
Extending Scala with Records
Design, Implementation, and Evaluation

Olof Karlsson
A3J Consulting AB
Stockholm, Sweden
olof.karlsson@a3j.se

Philipp Haller
KTH Royal Institute of Technology

Stockholm, Sweden
phaller@kth.se

Abstract
This paper presents a design for extensible records in Scala
satisfying design goals such as structural subtyping, typesafe
polymorphic operations, and separate compilation without
runtime bytecode generation. Using new features of Scala 3,
the design requires only minimal, local changes to the Scala 3
reference compiler Dotty as well as a small library compo-
nent. Runtime performance is evaluated experimentally us-
ing a novel benchmarking suite generator, showing that the
design is competitive with Scala 2’s cached reflection for
structural field access, and excels at immutable extension
and update operations.

CCS Concepts • Software and its engineering → Lan-
guage features; Compilers; Software performance;

Keywords Scala, records, structural typing

ACM Reference Format:
Olof Karlsson and PhilippHaller. 2018. Extending Scalawith Records:
Design, Implementation, and Evaluation. In Proceedings of the 9th
ACM SIGPLAN International Scala Symposium (Scala ’18), September
28, 2018, St. Louis, MO, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3241653.3241661

1 Introduction
A record is generally understood to mean a labeled product
datatype, consisting of a set of label-value pairs called fields.
Under this broad definition almost every practical program-
ming language provides a similar construct, whether it is
called a record (Haskell, F#, SML), a struct (the C-language
family), or a class (most OOP languages). In this paper, how-
ever, we focus exclusively on records with structural typing.
While structural typing is common in the academic liter-

ature, the majority of the type systems of mainstream pro-
gramming languages are nominal. This might gradually be
changing, however, as structurally typed languages such as

Scala ’18, September 28, 2018, St. Louis, MO, USA
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 9th ACM SIGPLAN International Scala Symposium
(Scala ’18), September 28, 2018, St. Louis, MO, USA, https://doi.org/10.
1145/3241653.3241661.

TypeScript and Go are gaining in popularity.1 Structural typ-
ing can provide more flexibility than nominal typing and is
especially well suited for handling semi-structured data such
as JSON and XML. This makes structurally typed, efficient
records an attractive choice for a wide range of applications,
from rapid web-development to large-scale data analytics.
Scala supports both nominal typing for object-oriented

constructs such as classes, traits, and singleton objects, as
well as structural typing in the form of refinement types. The
structural typing is reserved for instances of already-existing
classes, however (breaking separate compilation), and there
exists no language-provided constructor for record literals,
nor support for typesafe polymorphic operations such as
record extension. Furthermore, the runtime performance of
structural member access is debated, as it utilizes reflection
on the JVM. Efforts have been made to improve the situation,
but so far library implementations of records in Scala 2 have
been unsatisfactory, relying on the experimental macro sys-
tem. These macros are now deprecated and are no longer sup-
ported in Scala 3.2 Even if the same style of macros were to be
supported, macro-based solutions often turn out to be hard
to debug and have poor support for static code-analysis tools
such as IDEs.3 In addition, existing libraries have approach-
specific limitations, such as no support for typesafe record
extension in the case of scala-records [Jovanovic et al. 2018]
and Compossible [Vogt 2015], or an enforced ordering of
record fields in the case of Shapeless [Sabin et al. 2018].

In this paper we present a new, native approach to records
in Scala that for the first time simultaneously satisfies the
following design goals:

1. structural subtyping with unordered fields;
2. typesafe extensibility, also in the setting of parametric

polymorphism;
3. separate compilation support;
4. no bytecode generation at runtime;
5. only small, local changes to Scala’s type system; and
6. no dependency on the deprecated macro system.

1For example, see http://redmonk.com/sogrady/2018/03/07/
language-rankings-1-18/
2See https://www.scala-lang.org/blog/2018/04/30/in-a-nutshell.html
3For better macro support, the IntelliJ IDE requires creating spe-
cial IDE plugins. See https://blog.jetbrains.com/scala/2015/10/14/
intellij-api-to-build-scala-macros-support/

https://doi.org/10.1145/3241653.3241661
https://doi.org/10.1145/3241653.3241661
https://doi.org/10.1145/3241653.3241661
http://redmonk.com/sogrady/2018/03/07/language-rankings-1-18/
http://redmonk.com/sogrady/2018/03/07/language-rankings-1-18/
https://www.scala-lang.org/blog/2018/04/30/in-a-nutshell.html
https://blog.jetbrains.com/scala/2015/10/14/intellij-api-to-build-scala-macros-support/
https://blog.jetbrains.com/scala/2015/10/14/intellij-api-to-build-scala-macros-support/


