have the same
NF value. SinceNF (r) on the edges is a linear interpolation
between the value on the vertices, the edges have no local
minima. Furthermore, from every vertex, there is a shortest
path to goal and along this pathNF decreases monotonically.
Thus, there can be no local minima vertex, except the goal
point.

Now we look at the values in the interior of the squares.
Given a square, look at the corner of lowest value, which may
or may not be unique. If it is unique and of valuek, then
the two adjacent corners must have valuek+ l wherel is the
side length and the opposite corner must havek+2l since no
adjacent corners have the same value (see Figure 3, left). The
diagonal is fromk+2l to k and in this case the two triangles
will actually form an inclined plane which obviously has no
interior local minima.

k k

NF(x)=kNF(x)=k+2l k+l

k+l

k+l

k+l

Fig. 3. The two possible cases, unique lowestNF (x) (left, as in the square
northwest of the goal point in Figure 2) and two equal (right, as in the square
northeast of the obstacle in Figure 2). The arrows indicate−∇NF .

If the lowest value is not unique, the opposite corner must
have the same valuek and the two adjacent onesk + l
(see Figure 3, right). The diagonal is between the twok + l
corners (unique as stated in the construction) and this diagonal
composes a ridge of local maxima. There are however no local
minima.

Thus we have seen that there is only one local minima,
the goal point. There might be local maxima on some di-
agonals, as in Figure 3 (right), but they are isolated lines
and thus of measure zero. Finally, sinceNF is composed of
triangles glued together the projection along the edges fulfills
eT∇leftNF (r) = eT∇rightNF (r) as above.

With a Navigation Function at our disposal, we are ready
to look at the actual choice of control.

B. General Control Scheme

The basic idea for the convergence proof is the same as in
[4]. First we write the problem as a conservative system with
an artificial potential and then we introduce a dissipative con-
trol term. In the conservative system we choose the artificial
potential to be(k/

√
2)NF (r), wherek is a positive constant

that must be chosen smaller than the control boundumax. The
Control Lyapunov Function is

V (x) =
1
2
ṙT ṙ +

k√
2
NF (r), (5)

whereNF (r) is the navigation function as explained above.
Incorporating the upper bounds on the control magnitude, we
define the dissipative control set as follows.

Definition 3.2 (Dissipative Controls, Cd(r, ṙ)):

Cd(r, ṙ) = {u : u = uc + ud,

uc = − k√
2
∇NF

ud : uT
d ṙ < −ε||ṙ|| < 0, if ṙ 	= 0

||u|| ≤ umax, }
for some givenε > 0. We writeu ∈ Cd(r, ṙ).

A typical shape of theCd(r, ṙ) set is the shaded regions
in Figure 4 whereC1 (the nine dots) is a discretized (finite)
subset ofCd. Note that ||uc|| = ||(k/√2)∇NF (r)|| = k,
since||∇NF (r)|| =

√
2, (the directional derivative along each

axis of the grid is equal to 1, the gradient direction is diagonal
to the grid and the magnitude is

√
12 + 12, see Fig. 3). Thus

uc lies on a circle of radiusk. The outer circle of radiusumax

bounds the control set.
Now the problem is to make sure the robot does not run into

obstacles. In the standard Dynamic Window Approach this is
taken care of by choosing amongadmissible, i.e. not colliding,
controls in an optimization. Here we shall do the same.

A general formulation of the combined CLF/MPC scheme
now looks like this

min
u(·)

V (x(t+ T )) (6)

s.t. u(s) ∈ Cd(r, ṙ), ∀s ∈ [t, t+ T ] (7)

r(s) collision free, ∀s ∈ [t, t+ T ] (8)

ṙ(t+ T ) = 0, (9)

whereT is the horizon length of the MPC. Here (7) gives
stability in the Lyapunov sense. Safety is guaranteed by (8,9),
i.e. a planned collision free trajectory ending with the robot
standing still. This corresponds to the policy of driving a car
slow enough so that you can always stop in the visible part
of the road. Perhaps somewhat conservative on a highway, but
sensible on a small forest road where fallen trees might block
your way.

Note that the above formulation can in principle be applied
to enhance the performance of any approach with an artificial
potential having a well-behaved gradient, e.g. the originalNF
suggested in [4] or a version of [18], [19]. We still believe
however that theNF suggested above is a choice yielding
high robot velocities and good computational efficiency.

