
Reactive Async: Expressive Deterministic Concurrency

Philipp Haller Simon Geries
KTH Royal Institute of Technology, Sweden

phaller@kth.se

Michael Eichberg Guido Salvaneschi
TU Darmstadt, Germany

{eichberg, salvaneschi}@cs.tu-darmstadt.de

Abstract
Concurrent programming is infamous for its difficulty. An
important source of difficulty is non-determinism, stemming
from unpredictable interleavings of concurrent activities.
Futures and promises are widely-used abstractions that help
designing deterministic concurrent programs, although this
property cannot be guaranteed statically in mainstream pro-
gramming languages. Deterministic-by-construction con-
current programming models avoid this issue, but they typi-
cally restrict expressiveness in important ways.

This paper introduces a concurrent programming model,
Reactive Async, which decouples concurrent computations
using so-called cells, shared locations which generalize
futures as well as recent deterministic abstractions such
as LVars. Compared to previously proposed programming
models Reactive Async provides (a) a fallback mechanism
for the case where no computation ever computes the value
of a given cell, and (b) explicit and optimized handling of
cyclic dependencies. We present a complete implementation
of the Reactive Async programming model as a library in
Scala. Finally, the paper reports on a case study applying
Reactive Async to static analyses of JVM bytecode based on
the Opal framework.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications – Concurrent, dis-
tributed, and parallel languages

Keywords asynchronous programming, concurrent pro-
gramming, deterministic concurrency, static analysis, Scala

1. Introduction
Developing correct concurrent programs is a well-known
challenge. Concurrency can create race conditions that may
corrupt the state of the program. Also, concurrent programs
are hard to reason about, because multiple flows of execu-

tion can generate non-deterministic results because of their
unpredictable scheduling. Traditionally, developers address
these problems by protecting state from concurrent access
via synchronisation. Yet, concurrent programming remains
an art: insufficient synchronisation leads to unsound pro-
grams but synchronising too much does not exploit hardware
capabilities effectively for parallel execution.

Over the years researchers have proposed concurrency
models that attempt to overcome these issues. For exam-
ple the actor model [13] encapsulates state into actors
which communicate via asynchronous messages–a solution
that avoids shared state and hence (low-level) race condi-
tions. Yet, the outcome of the program is potentially non-
deterministic because it depends on how actors execution,
message sending and message receiving interleave. Such is-
sues are shared by a number of popular concurrency models,
including STM [12] and futures/promises [17].

Recently, researchers designed concurrency models, like
LVars [15], FlowPools [23] and Isolation Types [6], that re-
sult in deterministic executions. The idea behind these mod-
els is to restrict expressivity to capture only computations
that can be defined in a deterministic way.

However, the limitations imposed by the deterministic
concurrency models proposed so far are severe. They push to
the programmer the burden of merging the result of concur-
rent computations, they do not support cyclic dependencies–
which are common in a number of fixed point algorithms,
e.g., in static analysis–and they do not support dynamic de-
pendencies among concurrent computations. Adding and re-
moving dependencies dynamically is critical for certain ap-
plications where concurrent abstractions are created on a
very large scale and must be removed when they are no
longer required.

In this paper, we present Reactive Async, a program-
ming model that allows developers to write deterministic
concurrent code in a composable way, supports dynamic
cyclic dependencies and supports a fallback mechanism to
resolve computations that haven’t reached final values nor
have pending dependencies,

Our evaluation shows that Reactive Async scales well on
multicore architectures, is efficient and can express complex
computations that are not supported by existing determinis-
tic concurrency models in real-world scenarios.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

SCALA’16, October 30–31, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4648-1/16/10...

http://dx.doi.org/10.1145/2998392.2998396

11



1 type ConcurrentSet[T] = TrieMap[T, Int]
2

3 def traverse(v: Vertex,
4 userIDs: ConcurrentSet[Int]): Unit = {
5 if (isInteresting(v))
6 userIDs.put(v.userID, 0)
7 for {n <- v.neighbors; if (!visited(n))} {
8 Future {
9 traverse(n, userIDs)

10 }
11 }
12 }

Figure 1. Concurrent traversal and collection of IDs

In summary, the contributions of this paper are:

• We present Reactive Async, a deterministic concurrency
model that supports cyclic dependencies, dynamic de-
pendencies, and fallbacks.

• We identify patterns from real-world large-scale use
cases where existing approaches fall short. We show that
Reactive Async can capture such complex computations
significantly more concisely than the original implemen-
tation.

• We provide an efficient implementation of Reactive
Async in Scala1 that in our benchmarks exhibits scalabil-
ity comparable to the state-of-the-art Scala futures [11].
In real-world case studies, the performance of Reactive
Async achieves a speedup between 1.75x and 10x and
scalability over multicore architectures is improved.

The paper is structured as follows. Section 2 provides an
overview of our programming model. Section 3 describes
relevant implementation details. Section 4 presents our case
studies. Section 5 provides a performance evaluation. Sec-
tion 6 reviews related work, and Section 7 concludes.

2. Overview
In this section, we introduce an example of concurrent pro-
gramming, show the issues that arise using traditional so-
lutions and explain how Reactive Async can address them.
Next, we present in detail the features of Reactive Async.

