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Abstract— The dynamic window approach (DWA) is a well robot must be taken into account; these aspects have been

known navigation scheme developed by Fox et al. [1] and jnvestigated in [16], [13]. Most work however, as well as our

extended by Brock and Khatib [2]. It is safe by construction and study, assume a circular or point shaped robot
has been shown to perform very efficiently in experimental setups. ' )

However, one can construct examples where the proposed scheme We build our proposed scheme on the combination of a
fails to attain the goal configuration. What has been lacking is a model-based optimization scheme and a convergence-oriented

theoretical treatment of the algorithm’s convergence properties. potential field method. A large class of model-based tech-
Here we present such a treatment by merging the ideas of the 465 yse optimization to choose from a set of possible tra-

DWA with the convergent but less performance-oriented scheme . . o
suggested by Rimongand Koditschgk [4]. Viewing the DWA as a jectories, [1], [2], [14], [15]. We argue that these optimization

Model Predictive Control (MPC) method and using the Control based techniques can be seen as applications of a Model Pre-
Lyapunov Function (CLF) framework of [4] we draw inspiration  dictive Control approach (or, equivalently, a Receding Horizon

from a MPC/CLF framework put forth by Primbs [3] to propose  Control approach). Having made this observation, we look at
a version of the DWA that is tractable and convergent. the method of Exact Robot Navigation using Avtificial Poten-
Index Terms— Mobile Robots, Robot Control, Obstacle Avoid- tial Functions put forth by Rimon and Koditschek [4]. After
ance, Navigation Function, Model Predictive Control, Receding constructing a continuously differentiable navigation function
Horizon Conirol, Lyapunov Function. (artificial potential) Rimon and Koditschek use Lyapunov

theory to prove convergence. Bounded control and safety is

I. INTRODUCTION shown, but the method has the drawback of almost never

The problem of robotic motion planning is a well-studied!sing the full control authority and is furthermore not suited
one, see for instance [10]. One of the early approaches is alét dynamic environments where fast response to changes is
ficial potential fields, where the robot is driven by the negativssential. Inspired by Primbs [3] we present a way to merge
gradient of a sum of potentials from different obstacles ariie convergent Koditschek scheme with the fast reactive DWA.
the goal. Many of these methods suffer from the problem dhis is done by casting the two approaches in a MPC and CLF
local minima, i.e. positions different from the goal, where thlamework respectively and combining the two as suggested
robot could get stuck. The most refined method along thelgg Primbs. The conceptual flowchart of this combination is
lines is perhaps [4], where advanced mathematics is appliégpicted in Figure 1.
to construct an artificial potential function without such local
minima. Other approaches have used ideas from fluid mechan-
ics or electro magnetics [18],[19] to construct functions free of
local minima, but they are in general computationally intensive
and therefore ill suited for dynamic environments. \ /

There is also a direction of research towards biologically
motivated, non-model-based methods. These include fuzzy or | Model Predictive Control (MPC)‘ ‘ Control Lyapunov Function (cwﬁ
neural approaches and the behavior-based paradigm described
in e.g. [12]. A recent attempt to incorporate mathematical \ /
formalism into such frameworks can be seen in [8], but ‘primbsvggMPC,CLFFramewor+
they are still in general hard to analyze from a convergence
perspective. In cluttered environments the exact shape of the }
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The organization of this paper is as follows. In Section Il CLF MPC

we review the work of [1] and [2] as well as [3]. Then, we gggml&n‘zﬂgﬁgn E%?%rmg)r:?eag?i:nted
explain our proposed scheme in detail in Section Ill. In Section  Off-line analysis On-line computation
IV we discuss the theoretical properties of our approach and Hamilton Jacobi Bellman type  Euler-Lagrange type
in Section V we give a simulation example. The conclusions TABLE |

can be found in Section VI. This paper builds on our earlier COMPLEMENTARY PROPERTIES OF THE TWO APPROACHES
work [5], [6].

II. PREVIOUSWORK USED IN THISPAPER .
) . . . ) ] Lyapunov function as
In this section we discuss the ideas of Figure 1 in somé

detail. V(r,#) = %i’Ti“ + NF(r).

