
Optimal Positioning of Surveillance UGVs†

Ulrik Nilsson, Petter Ögren and Johan Thunberg
Department of Autonomous Systems

Swedish Defence Research Agency (FOI)
164 90, Stockholm, Sweden

Abstract— Unmanned Ground Vehicles (UGVs) equipped
with surveillance cameras present a flexible complement to the
numerous stationary sensors being used in security applications
today. However, to take full advantage of the flexibility and
speed offered by a group of UGV platforms, a fast way to
compute desired camera locations that cover or surround a set
of buildings e.g., in response to an alarm, is needed.

In this paper we focus on two problems. The first is how to
create a line-of-sight perimeter around a given set of buildings
with a minimal number of UGVs. The second problem is how to
find UGV positions such that a given set of walls are covered by
the cameras while taking constraints in terms of zoom, range,
resolution and field of view into account. For the first problem
we propose a polynomial time algorithm and for the second
problem we extend our previous work to include zoom cameras
and furthermore provide a theoretical analysis of the approach
itself. A number of examples are presented to illustrate the two
algorithms.

I. INTRODUCTION

AS the market for automated surveillance continues to
grow, UGV-mounted cameras are becoming a natural

complement to stationary cameras and manned patrolling.
The flexibility offered by UGVs is particularly important in
cases of alarm response, temporary replacement of stationary
cameras, or e.g. when some valuable containers are stored
overnight in a large harbor terminal with only perimeter
surveillance.

Fig. 1. This Surveillance UGV testbed, developed by Rotundus AB
(www.rotundus.se), will be used in real-world experiments.

In this paper we investigate how small scale UGVs, such
as the one depicted in Figure 1, can be used in surveillance

† All three authors were funded by the Swedish defence materiel admin-
istration (FMV) and the Swedish armed forces through the Technologies for
Autonomous and Intelligent Systems (TAIS) program, 297316-LB704859.

and security applications. In particular we will address
the problem of autonomously finding a set of reachable
camera locations that satisfy the requirements for a given
surveillance task prompted by e.g. an alarm. We will address
two kinds of tasks, the first is how to create a line-of-sight
perimeter around a given set of buildings, and the second is
how to achieve good stationary coverage of a given set of
walls. Before going into details we will give an overview of
the previous work in this field.

When studying camera positioning problems in general,
the choice of camera model is an important part of the
problem statement. While many papers on coverage consider
only occlusion constraints, some also deal with explicit range
constraints, such as [1]–[5] and others incorporate limited
field of view, [2], [3], [6]–[8]. Finally, resolution constraints
are dealt with in [2] and [3].

There is a large amount of work done on various aspects of
the perimeter surveillance problem, [1], [9], [10]. However,
they all assume that the actual perimeter region is already
given and that only the sensor placement within some belt
remains to be decided. Thus we have found no results on the
line-of-sight part of our problem in the literature.

The wall guard problem that we are interested in is very
similar to the The Minimum point guard problem, that was
defined by Eidenbenz, [11], as the problem to find the
minimal set of points that guard an area. This problem is
known to be NP-hard, [12], and furthermore even finding
a set of guards whose cardinality is at most 1 + ε times
the optimum is also NP-hard, [13]. Greedy approximation
schemes have been proposed, [14], [11], and analyzed using
a transcription to the so-called Minimum set cover problem,
[11]. These greedy schemes need a set of candidate guard
positions to choose from and the choice of such positions
have been studied using convex covers, [15]. Other ways of
finding candidate positions are proposed in [16], using vertex
coloring, and [5], using an approximate so-called visibility
index. In [11], the tentative observer positions are found by
partitioning the whole 3D-space using a huge set of planes,
and a similar approach was used in [7] to find areas within
which the number of visible vertices do not change.

Alternatives to the greedy approach can be found in [17],
where a randomized search approach is proposed instead
of a greedy solution and random sampling is furthermore
suggested in [18]. Finally, an algorithm for viewpoint com-
putation considering an arm-mounted stereo camera was
presented in [3]. The authors propose a number of interesting

constraints to be incorporated and perform the optimization
using a genetic algorithm.