2.1 Motivating Example
Consider the example of a social network modeled as a
graph where vertices represent users of the social network
and edges represent connections between users (e.g., a “fol-
lows” relation). Suppose an application traverses a given so-
cial graph and collects the IDs of users satisfying a predicate
(“interesting” users) in a set. In order to leverage multicores,
the traversal and collection should be performed concur-
rently. Therefore, user IDs should be collected in a thread-
safe (concurrent) set. Figure 1 shows a simple concurrent
breadth-first graph traversal for such a purpose. Note that

1 See https://github.com/phaller/reactive-async.

1 val selectedUsers: List[Int] = ...
2 val entry: Vertex = ...
3 val userIDs: ConcurrentSet[Int] =
4 TrieMap.empty[Int, Int]
5 // traverse graph starting from ‘entry‘
6 // collect users in ‘userIDs‘
7 traverse(entry, userIDs)
8 // analyze selected users
9 for (user <- selectedUsers) {

10 val isInteresting = userIDs.contains(user)
11 ...
12 }

Figure 2. Traversal, collection, and analysis of social graph

we use a concurrent TrieMap [22] as the implementation of
a concurrent set where elements of the set are represented
as keys of the TrieMap. Now, suppose that in addition to
collecting interesting users, we would also like to analyze
selected users in more detail as shown in Figure 2. This ap-
proach suffers from two major issues:

1. Since the graph traversal is concurrent (spawning fu-
tures for the traversal of neighbors), the invocation of
contains on line 11 returns a non-deterministic result.
A selected user may be “interesting”, but the concurrent
traversal may – at the point when contains is invoked –
not have added the corresponding ID to the userIDs set.

2. Furthermore, without examining the implementation de-
tails of the traverse function, it is not clear whether
the concurrent traversal yields a deterministic outcome in
the first place (e.g., if user IDs are not only added to the
userIDs set but may also be removed in certain cases).

These issues demand for a programming model that leads
to a deterministic result still preserving the efficiency of
concurrent computation.

2.2 Reactive Async
Using Reactive Async, both issues can be addressed in a
straightforward way. First, instead of using a concurrent set,
user IDs are maintained in a so-called cell. Computations
performed on cells are made deterministic by requiring cells
to contain values taken from a lattice. This enables concur-
rent, monotonic updates of the value of a cell while preserv-
ing the determinism of the (concurrent) computation. Cell
updates are performed using cell completers.

Figure 3 shows the code of the traverse function, but
this time using a cell completer for updating userIDs. In
order for this cell completer to be valid, we must guarantee
that the elements of type Set[Int] form a lattice. This is
done by providing the (implicit) instance IntSetLattice
of the Lattice type class for type Set[Int] (lines 1–6).
Line 11 shows a monotonic update with Set(v.userID)
which updates the value of userIDs with the join of the
cell’s current value and Set(v.userID), effectively adding
v.userID to the set of collected users. Importantly, during

12



implicit object IntSetLattice
extends Lattice[Set[Int]] {

val empty = Set()
def join(left: Set[Int], right: Set[Int]) =

left ++ right
}

def traverse(v: Vertex,
userIDs: CellCompleter[Set[Int]]): Unit = {

if (isInteresting(v))
userIDs.putNext(Set(v.userID))

for {n <- v.neighbors; if (!visited(n))} {
Future {

traverse(n, userIDs)
}

}
}

Figure 3. Concurrent traversal and collection of IDs using
a cell completer

val selectedUsers: List[Int] = ...
val entry: Vertex = ...
val pool = new HandlerPool
val userIDs = CellCompleter[Set[Int]](pool)
// traverse graph starting from ‘entry‘
// collect users in ‘userIDs‘
traverse(entry, userIDs)
pool.onQuiescent {

// analyze selected users
for (user <- selectedUsers) {

val isInteresting = userIDs.contains(user)
...

}
}

Figure 4. Traversal, collection, and analysis of social graph
using quiescence

a concurrent traversal, multiple monotonic updates (like the
one on line 11) would be applied concurrently. However, the
final value of the userIDs cell would be unaffected by the
order of these updates.

Finally, in order to safely perform further analyses of in-
teresting users in a deterministic way (effectively avoiding
a race condition), Reactive Async supports the concept of
quiescence. Essentially, a concurrent computation on cells
reaches quiescence whenever it is guaranteed that none of
the cells are updated anymore. Therefore, the values of cells
are stable as soon as quiescence is reached, and read accesses
return deterministic results. To revisit the example, Figure 4
shows how to make the previously non-deterministic analy-
sis deterministic. Here, the analysis is only performed when
the traversal has reached quiescence. This is done by regis-
tering an onQuiescent handler on line 8. Therefore, the result
returned by the invocation of contains on line 11 is now
deterministic, since the userIDs cell is guaranteed not to be
updated any more by the traversal.

Note that it would always be possible, of course, to utilize
other concurrency abstractions in Scala to ensure the termi-

nation of the graph traversal (such as futures [11]). However,
in this case the programmer would be on her own to ensure
that the concurrent program is deterministic (or at least data-
race free). The goal of Reactive Async is to provide a single
programming model that integrates mechanisms such as qui-
escence in a way that allows writing concurrent programs
that are deterministic by construction. In the following we
dive into more details of the programming model.

Core Abstractions As mentioned earlier, the programming
model of Reactive Async is based on two core abstractions:
cells and cell completers. The two abstractions are related in
a way similar to the way Scala’s futures and promises [11]
are related. To recall, a Scala future of type Future[V] may
asynchronously be completed successfully with a value of
type V; or it may asynchronously be “failed” with an excep-
tion. A Scala promise of type Promise[V] allows complet-
ing its associated future at most once. An attempt to com-
plete an already completed promise throws an exception.