The dynamics’ = u and the controkh = —VNF + d(r, 1),
whered(r, ) is a dissipative force, yieldg < 0 and stability
The Dynamic Window approach [1] is an obstacle avoidange the Lyapunov sense.
method that takes into account the dynamic and kinematicThe controls are bounded sinG&N F is continuous on a
constraints of a mobile robot (many of the vector field andompact set. Further, the fact thait < 0 and NF(r) =
vector field histogram approaches do not). The basic scheme,,,,. at the obstacle boundaries guarantees against colli-
involves finding theadmissible controls, those that allow sions if the initial velocity is small enough. The construction
the robot to stop before hitting an obstacle while respectiig however only valid ina priori known ‘generalized sphere
the above constraints. Then an optimization is performegbrids’ containing obstacles of specific categories. To adjust
over those admissible controls to find the one that gives thtee scheme to a specific robot requires a scalingVat to
highest utility in some prescribed sense. There are differanbke the maximaW N F(r) smaller than the robot control
suggestions for the utility function in [1] and [2], includingbound. This in turn will make the vast majority of prescribed
components of velocity alignment with preferred directiorgontrol signals far below the bound resulting in very slow
large minimum clearances to obstacles, possibility to stop grogress towards the goal.
the goal point and the norm of the resulting velocity vector We draw inspiration from the work in [4]; however, we relax
(large being good). the constraints ortW N F' from continuous to piecewise con-
Brock et. al. [2] extended the work in [1] by lookingtinuous and remove the requirement thak'(r) = N F,,,. at
at holonomic robots (Fox et. al. considered synchro drithe boundaries. By doing this we hope to gain computational
ones) and more importantly by adding information abouwfficiency in calculating (and recalculating in case of new
connectivity to the goal. The latter was done by replacingformation) theN F' and also to allow quite general obstacle
the goal direction term with the gradient of ravigation shapes. Removing these constraints furthermore gives the
function defined as the length of the shortest (unobstructegpssibility to add the constraiftVNF(r)|| = k, used to
path to the goal [10]. Thus, they were able to eliminate trenhance performance.
local minima problems present in so many obstacle avoidance

schemes (hence the term “Global” in the title of [2]). C. Control Lyapunov Functions and Model Predictive Control

e Srberente esuls eporioq 1 11 1 2 18 X6 pan mresing paper by prims, Nevstic and Doy [3)
' 9 P P P t}T connection between Control Lyapunov Functions (CLF)

m/s with a Nomadic Techno_logles XR.4OOO robot, [2]. Th.gnd Model Predictive Control (MPC) is investigated (MPC
results demonstrate an algorithm that is safe by constructign

. : 18 "also known as Receding Horizon Control, RHC). They
(|_n the sense that the ropot never hits obstacles) and displ Ute the complementary properties shown in Table 1. In view
high efficiency in extensive experimental tests. But althou

. e .0T these properties they suggest the following framework to
igf:sﬂi P;hatrlgaiLgE&(t)T;"thﬁ IL; Sﬁe?/];? fgfxgﬁtloslgwncu%%mbine the complementary advantages of each approach. The
P ' y ' control law is chosen to satisfy a short-horizon optimal control
fact, examples can be constructed where the robot enter 8o : :
. . . roblem under constraints that ensure the existence of a CLF.
limit cycle, never reaching the goal or actually consistent

moves awav from the goal (see Section IlI-D he problem becomes one of finding a controdnd a CLF
v way goal ( : ): V(x) that satisfy (1) through (4) as follows:

A. The Dynamic Window approach and its extension

t+T
B. Exact Robot Navigation using Artificial Potential Fields inf / (q(z) + uTu)dr (1)
One of the main contributions of [4] is the clever con- .
- . e s : . . .t = 2
struction of a special artificial potential. This potential has st "ZV @)+ glayu )

no local minima except the global minimum at the goal. It is 8_(f + gu) < —eo(x(t)) 3
furthermore continuously differential and attains its maximum z
) <
value at all the obstacle boundaries. V(z(t+T)) < V(zo(t+T)), )
Combining such a potentiaN F(r), wherer € IR*® is whereg(z) is a cost on states, > 0 is a scalar,l > 0 is
position, with a kinetic energy term one can construct a contrible horizon lengthg (x) is a positive definite function and,