In this paper, we present a new approach to the line-of-
sight perimeter problem as well as extend the ideas presented
in [19] on the wall guard problem. The extension includes
cameras with zoom capabilities, a better way to handle walls
of different lengths, a more compact reformulation of the
algorithm itself, and a theoretical result on its properties.

The organization of this paper is as follows. In Section II,
we state the two problems and the solutions are proposed
in Section III. Examples illustrating the approaches are
presented in Section IV. Finally, the paper is concluded in
Section V.

II. PROBLEM FORMULATION

The two problems we investigate both involve finding
static camera positions for getting good situational awareness
of a scene. The first problem is the line-of-sight perimeter
problem and generally requires less UGVs than the second
problem, that aims at achieveing concurrent high quality
images that cover all walls or buildings selected by the user.

A. Line-of-Sight Perimeter

Problem 2.1: (Minimum line-of-sight perimeter) Let B =
{bi : bi ∈ R2} be a set of points, one located inside each
building or item that needs to be surrounded. Let furthermore
O ⊂ R2 be the union of all obstacles. The problem minimum
line-of-sight perimeter is the problem of finding a minimum
set of points on the ground plane, S = {si : si ∈ R2}, such
that every point bi in B lies inside the polygon {s1, . . . , sm},
there is a free line of sight between the pairs (si, si+1), and
the distances ||si−si+1|| ≤ R for some given maximal range
R. Above, sm+1 is to be interpreted cyclicly as s1.

An example problem and the corresponding solution can
be found in Figure 2.

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

Fig. 2. An example of the solution to a line-of-sight perimeter problem. All
buildings are part of the obstacle set O. Setting B = {(50, 40), (50, 30)}
corresponds to the upper left and the central building being surrounded. The
solution perimeter is shown in thick lines.

B. Wall Coverage

The second problem we study is closely related to the
Minimum point guard problem defined by Eidenbenz in
[11]. Here however, we incorporate explicit constraints on
camera field of view, as well as image resolution and allow
for vehicles equipped with zoom cameras. This problem is

motivated by situations where one wants to either make sure
that no one exits the surveyed buildings, or when movements
in windows needs to be monitored to e.g., look for possible
snipers. Formally we define the problem as follows

Problem 2.2: (Minimum wall guard with resolution and
field of view constraints) Let W = {wi = (pi, qi)} be a set
of line segments, pi, qi ∈ R2, corresponding to the walls that
needs to be surveyed. Let furthermore O ⊂ R2 be the union
of all obstacles. The problem minimum wall guard is the
problem of finding a minimum set of points on the ground
plane, S = {si : si ∈ R2}, such that every wall wi in W
is guarded by a point sj in S. By guarded we mean that sj
and wi satisfy the constraints in Definitions 1, 2 and 3.

Definition 1 (Visibility constraint): A wall wi =
(pi, qi) ∈ W is visible to a point guard sj ∈ S if the
interior of the triangle (sj , pi, qi) does not intersect the
interior of the obstacle set O.

Definition 2 (Resolution constraint): Given a camera
field of view α and image quality constraints stating that
every segment of length δa of the wall being surveyed
must cover at least a fraction k ∈ (0, 1) of the width of the
image. A wall wi = (pi, qi) ∈ W and a point guard sj ∈ S
satisfies the resolution constraint if

||r − sj || ≤
δa cos(φ)

kα
(1)

for all points r in wi, where φ is the angle of inclination,
i.e. the angle between the the line (r, sj) and the normal of
wi.
The definition is illustrated in Figure 3, where it can be seen
that this constraint will force the camera to be inside two
circular arcs.

Remark 1: The above definition is motivated by the fact
that computer vision algorithms often need at least some
given number of pixels across a given object in order to do
recognition with reasonable accuracy.

To handle field of view limitations we make the following
definition.