Similar to a future of type Future[V], a cell of type
Cell[K, V] may asynchronously be completed with a
value of type V – the K type parameter is explained below.
Cell[K, V] provides a read-only interface to access its
value(s). Similar to a promise of type Promise[V], a cell
completer of type CellCompleter[K, V] allows completing
its associated cell. There are two main differences between
futures/promises and cells:

• Cell completers allow multiple monotonic writes. The
written values must be elements of a lattice. In contrast,
promises allow at most one write.

• Cells allow resolving cyclic dependencies. In contrast,
dependencies between futures must be acyclic in order
to avoid deadlocks.

The distinction between cell completers is motivated by
the same software engineering considerations behind the
futures/promises model. With this distinction, libraries can
manipulate cell completers hiding from the client state up-
dates when the concurrent computation is in progress. In
contrast, the client of the library receives a cell that can only
be used to access the final result as soon as it is available.

2.3 Declarative Dependencies
Reactive Async supports the declaration of dependencies be-
tween cells, such that a monotonic update of one cell triggers
a monotonic update of another cell. In addition, triggered
updates are conditional on the update of the original cell.
For a simple example, consider two cells c1 and c2 hold-
ing integer values taken from the lattice of integers where
the join operator computes the maximum of the two given
integers (i.e., join(x, y) = max(x, y)). Suppose we
would like to express the fact that whenever c1 is (mono-
tonically) updated with a value v which is a multiple of
10, c2 should be updated with v; else, c2 should not be up-
dated. This means that if c1 is updated sequentially with val-

13



ues 1, 5, 10, 11, 21, 30, 35, 40 then c2 is updated with values
10, 30, 40. This dependency can be expressed declaratively
as follows:

c2.whenNext(c1,
x => if (x % 10 == 0) WhenNext else FalsePred,
None)

The above snippet registers a dependency of c2 on
c1. Whenever c1 receives an update with value v (via
c1.putNext(v)), it first applies the function which is the
second argument of whenNext to v to decide whether c2
should be updated as well, and, if so, how; the function has
type Int => WhenNextPredicate.

The WhenNextPredicate type is defined as follows:

sealed trait WhenNextPredicate
case object WhenNext extends WhenNextPredicate
case object WhenNextComplete extends WhenNextPredicate
case object FalsePred extends WhenNextPredicate

A WhenNext result means that the dependent cell should re-
ceive an update (with the semantics of putNext); the update
value is either the value received by the upstream cell if the
third argument of whenNext is None or w if the third argu-
ment of whenNext is Some(w). A WhenNextComplete result
means that the dependent cell should receive an update, and
this update should be final. Final completions are discussed
in detail below. A FalsePred result means that the depen-
dent cell should not receive an update.

In the above example, the second and third arguments
of whenNext express the following update logic: c2 is only
updated if c1 is updated with a multiple of 10, and in this
case c2 is updated with the same value as c1.

2.4 Cyclic Dependencies
Using whenNext it is possible to create cyclic dependen-
cies between cells. For a real-world example, consider the
static analysis of JVM bytecode, and more specifically im-
mutability analysis (this case study is discussed in more
detail in Section 4). Roughly, immutability analysis at-
tempts to answer the question whether a given class dec-
laration defines a class whose instances can never be mu-
tated after construction. The analysis can be implemented
using Reactive Async by creating a cell for each analyzed
class. The cell holds values taken from an “immutabil-
ity lattice” with elements ⊥ (the initial value of the cell),
ConditionallyImmutable, Mutable, and Immutable. The
value ConditionallyImmutable expresses the fact that the
corresponding class C depends on potentially mutable types
(e.g., generic class List[T]) while C itself does not intro-
duce mutability (e.g., reassignable fields). The introduction
of dependencies is straightforward: the cell of a class C de-
pends on the cell of a class D if C “uses” D in some way,
such as by declaring a field of type D (the precise details of a
real-world immutability analysis are irrelevant and therefore
omitted; Section 4.2 discusses more details). The general ap-
proach taken by our immutability analysis is to assume that

1 class X {
2 private final Y y;
3 X() {
4 y = new Y(this);
5 }
6 }
7 class Y {
8 private final X x;
9 Y(X x) {

10 this.x = x;
11 }
12 }

Figure 5. Immutability analysis with cyclic dependencies

a class is immutable unless the analysis finds contradicting
evidence.

The example in Figure 5 shows how to produce cyclic
dependencies in this context. Note that the code shown in
Figure 5 is essentially a Java rendition of the equivalent
JVM bytecode; in particular, scalac rejects the naive Scala
equivalent.2 For the shown example, our analysis (a) assigns
value ConditionallyImmutable to each cell, given that
each class does not introduce mutable elements itself, and
(b) registers the following two dependencies:

1 cellForX.whenNext(cellForY,
2 x => if (x == Mutable) => WhenNext else FalsePred,
3 Some(Mutable))
4 ...
5 cellForY.whenNext(cellForX,
6 x => if (x == Mutable) => WhenNext else FalsePred,
7 Some(Mutable))

Clearly, the whenNext invocations create a dependency cy-
cle. As a result, the immutability analysis so far fails to de-
termine the correct result value, namely, Immutable, for the
cells.

Dependency Resolution Reactive Async supports the res-
olution of cyclic dependencies as follows.