is the trajectory when applying a pointwise minimum norrby use of its sensors. The idea is to assume free space at the
control scheme (for details see [3]). This formulation inspirasnknown positions and then recalculate the navigation function
our choice of a more formal, continuous time formulatiowhen sensor data showing the opposite arrives. In this way
of the Dynamic Window Approach, allowing us to provahe robot guesses good paths and updates them when new

convergence. information arrives. The information is immediately taken into

account in the optimization (10) thus avoiding collisions. The

I1l. A PROVEN CONVERGENTDYNAMIC WINDOW less urgent recalculation of the Navigation Function is then
APPROACH done. These updates are made at a time scale much slower

than the actual motion control so in our considerations below
we assume the map to be static. Brock and Khatib, [2], used
adopt the robot model from [2], which is basically a doubl,@e gradient of the navigation function as the desired heading

integrator in the plang — u, € IR? with bounds on the instead of using just the goal diregtion as Fox did [1]. .
control |[u|| < tmaz and on the velocity ||| < vmas. Note To compute the navigation function we will use a technique

that it was shown in [9] that an off-axis point on the unicycl§imilar to the one suggested in [2]. There, however, A

In the main parts of this paper we will use the notatio
x = (r,7) = (ry,ry, 7, 7y) for the state of the system. We

robot model described by was piecewise cc_)nstant in th(_a grids;. here, we need a local-
minima-free continuous function defined on all free space
Ty = wvcost, making things somewhat more complicated. The basic idea is
7y = wvsinf, to solve the shortest path problem in a graph discretization
/— and then make a careful continuous interpolation for the
. positions in between the discretization points. An example of
o= F/m, the discretization can be seen in Figure 2.
w = T7/J,

can be feedback linearized o= w. For the environment we
assume that the robot’s sensors can supply an occupancy grid
map, i.e. a rectangular mesh with each block being marked as
either free or occupied, over the immediate surroundings. Here
the size of the robot must be taken into account and additional —
safety margins can be added. A position marked as free means

that the robot doesn't intersect any obstacles when occupying

S
that position. Thus a map can be incrementally built as the

robot moves around. We assume, as did Brock and Khatib, X X L

that the simultaneous localization and mapping (SLAM, see T Goal i i

e.g. [20]) problem is solved for us. In cases where we are

given a probabilistic occupancy grid a heuristic weighting in 2 i 2 3 4 5

the utility function (10) is conceivable.

A. Navigation Function Fig. 2. The graph discretization and computed shortest path distances. The

In our setting, the navigation functiaN F(r'), [10], [2], [4] ~Shaded squares correspond to an obstacle.
approximately maps every free space position to the length of ) o .
the shortest, collision-free path going from that position to the Lemma 3.1 (Construction of NF): A Navigation Function
goal point. Note that this version, taken from [2] is slightyf@n be created by the following procedure:
different (e.g. noC? property) from the definition in [4]. To 1) Make a graph out of the rectangular mesh of the obstacle

be more precise we make the following definition. grid map, with vertices at the corners of each square
Definition 3.1 (Navigation Function): By a Navigation and edges along the square edges. Remove vertices and

Function (VF) we mean a continuous function defined on edges that are in the interior of obstacles.

the simply connected part of the obstacle-free spaci?, 2) One of the vertices is chosen as goal point.

containing the goal point and mapping to the real numbers.3) Solve the shortest path problem in the graph (can be
A NF has only one local minimum, which is also the done with polynomial time algorithms, [11]). Mark each
global minimum. The set of local maxima is of measure vertex with the corresponding path length and let this
zero. VNF is piecewise continuous and the projection of length be the value oV F" at the vertex.

the left and right limits along the discontinuity edges satisfy 4) Divide the squares into triangles by drawing a diagonal

e"VieptNF(r) = €TV,igne NF(r), wheree € R? is the through the corner with highest NF value (this is shown

direction of the edge an® s (rign)NF(r) is the gradient to be unique below).

on each side of it. 5) In the interior of each resulting triangle, I&tF'(r) be
Before investigating how to construct such a function in a linear interpolation betweeN F' at the three vertices,

detail we note that it is shown in [2] how to deal with the case  i.e. let the value ofNF(r) be a plane intersecting the

when the robot at first only knows its immediate surroundings  three vertices.