Definition 3 (Field of view constraint): Given a camera
view angle limit α, the wall wi = (pi, qi) ∈ W and a point
guard sj ∈ S satisfies the field of view constraint if

∠(pi, sj , qi) ≤ α, (2)

where ∠(pi, sj , qi) is the angle between (pi, sj) and (qi, sj).
This constraint will force the camera to be outside a circle

segment, as depicted in Figure 3.
Remark 2: Note that the field of view limitation α in both

Definition 2 and Definition 3 can be varied in a zoom camera.
This is illustrated for two different α in Figure 3 below.
Having defined the two problems we are trying to solve, we
now go on to describe the solutions we propose.

III. PROPOSED SOLUTION

We first present a polynomial time algorithm solving
Problem 2.1 and then an approximation algorithm solving
Problem 2.2. Note that in both algorithms, O is the set
of obstacles, including buildings, walls to be surveyed and
everything else that obstructs vision and mobility.

Fig. 3. The sets satisfying Definitions 2 and 3 for two different zoom
settings. The dark gray region corresponds to zoom setting α = 90◦ and
the light gray region to zoom setting α = 45◦.

A. Line-of-Sight Perimeter

We begin with stating the proposed algorithm.
Algorithm 3.1:
1) Create a vertex set V = {vi : vi ∈ R2}, either from

the corners of the obstacles O, or by any other method,
such as random placement or using an equidistant grid.

2) Create a visibility graph G = (V,E), where the edge
set E = {(vi, vj) : ||vi − vj || ≤ R, line(vi, vj) ∩O =
∅, vi, vj ∈ V }, i.e., the edges correspond to vertex pairs
that have a free line of sight between them of length
less than the range R. Assign a unit cost to all edges
of G, c(e) = 1, ∀e ∈ E.

3) If B = {bi} contains more than one point, remove
all edges in G = (V,E) that crosses one of the line
segments (b∗i , b

∗
i+1). This will ensure that the line-of-

sight perimeter encloses all points in B.
4) Pick a random point b̂ in B and draw a line to infinity

in a random direction. Let Ê ⊂ E be the edges that
intersect this line segment.

5) For each edge êi = (vi1, vi2) ∈ Ê, let Li be the length
of the minimum cost path in Ĝ = (V,E \ Ê) from vi1
to vi2.

6) Find
min
i

(Li + c(vi1, vi2)),

this is the minimum number of UGVs needed to
create the line-of-sight perimeter. The vertices of the
corresponding optimal path are the UGV positions.

Remark 3: For UGVs with two cameras, such as the one
in Figure 1, the line-of-sight perimeter can be maintained by
positioning a UGV at every other vertex of the path, as noted
in the caption of Figure 5.

Remark 4: The above algorithm only finds solutions in
the graph G. If the chosen graph is considered too sparse,
any number of vertices can be added to the obstacle vertices
before creating the visibility edges. More vertices give po-
tentially better solutions at the cost of longer computation
times.

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

Fig. 4. The visibility graph G, with R > 100 created from the obstacle
vertices.

Lemma 1 (Algorithm 3.1 is complete and runs in O(n4)):
The algorithm above is polynomial, i.e., it terminates in
time O(n4), where n is the number of vertices in G. The
algorithm is furthermore complete for the one building case,
in the sense that if there is a solution to Problem 2.1 in the
graph G, the algorithm will always find the optimal one.

Proof:
We begin with showing that the algorithm is polynomial.

Creating the visibility graph G involves checking every pair
of vertices and is thus O(n2). Removing edges in step 3 and
4 involves iterating through the edges, which is also O(n2).
Step 5 is O(n4), since finding a shortest path takes O(n2).
and this has to be done at most O(n2) times. To conclude,
the algorithm terminates in O(n4).

To show completeness we let P = (v1, . . . , vn) be an
optimal solution to problem 2.1. Since P surrounds B, some
edge of P must be intersected by the line segment from v̂ to
infinity and thus be included in Ê. The rest of P is then a
feasible path when the algorithm iterates through Ê trying to
connect vi1 and vi2 with a shortest path. The algorithm thus
finds a path that is at least as good as P , but as P is assumed
to be optimal the returned path must be exactly as good as
P . Which proves that the algorithm is indeed complete.