First, the runtime system identifies points in the program
execution when it can detect dependencies between cells
which can never be updated again. A state in the program
execution that is suitable for this, is a state where it is guar-
anteed that none of the cells will be updated again. Clearly,
this is the case when all threads capable of performing up-
dates are idle and there are no outstanding tasks (performing
updates) to be executed by these threads. When a thread pool
reaches this state, it is said to be quiescent. Thus, to be able
to detect quiescence of all update-performing threads, it is
sufficient to ensure that all cell updates are performed by
tasks executed on a thread pool. In turn, when this thread
pool becomes quiescent, it is guaranteed that none of the
cells will be updated again, unless a new task is submitted to
the thread pool from a non-pool thread.

2 Patterns such as the one shown here are relevant in practice, given occur-
rences in widely-used software like JDK version 8.

14



trait Key[V] {
def resolve[K <: Key[V]](cells: Seq[Cell[K, V]]):

Seq[(Cell[K, V], V)]
def fallback[K <: Key[V]](cells: Seq[Cell[K, V]]):

Seq[(Cell[K, V], V)]
}

Figure 6. The Key trait for specifying resolution strategies

Second, we need to distinguish between final and
non-final values of cells. In the above example, each
cell initially receives value ConditionallyImmutable. If
this value would not be expected to change any more,
then cycle resolution would not be necessary, since
ConditionallyImmutable would be a satisfactory final re-
sult value. However, in the case of the analysis, a value
should only be considered “final” if no other value would
be allowable (otherwise, the analysis could return incorrect
results, as explained above). Clearly, in the above exam-
ple, another value, namely Immutable, is allowable, so the
ConditionallyImmutable values should not be considered
final. Non-final cell values then enable Reactive Async to
detect cycles: cells with non-final values need an extra res-
olution step when the underlying thread pool reaches qui-
escence, since there are no outstanding updates that would
complete such cells with a final value. Thus, when the thread
pool becomes quiescent, all cells with non-final values are
checked to see if they form part of a dependency cycle. De-
pendency cycles, more precisely closed strongly-connected
components (cSCC), are determined and then a custom res-
olution strategy applied to all cells of a cSCC.3 Resolution
strategies are specified using keys, another abstraction that,
like lattices, form part of the “configuration” of a cell.

Keys A key specifies the resolution strategy that is to be
used for a group of cells. Essentially, a concrete key imple-
ments methods for resolving cyclic dependencies. Figure 6
shows the Key trait with its two methods for specifying reso-
lution strategies. The first method, resolve, takes an entire
cSCC as an argument (as a Scala sequence), and returns a
sequence of pairs where each pair contains a cell as well as
the value with which the cell should be resolved. (The actual
resolution is done by the runtime system, which schedules
appropriate cell updates.)

Fallbacks Interestingly, the mechanism used by Reactive
Async to detect unresolved, cyclic dependencies enables
fallbacks, which increase the expressiveness of the program-
ming model further. In the case where in a state of quies-
cence there are cells without final values and without depen-
dencies on other cells, dependency resolution as explained
above is not applicable. To handle also this case, keys allow
specifying fallback values for cells affected in such a way. A

3 A closed SCC is an SCC where each node belonging to it is only connected
with nodes in the SCC, i.e., there are no outgoing dependencies.

sealed abstract class Try[+T] { ... }
final case class Failure[+T](exception: Throwable)

extends Try[T] { ... }
final case class Success[+T](value: T)

extends Try[T] { ... }

Figure 7. Type Try[T]

key specifies fallback values by implementing the fallback
method shown in Figure 6. The method receives all cells
that have neither final values nor dependencies, and returns
a sequence of pairs where each pair contains a cell and a
value with which the cell should be resolved. This may sub-
sequently lead to the completion of those cells which have
outgoing dependencies, but which do not take part in cyclic
dependencies.

3. Implementation
The implementation of Reactive Async consists of two main
components: the cell and the handler pool. The former im-
plements the Cell and CellCompleter interface traits pre-
sented in Section 2. The latter implements (a) concurrent
task execution, (b) quiescence detection, and (c) dependency
resolution.

Cell Similar to a promise, a cell can be in one of two states:
(a) completed with a final result, or (b) not completed.

The state of a completed cell of type Cell[K,V] is simply
a value of type Try[V], shown in Figure 7.4 A value of
type Failure[V] is reserved for the case where a cell is
completed using an expression which throws an exception. A
value of type Success[V] indicates a successful completion
with a value of type V.

A cell that has not been completed maintains an interme-
diate result as well as a set of dependencies. For a cell of type
Cell[K,V], the intermediate result is an element of a lattice
implemented by a type class instance of type Lattice[V].
There are two kinds of dependencies: onNext dependencies
and onComplete dependencies.

A cell c1 with an onNext dependency on a cell c2 may
be updated whenever c2 is updated using putNext (onCom-
plete dependencies are analogous). Recall the example from
Section 2.3:5

c1.whenNext(c2,
x => if (x % 10 == 0) WhenNext else FalsePred,
None)

The above whenNext invocation dynamically introduces an
onNext dependency of cell c1 on cell c2. Whenever c2 re-
ceives a monotonic update, this dependency triggers an eval-
uation of the predicate provided in the whenNext invoca-
tion, by submitting a corresponding callback for execution
on the associated handler pool. c1’s intermediate result is

4 Type Try[T] is part of Scala’s standard library in package scala.util.
5 Note that c1 and c2 are swapped.

15



then updated according to the evaluation result (WhenNext
or FalsePred). To keep the overhead of triggering such an
update low, the corresponding callbacks are maintained as
task objects as part of their dependencies.