Proof: We begin by showing that there are no local minimavhere NF'(r) is the navigation function as explained above.
on the graph vertices and edges. Note that for a given phicorporating the upper bounds on the control magnitude, we
of vertices (A, B), if one path betweemd and B has even define the dissipative control set as follows.

(odd) length (in multiples of the edge length) so has any  Definition 3.2 (Dissipative Controls, Cy(r,7)):

other path. Therefore, two neighbors cannot have the same

NF value. SinceV F(r) on the edges is a linear interpolation  Ca(™:7) = {u: w=uctuag,

between the value on the vertices, the edges have no local Uy = —iVNF

minima. Furthermore, from every vertex, there is a shortest V2

path to goal and along this paffiF' decreases monotonically. ug: ulr < —€||f]| <0, if ##£0
Thus, there can be no local minima vertex, except the goal ]| < Umag, +

point.

Now we look at the values in the interior of the square$or some givere > 0. We writeu € Cy(r, 7).
Given a square, look at the corner of lowest value, which mayA typical shape of theC,(r,7) set is the shaded regions
or may not be unique. If it is unique and of valie then in Figure 4 whereC; (the nine dots) is a discretized (finite)
the two adjacent corners must have value [ wherel is the subset ofCy. Note that|u.|| = ||(k/V2)VNF(r)|| = k,
side length and the opposite corner must have2! since no since|[VNF(r)|| = v/2, (the directional derivative along each
adjacent corners have the same value (see Figure 3, left). Bbis of the grid is equal to 1, the gradient direction is diagonal
diagonal is fromk + 2i to k and in this case the two trianglesto the grid and the magnitude ig12 +- 12, see Fig. 3). Thus
will actually form an inclined plane which obviously has na. lies on a circle of radiug. The outer circle of radiug,,.q.
interior local minima. bounds the control set.

Now the problem is to make sure the robot does not run into
NF(x)=k+2l k+ NF(x)=k k+ obstacles. In the standard Dynamic Window Approach this is

\ \ taken care of by choosing amoagmissible, i.e. not colliding,

controls in an optimization. Here we shall do the same.
A general formulation of the combined CLF/MPC scheme

\ \ now looks like this

min V(z(t+1T)) (6)
k+l k k+l k u(-)
_ _ , _ st.  u(s) € Cy(r,7), Vs € [t,t +T] @
Fig. 3. The two possible cases, unique lowdst'(z) (left, as in the square L
northwest of the goal point in Figure 2) and two equal (right, as in the square r(s) collision free Vs € [t,t + T (8)
northeast of the obstacle in Figure 2). The arrows indicatéN F'. 7'“(t + T) —0 9)

If the lowest value is not unique, the opposite corner musthere T' is the horizon length of the MPC. Here (7) gives
have the same valué and the two adjacent ones + [ stability in the Lyapunov sense. Safety is guaranteed by (8,9),
(see Figure 3, right). The diagonal is between the twe [ i.e. a planned collision free trajectory ending with the robot
corners (unigue as stated in the construction) and this diagosinding still. This corresponds to the policy of driving a car
composes a ridge of local maxima. There are however no los&dw enough so that you can always stop in the visible part
minima. of the road. Perhaps somewhat conservative on a highway, but

Thus we have seen that there is only one local minimsensible on a small forest road where fallen trees might block
the goal point. There might be local maxima on some dyour way.
agonals, as in Figure 3 (right), but they are isolated linesNote that the above formulation can in principle be applied
and thus of measure zero. Finally, sind’ is composed of to enhance the performance of any approach with an artificial
triangles glued together the projection along the edges fulfigetential having a well-behaved gradient, e.g. the origivial
e'ViepNF(r) = e'V,ign NF(r) as above. m suggested in [4] or a version of [18], [19]. We still believe

With a Navigation Function at our disposal, we are read}PWever that theV I suggested above is a choice yielding
to look at the actual choice of control. high robot velocities and good computational efficiency.