The optimal control problem of the MPC above can be
computationally intensive, as seen in related approaches such
as [7]. Therefore, we devote the next section to showing
how a very coarse discretization can still yield quite good
performance. In Section IV we give detailed proofs of the
theoretical properties of the proposed method.

C. Discretized Control Scheme

To end up with a computationally tractable version of the
MPC above we discretize the set of dissipative controls,Cd,
into two sets with piecewise constant, relative to the velocity



direction, controls. The horizon length isT = T1 + T2 where
T1 is the time over which the resulting control will be applied.
After time T1 a new optimization is performed. The control
setCd is discretized into two sets,C1 andC2, corresponding
to the two time intervals of lengthT1 and T2. A third set
Cs is used when starting from a standstill, see Definition
3.3. To make the scheme precise we formulate the following
algorithm.

Algorithm 3.1 (Control Scheme): The control algorithm is
composed of the following steps, where number 3 is the main
one.

1) If ṙ = 0, choose the control pair(Cs, C2middle), as given
in Definition 3.3, i.e. start out in a good direction.

2) Else, if t ≥ t0 + Ttimeout, then set the newt0 = t.
If furthermore,V (t0) − V (t) ≤ ∆Vtimeout, then take
the C2 part C2prev of the previous control pair and
choose the control pair(C2prev, C2prev), i.e. reset and
stop safely.

3) Else, choose the optimal solution to the MPC control
problem

min
C1×C2

V (x(t+ T )) (10)

s.t. x(·) is collision free.

4) Apply the first part of the chosen control pair forT1

time units, then repeat from 1.
Here∆Vtimeout is a user defined decrease inV over the time
Ttimeout. This timeout construction is needed to guarantee
against the hypothetical case of the robot velocity slowly
approaching zero. Then the decrease boundV̇ ≤ ε||ṙ|| is not
enough to yield convergence. The control sets are defined as
follows.

Definition 3.3 (Control Sets, C1, C2 and Cs): Let C1 be
the set of 9 controls depicted in Figure 4, left andC2 be
the set of 4 controls (a subset ofC1) in Figure 4, right. Note
thatC1 andC2 are defined relative to the velocity directionṙ.
Furthermore, letCs be the control directed towards the corner
of the current grid with the lowestNF (r) value (if there are
more than one such corner the one closest to the robot is
chosen) and with control magnitude such that after applying
Cs for time T1 and the middle, hardest braking, control ofC2

for time T2 the robot stops at the corner.
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Fig. 4. The Control setsC1 andC2.

Note thatCs ⊂ Cd since the acceleration is towards the
corner closest to goal. We further assume the grids to be small

enough to be traversable by theCs × C2 control in T1 + T2

time units. To make the ‘current grid’ unique, positions on
the boundary of grids are assigned to belong to one of the
adjacent grids.

The interval[t, t + T ] is divided into two parts,[t, t + T1]
and [t + T1, t + T ], whereT1 is the time step of the MPC
control loop. In the first part[t, t+T1], a control fromC1, the
set of controls in Figure 4, left, is chosen. In the second part
[t+T1, t+T ], a control fromC2, the set of controls in Figure
4, right, is chosen. Note that the controls in the sets above
are constant with respect to the direction of the robot velocity,
ṙ. C2 consists of 4 controls (the dots in Figure 4, right) all
reducing the speed of the robot.C1 consists of 5 controls on
the border of the dissipative region (shaded area) and the 4
C2 controls (the shaded dots). Thus, the whole setC1 × C2

consists of(5 + 4) · 4 = 36 control sequences.
In Figure 5 we see parts of an executed trajectory together

with all the options evaluated in the optimization. An obstacle
as well as the level curves of the navigation function are also
depicted.
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Fig. 5. An obstacle, level curves of theNF and parts of a trajectory as well
as all the considered options.

It can be seen that in the first time step the leftmost control
of C1 is chosen and in the second time step the rightmost is.
SinceT1 is the length of the time step, it is only theC1 part
of C1 × C2 that is actually executed.