Remark 5: For the multi building case, there is a small
chance that step 4 removes a part of P and then fails to find
a solution as good as P in the proof above. Therefore, the
algorithm is not complete in the multi-building case.

Remark 6: If the more elaborate edge cost of c((vi, vj)) =
1+||vi−vj ||/(n2 maxk,l ||vk−vl||) is used. The correspond-
ing line-of-sight perimeter is not only the shortest in number
of UGVs, but among those, the shortest in actual length.

B. Wall Coverage

In this section, we describe an extension of our ear-
lier work presented in [19]. The extension includes zoom
cameras, improved handling of walls of different lengths,
a more compact formulation, and results on the theoretical
properties of the proposed algorithm. The main idea of the
algorithm is to carefully construct a set of candidate guard
positions, and then choose a subset of these by transcribing
the problem to a set cover problem, which in turn is solved
by an approximation method.

We propose the following algorithm to find a solution to
Problem 2.2.

Algorithm 3.2:
1) Find the candidate guard set S as defined below.

Definition 4 (The Candidate Set S): Denote by
S1(wi) ⊂ R2 the set of points satisfying the Visibility
constraint in Definition 1 for wall wi and similarly
for S2(wi) ⊂ R2 (Definition 2) and S3(wi) ⊂ R2

(Definition 3). Let S ⊂ R2 be the set of points in
∪i(S1(wi)∩S2(wi)∩S3(wi)) that lie on the boundary
of at least two of the sets Sj(wk).

2) Calculate the walls guarded by each s ∈ S, using
Definitions 1, 2 and 3. If all walls that can be guarded
by a single position do not fit into one single camera
view, due to the field of view limitation, this candidate
position is duplicated and stored with all possible max-
imal combinations of guarded walls and corresponding
viewing directions. This is repeated for all different
zoom settings. Thus to each s ∈ S a viewing direction
ψ(s), a zoom setting z(s), and a set of guarded walls
W (s) are assigned.
At this point it might occur that there are walls in W
that are not guarded by any point in S. This happens
when the feasible set is empty, i.e., no UGV can
survey the whole wall with sufficient image quality.
This can be caused by either a wall that is too long,
or an obstacle that is too big and close to the wall.
Both these problems are solved by dividing the wall
wi ∈ W into a set of smaller walls. Thus we propose
a recursive strategy where a wall that is not guarded
by any point in S is divided into two smaller walls.
The computations regarding wi are then re-iterated for
both the smaller walls. If again one of the walls is not
guarded it is split once more and so on.

3) Select a subset of S guarding all walls in W . Since
the problem is NP-hard, we use an approach similar to
the greedy one described in [11]. Iteratively, we pick
the position s ∈ S that maximizes the following

max
s

ΣW’(s)f(l, d, φ),

where W ′(s) ⊂W (s) are the yet uncovered walls, l is
the length of the corresponding wall, d is the distance
to the wall, and φ is the angle of inclination to a point
in the middle of the wall. For the function f(l, d, φ),
we propose the following three options

f(l, d, φ) =


1 or
l or

l
(

2− d
dmax cosφ

) (3)

With the first option, the algorithm strives to cover as
many walls as possible, as suggested in [19]. With the
second option the algorithm instead covers as many
meters as possible of the surveyed buildings. We have
found that using the more elaborate third choice where
dmax is the maximum distance from a candidate point
in Rrf (wi) to the wall wi (the diameter of Cres),

does yield nice solutions. This reward function will
favour candidates that are close to the wall and have
small angles of inclination by giving a reward close
to 2l. Yet, candidates at less desirable locations will
still be rewarded at least the value l. Using the greedy
algorithm with this choice of reward function will
generally produce attractive tradeoffs between image
quality and the number of wall meters covered, as
illustrated by Figures 9 and 10 below.

Before we go on to show some examples of guarding
problems solved using the algorithm, we analyze the set S in
somewhat more detail. Below we will show that for a single
zoom setting, restricting the search of guard positions to S,
instead of the whole of R2, yields the same optimal solution.
This fact is stated in the following Lemma.