The optimal control problem of the MPC above can be

B. General Control Scheme computationally intensive, as seen in related approaches such
. . as [7]. Therefore, we devote the next section to showing

The basic idea for the convergence proof is the same as in

[4]. First we write the problem as a conservative system wi jpwW a very coarse discretization can still yield quite good

o : . T erformance. In Section IV we give detailed proofs of the

an artificial potential and then we introduce a dissipative cof)- . .
. ..._theoretical properties of the proposed method.

trol term. In the conservative system we choose the artificial

potential to be(k/v/2)N F(r), wherek is a positive constant

that must be chosen smaller than the control boupg,. The C. Discretized Control Scheme

Control Lyapunov Function is To end up with a computationally tractable version of the
1.k MPC above we discretize the set of dissipative controls,
Viz) = 57“ 7+ EN E(r), ®) into two sets with piecewise constant, relative to the velocity



direction, controls. The horizon length = T; + 15 where enough to be traversable by tidg x C, control in Ty + T5

T, is the time over which the resulting control will be appliedtime units. To make the ‘current grid’ unique, positions on

After time 77 a new optimization is performed. The controthe boundary of grids are assigned to belong to one of the

setCy is discretized into two setg;; and Cs, corresponding adjacent grids.

to the two time intervals of lengtfly and 7. A third set  The interval[t, ¢ + T is divided into two partslt, ¢ + 7]

Cs is used when starting from a standstill, see Definitioand [t + T1,t + T|, whereTj is the time step of the MPC

3.3. To make the scheme precise we formulate the followirgntrol loop. In the first parit, ¢ + 73], a control fromCy, the

algorithm. set of controls in Figure 4, left, is chosen. In the second part
Algorithm 3.1 (Control Scheme): The control algorithm is [t +1T},t+T], a control fromCs, the set of controls in Figure

composed of the following steps, where number 3 is the main right, is chosen. Note that the controls in the sets above

one. are constant with respect to the direction of the robot velocity,
1) If 7 = 0, choose the control pai’s, Comiddic ), @S given 7. Cy consists of 4 controls (the dots in Figure 4, right) all
in Definition 3.3, i.e. start out in a good direction. reducing the speed of the robat; consists of 5 controls on

2) Else, ift > to + Tiimeout, then set the newy, = ¢. the border of the dissipative region (shaded area) and the 4
If furthermore, V(tg) — V(t) < AViimeout. then take (s, controls (the shaded dots). Thus, the whole Getx Cy
the Cy part Cype, Of the previous control pair and consists of(5 + 4) - 4 = 36 control sequences.
choose the control paifCapye, Coprev), i-€. reset and  In Figure 5 we see parts of an executed trajectory together

stop safely. with all the options evaluated in the optimization. An obstacle
3) Else, choose the optimal solution to the MPC contrels well as the level curves of the navigation function are also
problem depicted.
Jnin, Vz(t+T)) (10)

s.t.  z(:) is collision free

4) Apply the first part of the chosen control pair @i
time units, then repeat from 1.

Here AVimeout 1S @ User defined decreaselinover the time
Tiimeout- This timeout construction is needed to guarantee
against the hypothetical case of the robot velocity slowly
approaching zero. Then the decrease bolind e[| is not
enough to yield convergence. The control sets are defined as
follows.

Definition 3.3 (Control Sets, C1,C» and Cy): Let C7 be
the set of 9 controls depicted in Figure 4, left a6g be
the set of 4 controls (a subset 6f) in Figure 4, right. Note
thatCy; andC5 are defined relative to the velocity direction
Furthermore, let”; be the control directed towards the corner
of the current grid with the lowesV F'(r) value (if there are 6 6.5 7 oy s o5 o o5
more than one such corner the one closest to the robot is
chosen) and with control magnitude such that after applyiﬁé?- 5. An obstacle, level curves of thé}" and parts of a trajectory as well
C, for time T} and the middle, hardest braking, control@f as all the considered options.
for time T5 the robot stops at the corner.