The purpose of theC2 part is to guarantee safety. The time
T = T1 + T2 should be chosen long enough for the robot to
stop at (or before) timet + T (since all theC2 controls are
braking). The optimization is done with the constraint that the
resulting trajectory doesn’t hit any obstacles, hence the choice
of the rightmost control the second time. The fact that the
previously chosenC2 control is an option inC1 makes the
last part of the (safe) previously chosen control sequence an
option in the next optimization. As a result there is always
at least one admissible (and therefore safe) control sequence
available. As stated above, this is similar to always making
sure you can stop in the visible part of the road when driving
a car.



One might argue that discretization and exhaustive search
is an inelegant solution. But we chose it for two reasons.
The utility function V (x(t + T )) varies rather slowly over
the admissible set of controls and this set in turn can be very
complex, e.g. unconnected if there are traversable paths to the
right and to the left but the road straight ahead is blocked
by an obstacle. The constraints are also far from being a
differentiable function inequality. Due to these facts a steepest
decent approach will not do well.

D. Example of Convergence Failure of Previous Approach

The Utility function of [2] that is to be maximized is

Ωg(p, v, a) = α · nf1(p, v) + β · vel(v)
+γ · goal(p, v) + δ · ∆nf1(p, v, a)

where p, v, a is the current position and desired velocity
and acceleration.α, β, γ, δ are scalar weights,nf1(p, v)
increases if the velocity is aligned with the navigation function
gradient, vel(v) increases with velocity (if far from goal),
goal(p, v) is binary, 1 if the trajectory will pass through the
goal point and∆nf1 is the decrease in navigation function
value.

Consider a ‘T’ shaped, very narrow corridor, with the robot
initially in the top left end and the goal defined in the bottom
end. This will leave the robot accelerating maximally towards
the right. If the corridor is long and narrow enough, the speed
is going to be too great to allow a right turn at the intersection.
Thus, the robot will continue away from the goal. In particular,
when the corridor is very narrow and turning is not an option,
the robot must either brake or not. If the weights are such that
the velocity term, vel(v), outweighs the∆nf1 term, the robot
will just keep on going. Otherwise, it will brake maximally. If,
however, the acceleration is as powerful as the retardation, the
robot will oscillate back and forth in the upper part of the ‘T’
and never be able to make the sharp turn into the goal part of
it. A similar counter example was independently presented in
[7]. Note that the Lyapunov property of equation (11) below
removes these kinds of problems in the proposed approach.

IV. PROOF OFCONVERGENCE ANDSAFETY

Before we formulate the main theorem of this paper we
need a lemma.

Lemma 4.1 (Control Lyapunov Function): The function

V (x) =
1
2
ṙT ṙ +

k√
2
NF (r),

is a Control Lyapunov Function and anyCd control satisfies
the following inequality

V̇ (x) ≤ −ε||ṙ||. (11)
Proof: The candidate Lyapunov Control Function isV (x) =
1
2 ṙ

T ṙ + k√
2
NF (r), which is clearly positive definite with a

global minimum atxgoal = (rgoal, 0). Differentiating with
respect to time giveṡV (x) = ṙTu+ k√

2
ṙT∇NF (r) = ṙT (uc+

ud + k√
2
∇NF (r)) ≤ −ε||ṙ||, by the constraints onu. The

Navigation Function is however not differentiable everywhere.
Along the triangle edges ofNF there are in general two

different (left and right) limits of the gradient. The projections
along the edge is however the same,ṙT∇leftNF (r) =
ṙT∇rightNF (r) making the inequality true. Furthermore, it
is this projection that is needed when determiningu according
to the definition ofud, see Definition 3.2 and Figure 4.

If ṙ is not parallel to an edge, the problem with undefined
∇NF (r) in the control will only occur in one isolated time
instant and thus

∫
V̇ dt is not changed by whatever value we

use.

Theorem 4.1 (Finite Completion Time): Suppose the con-
trol scheme in Algorithm 3.1 is used and there is a traversable
path from start to goal in the occupancy grid. Then, the robot
will reach the goal position in a time bounded above by

Tgoal ≤ (V0

√
2
k

1
l
2)2(Ttimeout + T1 + T2)

+
V0

∆Vtimeout
Ttimeout,

whereV0 = V (xstart) is the value of the CLF at the starting
position.
Proof: By Lemma 4.1 we have thaṫV (x) ≤ −ε||ṙ||. Thus the
system is stable in the sense of Lyapunov.