Lemma 2 (Candidate set contains optimal solution):
Given a fixed α. If Problem 2.2 is feasible, then the
candidate set S contains an optimal solution.

Proof: Let S∗ = {s∗i } be an optimal solution to
Problem 2.2. It is enough to show that for each s∗i ∈ S∗

we can find an sj ∈ S such that s∗i and sj guards the same
walls.

Let W ∗i ⊂ W be the walls guarded by s∗i , and S∗i ⊂ R2

be the maximal connected region such that all s ∈ S∗i guards
W ∗i . It is now enough to show that there is an element of S
in S∗i .
S∗i is bounded by straight occlusion lines resulting from

Definition 1 and circular arcs resulting from the resolution
and field of view constraints in Definitions 2 and 3. Since
S∗i satisfies Definitions 2 and 3 for all walls in W ∗, it is
clear that S∗i is not bounded by a single circle. Thus S∗i
must be bounded by two or more arcs or line segments. The
intersections of these arcs and line segments lie in S. Thus
an element of S is indeed found within each S∗i .

This proof concludes the algorithm section.

IV. EXAMPLE PROBLEMS

In this section we will apply the proposed algorithms to
some example problems.

A. Line-of-Sight Perimeter

Using the visibility graph in Figure 4 we will solve two
different problems. If the user wishes to surround the upper
left building we can set B = {(50, 40)}. The corresponding
solution can be found in Figure 5. If the central building is
also to be surrounded, we set B = {(50, 40), (50, 30)} and
get the solution in Figure 2. We will now go through the steps
in Algorithm 3.1 to see how this result was found. In step 1
the obstacle vertices were used for the set V . In step two we
set the max range R = 100 and the visibility graph of Figure
4 was created. Then, in step 3 we note that B contains two
points, b1 = (50, 40) and b2 = (50, 30) and thus we draw a
line segment from b1 to b2 and remove all edges in E that
intersect this segment in order to ensure that both b1 and b2
are surrounded by the perimeter. In step 4 we pick a random
point in B, say b2 and draw a line to infinity in a random
direction, say to the right in the figure. Ê are now the edges

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

Fig. 5. A four node line-of-sight perimeter surrounding the upper left
building. Note that this perimeter can be guarded by either four one-camera
UGVs, or by two two-camera UGVs such as the one depicted in Figure 1.

that intersect this segment. In our case Ê are all the edges
inbetween the central building and the right-most building,
as well as the edges to the right of this building. Now, in step
5, for each of the edges (vi1, vi2) = êi ∈ Ê we look for the
shortest path from vi1 to vi2 in the graph Ĝ = (V,E\Ê), i.e.
the original graph with Ê and all edges between b1 and b2
removed. The resulting path must by construction surround
all of B. Finally, in step 6 we find for the shortest, in terms of
number of nodes, see Remark 6, of these surrounding paths
and get the UGV positions shown in Figure 2.

B. Wall Coverage

In this section we will see how the proposed algorithm
applies to three examples, one fairly straightforward with
two rectangular buildings, another somewhat more difficult
problem with one building of complex shape, and finally a
problem with four irregularly shaped buildings with a total
of 27 walls.

−30 −20 −10 0 10 20 30
−20

−10

0

10

20

30

Fig. 6. Two rectangular buildings being surveyed by two UGVs. The
dashed green lines illustrates what walls are covered by what UGV while
the solid yellow lines denote the field of view cones.

The first example with corresponding solution is depicted
in Figure 6. As can be seen the algorithm finds the opti-
mal solution of two UGVs surveying all walls of the two
buildings.

The problem becomes slightly more complex if we in-
crease the image quality constraint, in terms of pixels per
meter of surveyed wall. This corresponds to increasing the
constant k in equation (1). Increasing k reduces the size of
the constraint sets, and we get the situation depicted in Figure
7. The constraint sets are shown as well as occlusion lines.