It can be seen that in the first time step the leftmost control
h r of C; is chosen and in the second time step the rightmost is.
SinceT] is the length of the time step, it is only thg, part
of Cy x Cs that is actually executed.

The purpose of th€'; part is to guarantee safety. The time
T =T, + T, should be chosen long enough for the robot to
stop at (or before) time + 7' (since all theC, controls are
braking). The optimization is done with the constraint that the
resulting trajectory doesn't hit any obstacles, hence the choice
of the rightmost control the second time. The fact that the
previously choserC, control is an option inC; makes the
last part of the (safe) previously chosen control sequence an
option in the next optimization. As a result there is always
Fig. 4. The Control set€’ andCs. at least one admissible (and therefore safe) control sequence

available. As stated above, this is similar to always making

Note thatCs; C C, since the acceleration is towards thesure you can stop in the visible part of the road when driving
corner closest to goal. We further assume the grids to be snaltar.

Umax Umax




One might argue that discretization and exhaustive seaudifferent (left and right) limits of the gradient. The projections
is an inelegant solution. But we chose it for two reasonalong the edge is however the samé,V,.;NF(r) =
The utility function V' (z(t + T)) varies rather slowly over +7V,,,,: NF(r) making the inequality true. Furthermore, it
the admissible set of controls and this set in turn can be vasythis projection that is needed when determiningccording
complex, e.g. unconnected if there are traversable paths to thieéhe definition ofu,, see Definition 3.2 and Figure 4.
right and to the left but the road straight ahead is blockedIf 7 is not parallel to an edge, the problem with undefined
by an obstacle. The constraints are also far from beingVaVvF(r) in the control will only occur in one isolated time
differentiable function inequality. Due to these facts a steepésstant and thug V dt is not changed by whatever value we
decent approach will not do well. use. m

. _ Theorem 4.1 (Finite Completion Time): Suppose the con-
D. Example of Convergence Failure of Previous Approach trol scheme in Algorithm 3.1 is used and there is a traversable

The Utility function of [2] that is to be maximized is path from start to goal in the occupancy grid. Then, the robot
will reach the goal position in a time bounded above by
Qy(p,v,a) = a-nfl(p,v)+ G- vel(v) /a1
+’Y : goaKP? U) + - Anfl(p’ v, a) qual S (%772)2(Ttimeout + Tl + T2)
where p,v,a is the current position and desired velocity n Vo T
and accelerationo, 3, v, ¢ are scalar weightsy f1(p,v) AViimeous 0

increases if the velocity is aligned with the navigation funCtioﬂ/hereVo — V(2stare) i the value of the CLF at the starting
gradient, velv) increases with velocity (if far from goal), position. srar

goalp,v) is binary, 1 if the trajectory will pass through thep,s- By Lemma 4.1 we have thai’(x) < —¢||f||. Thus the
goal point andAnf1 is the decrease in navigation functiorgystem is stable in the sense of Lyapuﬁov.

value. . , , After a stop the robot starts moving towards the corner
Consider a 'T" shaped, very narrow corridor, with the robqf¢ the cyrrent grid closest to goal, i.e. with lowestE (r).

initially in the top left end and the goal defined in the bottoncrhen, the optimization improves on this, making the out-

end. This will leave the robot accelerating maximally towards,me at least as good as stopping at that corner (at a stop
the right. If the corridor is long and narrow enough, the speq/d(r i = 0) = = NF(r). Together with the fact that ’

is going to be too great to allow a right turn at the intersectio&(x’) B V2

Thus, the robot will continue away from the goal. In particulal hat Sd 0, t_hlsTrr?ea?hs that tt)he rfobot V\S:I ne_\(/jertstop n
when the corridor is very narrow and turning is not an optio 'a.gn ' again. 1hus the number of possible grids o occupy
hich is finite) is reduced by at least one between each

the robot must either brake or not. If the weights are such that. . .
the velocity term, velv), outweighs theAn f1 term, the robot pair %fl stop;:. $|ntc):eNF(‘j 'Z the E’%tT Ie2ng_|t_2’ thfe numht?er. of
will just keep on going. Otherwise, it will brake maximally. I, POSSIbIE grids IS bounde biyo %" 72)°. Therefore, this is

however, the acceleration is as powerful as the retardation, fH%O a bpund on the number of stops. The timeout mduces

robot will oscillate back and forth in the upper part of the ‘T2 stop if V(to) — V(to + Tt”?“fout), < AV“"?COW' This

and never be able to make the sharp turn into the goal partr'a"flkeS the num‘l/aer @ti’”eoutfs!zed intervals without a stop

it. A similar counter example was independently presented l?r‘?unded bym' Combining the two we gefyoa <