It is important to delete dependencies as soon as they are
no longer needed. This is particularly important for cases
where cells are kept accessible for longer periods of time.
For example, in our case studies (see Section 4) cells are
used to represent code entities for the purpose of static anal-
ysis. Here, code entities and their cells live “forever.” As a re-
sult, it is crucial to free up objects implementing dependen-
cies as early as possible to reduce the risk of out-of-memory
errors.

The key insight for effectively removing unneeded depen-
dencies is the fact that when a cell is completed with a final
result (e.g., using putFinal), all its onNext and onComplete
dependencies can be removed, since further updates are no
longer possible. However, it is important that this removal
is efficient, since each invocation of putFinal triggers a re-
moval. This is done by having each dependency maintain
references to both the source and the target cell, as well as
storing callbacks in hash tables indexed by cell.

Handler Pool The second main component of the imple-
mentation of Reactive Async is the handler pool. A handler
pool is a thread pool with extensions for quiescence detec-
tion and dependency resolution. A handler pool allows reg-
istering callbacks which are executed asynchronously when-
ever the handler pool reaches quiescence:

def onQuiescent(handler: () => Unit): Unit

Quiescence detection is implemented using an atomically-
updated reference to an instance of the following class:

class PoolState(
val handlers: List[() => Unit] = List(),
val submittedTasks: Int = 0)

Note that PoolState is not a case class, since an atomic
reference of type AtomicReference[PoolState] requires
PoolState to implement by-reference equality.

Cyclic dependencies are resolved when the handler pool
is quiescent. Dependency resolution first determines all
closed strongly-connected components (cSCCs) of incom-
plete cells. For each cSCC, the resolve method of the cor-
responding Key (see Figure 6) is invoked to determine the
values that the affected cells are completed with.

4. Case Studies
Our case studies aim at evaluating the following research
questions:

• Is our approach sufficiently expressive to implement
complex computations that require managing cyclic de-
pendencies?

• Is the performance of our approach competitive com-
pared to a hand written implementation that achieves the
same expressivity at a lower level of abstraction?

We performed two case studies to evaluate and demon-
strate the benefits of using reactive async for the imple-
mentation of static analyses. The first case study is the im-
plementation of a basic analysis for identifying pure meth-
ods (Purity Analysis). The second one determines the mu-
tability of instances of some class (Immutability Analysis).
Both are implemented using the static analysis framework
OPAL [9]6 and both have functionally equivalent imple-
mentations, which use OPAL’s Fixed-Point Computations
Framework (called FPCF in the following). Compared to
Reactive Async, FPCF provides an API that offers similar
features as Reactive Async, but which is build around tradi-
tional locks and monitors. Furthermore, FPCF ensures that
all user-defined computations w.r.t. a specific value – cap-
tured by a cell in Reactive Async – are never executed in
parallel. For example, if – in case of Reactive Async – a
value of a specific cell depends on the values of multiple
other cells, then the user predicate(s) which is(are) registered
using whenComplete may be executed in parallel. In case of the
FPCF all computations related to a value are executed se-
quentially.

For the evaluation we always analyzed the complete Mac
OS X (10.11.6) Oracle JDK 8 update 45 on a Mac Pro with
a 3 GHz, 8-core (16 hyperthreads) Intel Xeon E5 with 32
GB RAM; the JVM was given 24 GB of heap memory. The
performance data is visualized using box plots where the
whiskers represent the min/max values (Figure 8 and 9).

4.1 Purity Analysis
Here, we consider those methods as being pure that – during
one instantiation of the program – always return the same
value given the same input values. The implemented anal-
ysis rates those methods as being pure which only perform
basic arithmetic operations and non-virtual method calls of
pure methods. If the method performs any of the follow-
ing operations then the method is considered to be impure:
array related operations, virtual method calls, calls of na-
tive methods, synchronization or instance-based field ac-
cesses. Hence, this analysis is not a full-blown purity analy-
sis (e.g., as presented in [10, 24]), but it captures the essential
part: a method’s purity depends on the purity of other meth-
ods; even if the methods are in a cyclic calling dependency.

The first step of the analysis is to associate each method
with one cell (completer) to store the purity information.
After that, the analysis runs in parallel for all methods and
tries to determine for each method whether it is pure or
impure by analyzing the method’s body. For example, if the
analysis only sees arithmetic and control-flow instructions
– such as in Math.abs(Int,Int) – it immediately completes
the method’s cell using putFinal(Pure). If the analysis on the
other hand sees, e.g., an array access, it instead completes
the method’s cell using putFinal(Impure). In case the analysis
encounters a non-virtual method call the analysis may still

6 See http://www.opal-project.de.

16



FP
C

F 
(s

ec
s.)