Note that the given resolution constraints makes a 2 UGV
solution infeasible, since there is no overlap between e.g.
the constraint sets of the eastmost wall and the northmost
wall. In fact, these two sets are separated by only a few
meters near (20,20). The solution with the tighter image
quality constraints is further illustrated in Figure 8. This
Figure shows the assignment of the different walls to the
different guards, as well as the field of view limitations of
the cameras.

−80 −60 −40 −20 0 20 40 60 80
−60

−40

−20

0

20

40

60

Fig. 7. Two rectangular buildings. The constraint sets are shown in red
and the blue lines show occlusion boundaries. The solution involves three
guard positions, denoted by asterisks (*). Note that even though the guards
at (-22,-24) and (29,29) does indeed see all walls, they do not satisfy the
resolution constrains of the west and north walls of the northern building.

−20 −10 0 10 20 30 40

−20

−15

−10

−5

0

5

10

15

20

25

30

Fig. 8. The detailed solution to the problem of Figure 7. The guards
are denoted by asterisks (*) and dashed green lines are drawn between the
guards and the walls they guard. Furthermore, the field of view cones are
illustrated in yellow.

To illustrate the different choices of objective function
proposed in Algorithm 3.2, a problem with only two UGVs
and a single house with 20 walls and 140 meters of wall is
shown in Figures 9 and 10.

In Figure 9, the objective is to maximize the number of
walls being surveyed, i.e. the first option. The corresponding
solution focuses on the north part of the building, with 10
walls and 50 meters of wall surveyed. Using the second
objective function of equation (3) we get the results in
Figure 10. As can be seen, the UGVs guard both sides of
the house resulting in a total of 8 walls and 85 meters of
wall being surveyed.

In Figure 11, a more complex scenario is depicted. Fur-
thermore, the guards in this problem have three different
zoom settings to choose from. Thus it can be possible to fit
more walls into the same field of view by moving away while

−30 −20 −10 0 10 20 30
−25

−20

−15

−10

−5

0

5

10

15

20

25

30

Fig. 9. A building with many wall segments is surveyed by two UGVs.
The depicted solution corresponds to maximizing the number of guarded
walls.

−30 −20 −10 0 10 20 30
−25

−20

−15

−10

−5

0

5

10

15

20

25

30

Fig. 10. The same problem as in Figure 9, but with the second objective
function of equation (3). The UGV covering the southern wall was placed
first.

zooming in to satisfy the resolution constraint, as illustrated
in Figure 3. This however increases the risks of running into
occlusion problems. As can be seen in the Figure, the guards
monitoring the scene from the outside are generally using a
higher zoom setting (tele) than the ones viewing the inward
facing walls. In this Figure, the solution is obtained using
the third row in equation (3). This example concludes the
simulation section.

−150 −100 −50 0 50 100 150

−100

−50

0

50

100

150

Fig. 11. A complex scenario with 27 walls to be guarded. The solution
requires 8 guards to guard all walls while satisfying occlusion, resolution
and field of view constraints. As in Figure 8 above, asterisks (*) are guard
positions, dashed green lines show what walls are guarded by whom, and
yellow cones illustrate field of view limitations.

V. CONCLUDING REMARKS

In this paper, two variations on the problem of positioning
a team of UGVs to get a good situational awareness were
studied, the line-of-sight perimeter problem and the wall

guarding problem with realistic camera constraints. For the
first we were able to find a polynomial time algorithm that
was shown to be complete in certain instances. For the
second problem, which is known to be NP-hard, we proposed
searching in a carefully selected finite set of candidate
positions that was shown to contain an optimal solution to
the original problem. Both algorithms were illustrated by
example problems.

REFERENCES

[1] S. Kumar, T. Lai, and A. Arora, “Barrier coverage with wireless
sensors,” Wireless Networks, vol. 13, no. 6, pp. 817–834, 2007.

[2] H. González-Banos and J. Latombe, “A Randomized Art-Gallery
Algorithm for Sensor Placement,” Proceedings of the 17th Annual
Symposium on Computational Geometry, pp. 232–240, 2001.