[7]. Note that the Lyapunov property of equation (11) belokVo%2 +2)%(Thimeout + Ti + T2) + w7-2— Thimeout- n

removes these kinds of problems in the proposed approach. remgrk 4.1: Note that this is an extreme worst case anal-
ysis. In the simulations the robot did not stop at all before

IV. PROOF OFCONVERGENCE ANDSAFETY reaching the goal position.
Before we formulate the main theorem of this paper we Theorem 4.2 (Safety): Suppose the control scheme in Algo-
need a lemma. rithm 3.1 is used and the robot starts at rest in an unoccupied

Lemma 4.1 (Control Lyapunov Function): The function position. Then, the robot will not run into an obstacle.
1 k Proof: The proof relies on the recursive structure(tf x Cs.
Viz) = 57"T7" + TNF(T), The subset of non colliding controls @, x C> (that we are
2 optimizing over) is never empty since we can always choose
is a Control Lyapunov Function and ary; control satisfies the C, (not yet applied) part of the previous; x C, control

the following inequality sequence as our ne@; control. n
V(a) < —ll7. (11)
Proof: The candidate Lyapunov Control Functionligz) = V. SIMULATION EXAMPLE

3T+ %NF(T)’ which is clearly positive definite with a 1 jjjustrate the approach we chose a setting with three

global minimum atzgear = (rgea,0). Differentiating with |arge obstacles in a 9 by 9 meter area, as seen in Figure 6. We
respect to time give® () = 7" u+Jor"VNF(r) = i"(uc+  used parameters for the Nomadic Technologies XR4000 robot
ug + %VNF(r)) < —¢||#||, by the constraints om. The obtained from [2],||u|| < Umaz = 1.5m/s%, ||7]| < Vimar =

Navigation Function is however not differentiable everywheré.2m/s. The resulting robot trajectory and the level curves of
Along the triangle edges oV F' there are in general two the navigation function are also depicted in the figure. Note



the absence of local minima as guaranteed by the constructidns constraint is of the same sort as the dissipative constraint,
in Lemma 3.1. In the beginning and the end of the trajectoiye. it can be depicted as another horizontal line above or below
it can be seen how the MPC minimization in equation (1@he ones in Figure 4. If the new constraint is more restrictive

favors going perpendicular to the level curves. (lies below the first two) the”; options will be placed just
below it instead of just below the others. Thus, in Figure 8
1or the robot reaches a “steady state” velocity closesin, =

1.2m/s in the open areas.

[m]

. . . . . . . .
0 2 4 6 8 10 12 14 16 18
[s]

w

Fig. 8. The robot velocity. Note how the speed is limiteduy.. = 1.2m/s
and how it decreases twice during the narrow passage.

[m]

Fig. 6. The Obstacles and robot trajectory. VI. CoNcLUSIONS

In this paper we have first presented the well known Dy-
In Figure 7 parts of the trajectory as well as the Modelamic Window Approach to fast and safe obstacle avoidance

Predictive Control options are shown. The robot slows down an unknown environment. We then recast the approach in

in two places, as can be seen in Figure 8. These are locasedontinuous nonlinear control framework suggested by [3].

at(6.5,7.2) and(5.5,5.5) respectively. In the second instanc&Vith a few changes to the basic scheme we were able to

all the non braking”; controls makes the robot collide. Theprove convergence to the goal position. This is significant since
sharp braking right turn, th€ part of the previous choice, the earlier scheme could be subject to limit cycles and even
is however safe and therefore applied. At the first instanatiyergence.

(6.5,7.2), the non braking right turn is safe, but the braking

left turn yields a lowerV (z(t + T')) value (it is closer to the REEERENCES

goal) and is thus chosen. o
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