0.15

0.20

0.25

0.30

0.35

R
eactive-A

sync (secs.)0.1

0.2

0.3

0.4

0.5

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads

0.43

0.44

0.45

0.09

0.10

0.11

0.335

0.340

0.345

0.165

0.170

0.175

0.180

0.185

0.18

0.19

0.20

Figure 8. Runtime of the purity analysis for the entire JDK 8 given a fixed number of threads.

be able to subsequently determine that the method is impure,
but it can no longer determine if it is pure without taking the
purity of the called method into consideration. To do that
it immediately calls the method whenComplete on the target
method’s cell completer to register a handler:

callerCell.whenComplete(targetCell, _ == Impure,
Some(Impure))// complete this cell using Impure

This handler will then complete the cell of the calling
method using Impure if the called method’s cell is completed
correspondingly; otherwise it does nothing. Hence, for meth-
ods which call other methods the analysis will never im-
mediately complete the calling method’s cell using Pure. In-
stead, it will create a dependency on the target method’s cell.
This design, which immediately propagates Impure, ensures
that all impure methods are guaranteed to be identified be-
fore we reach quiescence. Later, when all computations have
finished and the state of quiescence is reached, the frame-
work will then use the fallback value (Pure) to complete the
empty cells which are in a cyclic dependency or which have
no more dependencies.

Overall, 9 out of 113 lines of code (≈ 8%) are related
to querying and completing (other) cells. In case of FPCF
48 out of 166 lines of code (≈ 29%) are directly related to
the interaction with the framework. The performance data is
seen in Figure 8 and shows the time to analyze all 270 453
methods of the JDK using different numbers of threads. As
shown, the FPCF framework performs better than Reactive
Async when we just use one or two threads, but performs
worse after that. Additionally, it can be seen that in case
of Reactive Async using more threads always leads to a
performance improvement while using more threads in case
of FPCF only initially improves the performance. In both
cases using more than 16 threads leads to a performance
decrease (not shown). Overall, when we compare the two
best settings – 4 threads in case of FPCF and 16 threads in
case of Reactive Async – the latter is ≈ 1.75 times faster.

4.2 Immutability Analysis
This analysis determines the immutability of instances of a
class by analyzing the immutability of its instance fields.
The analysis distinguishes the three cases explained next:
Immutable means that the instances of the class as well as
all directly and indirectly referenced objects are immutable.
Conditionally Immutable is used for those objects whose
fields are final, but where the transitive closure might refer-
ence objects where the fields can be updated. Typically, im-
mutable collection classes are only conditionally immutable.
All classes that are neither immutable nor conditionally im-
mutable are Mutable.

As in the previous case, this analysis is also counter-
example driven. If the class defines non-final fields, then the
class is considered to be mutable and the analysis of the
class finishes. If all fields are final then the declared field
types are further analyzed. In case of a primitive type, the
field is treated as immutable. For referenced typed fields the
immutability of the respective type is used as the field’s im-
mutability. In case that any field is mutable, the declaring
class is considered as being conditionally immutable. Sim-
ilarly, if a field is conditionally immutable then the class is
also only conditionally immutable. Naturally, the immutabil-
ity of a type – as required when analyzing the immutability
of fields – is the join of the immutability ratings of all sub-
types. Additionally, the immutability of objects of a class is
always constrained by the immutability of instances of the
superclass. E.g., if instances of a superclass are mutable, so
are all instances of its subclasses.

The implementation of the analysis creates two cells
(completers) for each class. One to store the information
about the immutability of the objects of the class (OI) and
one to store the defined type’s immutability (TI). The later
abstracts over all subtypes. After the creation of the cells,
the analysis iterates over all class files in parallel and tries to
determine the immutability of its instances by analyzing the

17



FP
C

F 
(s

ec
s.)

1.0

1.5

2.0

2.5
R

eactive-A
sync (secs.)0.1

0.2

0.3

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads
2.15
2.20
2.25
2.30
2.35

1.15
1.20
1.25
1.30
1.35

0.290

0.295

0.300

0.105

0.110

0.115

Figure 9. Runtime of the immutability analysis for the entire JDK 8 given a fixed number of threads.

fields as described. If a non-final instance field is found the
OI cell is immediately completed using mutable; in case of
a reference-typed field a callback is registered with the cor-
responding TI cell which sets the OI cell to mutable or con-
ditionally immutable when the TI cell is completed accord-
ingly. To complete a TI cell a callback is registered with all
TI cells of all subtypes unless the type is a leaf type. In that
case a callback is registered with the corresponding OI cell.
Hence, as in case of the previous example, the analysis is
very simple, but the complete infrastructure is implemented.
Compared to the previous case the number of dependencies
is very high.

The Reactive Async based implementation is basically
one analysis which is 294 lines long; the FPCF-based imple-
mentation is split into two analyses and is 253 + 171 = 424
lines long. In both cases basically all code directly interacts
with the respective framework, since the analyses are just
simple loops over all fields. As can be seen in Figure 9, Re-
active Async is ≈ 10x faster than FPCF, which is due to the
high amount of locking that needs to be done by FPCF.

4.3 Conclusion
As both studies have shown, using Reactive Async makes
it possible to – at least – express core aspects of classical
static analyses in a much more concise manner when com-
pared to an API which uses traditional locks and a corre-
sponding programming model. It has been shown that ex-
plicit support for resolving cyclic computations significantly
benefits corresponding computations; in both cases, no code
was written to handle cycles. Using other state of the art de-
terministic concurrent programming models would have re-
quired the developer to explicitly handle the situation. W.r.t.
the performance the case studies have shown that Reactive
Async scales very well and enables efficient use of multi-
core CPUs.