[3] S. Chen and Y. Li, “Automatic Sensor Placement for Model-Based
Robot Vision,” Transactions on Systems, Man and Cybernetics, Part
B, IEEE, vol. 34, no. 1, pp. 393–408, 2004.

[4] W. Franklin and C. Ray, “Higher isn’t Necessarily Better: Visibility
Algorithms and Experiments,” Proceedings of the 6th International
Symposium on Spatial Data Handling, pp. 751–763, 1994.

[5] W. Franklin, “Siting Observers on Terrain,” Symposium on Spatial
Data Handling, Ottawa, pp. 109–120, 2002.

[6] J. Urrutia, “Art gallery and illumination problems,” in Handbook of
computational geometry, J.-R. Sack and J. Urrutia, Eds. North-
Holland Publishing Co., 2000, pp. 973–1027.

[7] B. Gerkey, S. Thrun, and G. Gordon, “Visibility-Based Pursuit-Evasion
with Limited Field of View,” The International Journal of Robotics
Research, vol. 25, no. 4, pp. 299–315, 2006.

[8] B. Speckmann and C. Tóth, “Allocating Vertex p-Guards in Simple
Polygons via Pseudo-Triangulations,” Discrete and Computational
Geometry, vol. 33, no. 2, pp. 345–364, 2005.

[9] D. Kingston, R. Beard, and D. Casbeer, “Decentralized Perimeter
Surveillance Using a Team of UAVs,” Proceedings of the AIAA
Conference on Guidance, Navigation, and Control, 2005.

[10] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik,
V. Mittal, H. Cao, M. Demirbas, M. Gouda, et al., “A line in the
sand: a wireless sensor network for target detection, classification,
and tracking,” Computer Networks, vol. 46, no. 5, pp. 605–634, 2004.

[11] S. Eidenbenz, “Approximation Algorithms for Terrain Guarding,”
Information Processing Letters, vol. 82, no. 2, pp. 99–105, 2002.

[12] D. Lee and A. Lin, “Computational Complexity of Art Gallery
Problems,” IEEE Transactions on Information Theory, vol. 32, no. 2,
pp. 276–282, 1986.

[13] S. Eidenbenz, “Inapproximability Results for Guarding Polygons
without Holes,” Proceedings of the 9th International Symposium on
Algorithms and Computation, pp. 427–436, 1998.

[14] Y. Amit, J. S. B. Mitchell, and E. Packer, “Locating Guards for Visi-
bility Coverage of Polygons,” in Proceedings of the 9th Workshop on
Algorithm Engineering and Experiments, ser. Proceedings in Applied
Mathematics. SIAM, 2007.

[15] S. Eidenbenz and P. Widmayer, “An Approximation Algorithm for
Minimum Convex Cover with Logarithmic Performance Guarantee,”
SIAM Journal on Computing, vol. 32, p. 654, 2003.

[16] M. Marengoni and B. Draper, “System to Place Observers on a
Polyhedral Terrain in Polynomial Time,” Image and Vision Computing,
vol. 18, no. 10, pp. 773–780, 2000.

[17] A. Efrat and S. Har-Peled, “Guarding Galleries and Terrains,” Pro-
ceedings of the IFIP 17th World Computer Congress-TC1 Stream/2nd
IFIP International Conference on Theoretical Computer Science:
Foundations of Information Technology in the Era of Networking and
Mobile Computing, pp. 181–192, 2002.

[18] C. Fragoudakis, E. Markou, and S. Zachos, “How to Place Efficiently
Guards and Paintings in an Art Gallery,” in Lecture notes in Computer
Science: Advances in Informatics, Bozanis, Panayiotis, Houstis, and
Elias, Eds. Springer, 2005, pp. 145–154.

[19] U. Nilsson, P. Ogren, and J. Thunberg, “Towards Optimal UGV
Positioning,” in Optimization and Cooperative Control Strategies,
ser. Lecture Notes in Control and Information Sciences, M. Hirsch,
C. Commander, P. Pardalos, and R. Murphey, Eds. Springer Verlag,
2008.