After a stop the robot starts moving towards the corner
of the current grid closest to goal, i.e. with lowestNF (r).
Then, the optimization improves on this, making the out-
come at least as good as stopping at that corner (at a stop,
V (r, ṙ = 0) = k√

2
NF (r)). Together with the fact that

V̇ (x) ≤ 0, this means that the robot will never stop in
that grid again. Thus the number of possible grids to occupy
(which is finite) is reduced by at least one between each
pair of stops. SinceNF is the path length, the number of
possible grids is bounded by(V0

√
2

k
1
l 2)2. Therefore, this is

also a bound on the number of stops. The timeout induces
a stop if V (t0) − V (t0 + Ttimeout) ≤ ∆Vtimeout. This
makes the number ofTtimeout-sized intervals without a stop
bounded by V0

∆Vtimeout
. Combining the two we getTgoal ≤

(V0

√
2

k
1
l 2)2(Ttimeout + T1 + T2) + V0

∆Vtimeout
Ttimeout.

Remark 4.1: Note that this is an extreme worst case anal-
ysis. In the simulations the robot did not stop at all before
reaching the goal position.

Theorem 4.2 (Safety): Suppose the control scheme in Algo-
rithm 3.1 is used and the robot starts at rest in an unoccupied
position. Then, the robot will not run into an obstacle.
Proof: The proof relies on the recursive structure ofC1 ×C2.
The subset of non colliding controls inC1 × C2 (that we are
optimizing over) is never empty since we can always choose
theC2 (not yet applied) part of the previousC1 ×C2 control
sequence as our newC1 control.

V. SIMULATION EXAMPLE

To illustrate the approach we chose a setting with three
large obstacles in a 9 by 9 meter area, as seen in Figure 6. We
used parameters for the Nomadic Technologies XR4000 robot
obtained from [2],||u|| ≤ umax = 1.5m/s2, ||ṙ|| ≤ vmax =
1.2m/s. The resulting robot trajectory and the level curves of
the navigation function are also depicted in the figure. Note



the absence of local minima as guaranteed by the construction
in Lemma 3.1. In the beginning and the end of the trajectory
it can be seen how the MPC minimization in equation (10)
favors going perpendicular to the level curves.
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Fig. 6. The Obstacles and robot trajectory.

In Figure 7 parts of the trajectory as well as the Model
Predictive Control options are shown. The robot slows down
in two places, as can be seen in Figure 8. These are located
at (6.5, 7.2) and(5.5, 5.5) respectively. In the second instance
all the non brakingC1 controls makes the robot collide. The
sharp braking right turn, theC2 part of the previous choice,
is however safe and therefore applied. At the first instance,
(6.5, 7.2), the non braking right turn is safe, but the braking
left turn yields a lowerV (x(t+ T )) value (it is closer to the
goal) and is thus chosen.
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Fig. 7. A closeup of parts of the trajectory including all the evaluated
options of the Model Predictive Control. The robot slows down in two places,
(6.5, 7.2) and (5.5, 5.5). in order not to collide.

To enforce the||ṙ|| ≤ vmax = 1.2m/s bound, we impose
the additional acceleration constraint

uT ṙ
1

||ṙ|| ≤
vmax − ||ṙ||

T1
.

This constraint is of the same sort as the dissipative constraint,
i.e. it can be depicted as another horizontal line above or below
the ones in Figure 4. If the new constraint is more restrictive
(lies below the first two) theC1 options will be placed just
below it instead of just below the others. Thus, in Figure 8
the robot reaches a “steady state” velocity close tovmax =
1.2m/s in the open areas.
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Fig. 8. The robot velocity. Note how the speed is limited byvmax = 1.2m/s
and how it decreases twice during the narrow passage.

VI. CONCLUSIONS

In this paper we have first presented the well known Dy-
namic Window Approach to fast and safe obstacle avoidance
in an unknown environment. We then recast the approach in
a continuous nonlinear control framework suggested by [3].
With a few changes to the basic scheme we were able to
prove convergence to the goal position. This is significant since
the earlier scheme could be subject to limit cycles and even
divergence.
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