5. Benchmarks
We also evaluate the performance and scalability of Reac-
tive Async using two benchmarks, Parallel Sum and Monte
Carlo Net Present Value, which we describe below. For
each benchmark we compare three different implementa-
tions: a sequential implementation, a concurrent implemen-
tation based on Scala’s futures and promises, and a concur-
rent implementation based on Reactive Async. All perfor-
mance measurements are based on the same hardware and
software setup as the case studies (see Section 4).

Parallel Sum This benchmark computes the sum of a
large collection of random integers in parallel. To expose
sufficient parallelism, we use a collection of size 224 =
16777216. Furthermore, to enable efficient splitting of the
collection we use Scala’s Vector[Int], which is backed by
a bit-mapped vector trie with a branching factor of 32.

Sequential 
Reactive Async
Scala Futures 2.11.7 

Ru
nt

im
e 

(m
s)

0

50

100

150

200

250

300

Number of Threads
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 10. Runtime of the Parallel Sum micro benchmark
in relation to the number of used threads

18



Sequential 
Reactive Async
Scala Futures 2.11.7 

Ru
nt

im
e 

(m
s)

0

1000

2000

3000

4000

5000

6000

Number of Threads
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

400
500
600
700

14 15 16

Figure 11. Runtime of the Monte Carlo Net Present Value
benchmark in relation to the number of used threads

Figure 10 shows the runtime of our implementations in
relation to the number of used threads. The performance of
Reactive Async is virtually identical to Scala’s futures in
this benchmark. The speed-up compared to the sequential
implementation is about 1.91x for 2 threads (futures: 2.03x),
about 6.97x for 8 threads (futures: 6.62x), and about 7.37x
for 16 threads (futures: 7.37x).

Monte Carlo Net Present Value This benchmark com-
putes the Net Present Value7 while allowing for uncertainty
in the discount rate and the cash flows by using a Monte
Carlo simulation. Our implementation is a Scala port of an
open-source Java implementation by Alan Hohn,8 which is
based on Doug Lea’s fork/join framework [16].

Figure 11 shows the runtime of our implementations in
relation to the number of used threads. Overall, the observed
performance trends are similar to the Parallel Sum bench-
mark. However, we can see that Scala’s futures are slightly
more efficient. For 14–16 threads, futures are between 23%
and 36% faster than Reactive Async. Two main reasons are
likely: first, the Monte Carlo Net Present Value benchmark
requires more synchronization than the Parallel Sum bench-
mark; as a result, the more complex state updates within cells
become observable. Second, Scala’s futures have undergone
performance tuning by industry experts, whereas the same
level of optimization effort has not been applied to the cur-
rent implementation of Reactive Async.

Summary The presented micro benchmarks show that Re-
active Async exhibits a scalability competitive with Scala’s
futures, a finely-tuned, state-of-the-art implementation of fu-
tures on the JVM. In terms of runtime, Scala’s futures are up
to 36% faster than Reactive Async in our micro benchmarks.
We expect this percentage to decrease with an effort to care-
fully optimize the implementation of Reactive Async.

7 See https://en.wikipedia.org/wiki/Net present value.
8 See https://github.com/AlanHohn/monte-carlo-npv.

6. Related work
Programming Models for Concurrency Control Over the
years researchers have proposed a number of advanced con-
currency control mechanisms. Software Transactional Mem-
ories (STM) [12] handle the problem of concurrent access to
shared data introducing abstractions that define the bound-
aries of a transaction. Transactions abort in case of a con-
flict (optimistic control) or check not to introduce conflicts in
advance (pessimistic control). Actors [13] encapsulate state
and control, reacting to asynchronous messages. Since ac-
tors do not share memory, race conditions are not possible by
construction. Imperative languages pose the additional chal-
lenge that races can arise on messages. The Async/Finish
model [7] provides high-level, lexically-scoped constructs
for creating parallel tasks and waiting for their termination.
This approach simplifies static analysis and enables com-
piler optimizations. Finally, additional models have been de-
rived via the combination of other models. For example,
Habanero-Scala (HS) [14] is a Scala library that supports
a hybrid programming model, combining the Async/Finish
model and the Actor model. In contrast to our approach,
none of these solutions guarantee determinism.

Deterministic Concurrent Models Isolation types [6] are
a mechanism for parallel execution of application tasks. Iso-
lation types are used for data shared among tasks. Tasks
fork and join isolated revisions: tasks read and modify their
own private copy of the shared data. Copies are created and
merged automatically, conflicts are solved deterministically,
in the way declared by each isolation type.

Programming models for deterministic concurrency guar-
antee the equivalence to a sequential execution [3, 5, 21, 25].
They restrict the tasks to avoid conflicts that cannot be au-
tomatically resolved via the type system, or at runtime via
blocking (optimistic) or aborts and retry (optimistic).

FlowPools [23] provide a deterministic concurrent
dataflow abstraction for multisets, with an efficient lock-
free implementation. Reactive Async generalizes Flow-
Pools by supporting arbitrary lattice-based data, including
but not limited to multisets. Furthermore, Reactive Async
supports the resolution of cyclic dataflow dependencies,
whereas FlowPools are restricted to acyclic dataflow graphs.
LVars [15] is a deterministic-by-construction parallel pro-
gramming model based on shared state similar to Cells: they
take the least upper bound of the old and new values with
respect to the lattice to guarantee determinism. Similar to
putFinal, LVars can be freezed after a write, to ensure that
no further values can be added. In contrast to our approach,
LVars do not support cyclic dependencies and do not address
the problem of fallback computations.

In distributed systems, monotonicity has been used to
guarantee eventual consistency. Bloom [1] allows program-
ming distributed systems that are eventually consistent based
on monotonically updated data collections.

19



DPJ [4] introduces an effect system for deterministic con-
currency in Java. The compiler checks that memory regions
are linear, avoiding concurrent accesses by multiple writers.
In contrast to our approach and solutions like LVars, which
are based in monotonic writes, DPJ achieves determinism by
restricting when reads and writes can happen.

Reactive Programming Reactive programming [2] is a
programming paradigm that aims at supporting reactive ap-
plications with dedicated language abstractions (e.g., event
streams, signals). Languages like ELM [8], Scala.react [18],
and ReactiveX/Rx [19] support asynchronous execution of
reactive computations. Similar to cells, reactive abstrac-
tions support the composition of asynchronous computa-
tions. However, while some of the existing reactive program-
ming languages support dynamic dependencies [20], they do
not provide determinism nor support cycles in the dependen-
cies between reactive values.

7. Conclusion
Restricted expressivity has been a long-standing challenge
for deterministic concurrency. We propose a concurrent pro-
gramming model, Reactive Async, that overcomes several
limitations of existing solutions. It allows developers to write
composable, deterministic concurrent code supporting both
cyclic and dynamic dependencies. Case studies in the do-
main of static analysis show that Reactive Async can easily
tackle problems where existing solutions are not effective
due to a lack of expressivity. Performance evaluations on
both case studies and benchmarks show that our implemen-
tation allows writing faster applications compared to hand-
written concurrent code and to retain the scalability of state-
of-the-art implementations of futures.

Acknowledgments
This work is partially supported by the European Research
Council, grant No. 321217.

References
[1] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Marczak.

Consistency Analysis in Bloom: a CALM and Collected Ap-
proach. In CIDR, pages 249–260, 2011.

[2] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx,
and W. d. Meuter. A survey on reactive programming. ACM
Comput. Surv., 45(4):52:1–52:34, Aug. 2013.

[3] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe
Multithreaded Programming for C/C++. In OOPSLA, pages
81–96, 2009.

[4] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir.
Parallel Programming Must Be Deterministic by Default. In
HotPar, page 4, 2009.

[5] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A Type and Effect System for De-
terministic Parallel Java. In OOPSLA, pages 97–116, 2009.

[6] S. Burckhardt, A. Baldassin, and D. Leijen. Concurrent pro-
gramming with revisions and isolation types. In OOPSLA,
pages 691–707, 2010.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In OOP-
SLA, pages 519–538, 2005.

[8] E. Czaplicki and S. Chong. Asynchronous functional reactive
programming for GUIs. In PLDI, pages 411–422, 2013.

[9] M. Eichberg and B. Hermann. A software product line for
static analyses: The OPAL framework. In SOAP, pages 1–6,
2014.

[10] M. Finifter, A. Mettler, N. Sastry, and D. Wagner. Verifiable
functional purity in Java. In CCS, pages 161–174, 2008.

[11] P. Haller, A. Prokopec, H. Miller, V. Klang, R. Kuhn,
and V. Jovanovic. Futures and promises. http://docs.
scala-lang.org/overviews/core/futures.html, 2012.

[12] T. Harris, A. Cristal, O. S. Unsal, E. Ayguade, F. Gagliardi,
B. Smith, and M. Valero. Transactional memory: An
overview. IEEE Micro, 27(3):8–29, May 2007.

[13] C. Hewitt. Viewing control structures as patterns of passing
messages. Artificial Intelligence, 8(3):323–364, June 1977.

[14] S. M. Imam and V. Sarkar. Integrating task parallelism with
actors. In OOPSLA, pages 753–772, 2012.

[15] L. Kuper, A. Turon, N. R. Krishnaswami, and R. R. New-
ton. Freeze after writing: Quasi-deterministic parallel pro-
gramming with LVars. In POPL, pages 257–270, 2014.

[16] D. Lea. A Java fork/join framework. In Java Grande, pages
36–43, 2000.

[17] B. Liskov and L. Shrira. Promises: Linguistic support for
efficient asynchronous procedure calls in distributed systems.
In PLDI, pages 260–267, 1988.

[18] I. Maier and M. Odersky. Higher-order reactive programming
with incremental lists. In ECOOP, pages 707–731, 2013.

[19] E. Meijer. Your mouse is a database. Commun. ACM,
55(5):66–73, 2012.

[20] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,
M. Greenberg, A. Bromfield, and S. Krishnamurthi. Flapjax:
A programming language for Ajax applications. In OOPSLA,
pages 1–20, 2009.

[21] P. Pratikakis, J. Spacco, and M. Hicks. Transparent Proxies
for Java Futures. In OOPSLA, pages 206–223, 2004.

[22] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky.
Concurrent tries with efficient non-blocking snapshots. In
PPOPP, pages 151–160, 2012.

[23] A. Prokopec, H. Miller, T. Schlatter, P. Haller, and M. Oder-
sky. FlowPools: A lock-free deterministic concurrent dataflow
abstraction. In LCPC, pages 158–173, 2012.

[24] A. Salcianu and M. C. Rinard. Purity and side effect analysis
for Java programs. In VMCAI, pages 199–215, 2005.

[25] A. Welc, S. Jagannathan, and A. Hosking. Safe Futures for
Java. In OOPSLA, pages 439–453, 2005.

20