Scala ’18, September 28, 2018, St. Louis, MO, USA Olof Karlsson and Philipp Haller

The approach builds on new features of Scala 3, the next ma-
jor version of Scala, as implemented in the reference compiler
Dotty. As a result, the compiler extensions required by our
design are rather small and limited. Essentially, we propose
two new compiler-synthesized type classes, coupled with a
small library component. In summary, the contributions are
as follows:

Contributions
1. A new design of records for Scala which overcomes

the limitations of previous approaches. To the best of
our knowledge it is the only approach satisfying all of
the above design goals.

2. A complete implementation4 of our approach as an
extension of the Scala 3 reference compiler, integrated
with the full Scala 3 language.

3. A novel micro benchmark generator, called Wreck-
age5, with support for multiple mutually-incompatible
JVM-based compilers, including Scala 2, Scala 3, and
Whiteoak [Gil andMaman 2008]. It enables finegrained
performance measurements on the industry-standard
HotSpot JVM implementation, through integration
with the JMH benchmarking harness.

4. An experimental evaluation of the runtime proper-
ties of various implementation strategies on the JVM,
as well as a case study processing a real-world JSON
dataset. Our results reveal, for the first time, how dif-
ferent implementation schemes for structural typing
compare to related language constructs in Scala, such
as nominally typed case classes.

The rest of the paper is organized as follows. In Section 2
we briefly introduce new features of Scala 3 used by our
approach. Section 3 gives an overview of the record exten-
sion from the user’s perspective. In Section 4 we describe the
rationale and the design of the suggested approach. Section 5
presents benchmark results, comparing our approach to al-
ternative record implementations. In Section 6 we discuss
related work, and provide conclusions in Section 7.

2 Background
This section introduces implicits as well as Scala 3’s new
implementation of structural types. Other features of Scala 3
used in our design are introduced on the fly in later sections.

Implicits. With implicits Scala supports extensible, generic
programming which enables encoding type classes as a pat-
tern [Oliveira et al. 2010], among others. Methods may have
multiple parameter lists, one of which may be marked as
implicit:

def print[T](it: T)(implicit s: Show[T]): Unit =

println("printing: " + s.show(it))

4Available here: https://github.com/obkson/dotty/tree/dotty-records-final
5Available here: https://github.com/obkson/wreckage

The type Show[T] of the implicit parameter s has a single
method show which converts a value of type T to a string:
trait Show[T] { def show(t: T): String }

Invoking print[S] requires an implicit value of type
Show[S] to be in scope, for example:
implicit val showCar: Show[Car] = new Show[Car] {

def show(c: Car) = "Car of model " + c.model

}

print(new Car("Space Cruiser"))

The concrete implicit value is inferred by the type checker;
ambiguity leads to a static type error. Using a context bound
we can simplify the method signature of print:
def print[T : Show](it: T): Unit =

println("printing: " + implicitly[Show[T]].show(it))

The context bound : Show expands to the implicit parameter
list as shown above, but with a synthetic parameter name;
implicitly[S] returns the unique implicit value of type S
that is in scope at the invocation site.

Structural types. Scala 3 introduces an approach to struc-
tural types that enables programmable member access. Sup-
pose v is a value of type C { Decls } where C is a class and
Decls are refinement declarations. Then, if C implements a
special trait Selectable, a selection v.fld is expanded to
(v: Selectable).selectDynamic("fld").asInstanceOf[T]

provided that fld is declared with type T in Decls.

3 Overview
This section provides a short demonstration of the capabili-
ties of the introduced records, as seen from the end user’s
perspective in a tutorial-style REPL session.6

Record capabilities are imported from a new recordsmod-
ule in the dotty package of the core library; a record with
two fields name and age is constructed as follows:
scala> import dotty.records._

scala> val r = Record("name", "Rick") + ("age", 70)

val r: Record{name: String; age: Int}

= Record(name=Rick, age=70)

The record type is represented as a structural refinement of
the Record class, providing typesafe field access:
scala> r.name

val res0: String = "Rick"

scala> r.foo

1 | `foo` is not a member of Record{name: String; age: Int}

as well as structural width and depth subtyping:
scala> val s: Record{val name: Any} = r

val s: Record{name: Any} = Record(name=Rick, age=70)

Furthermore, existing records can be extended with addi-
tional fields:
6Due to space considerations some REPL output has been truncated.

https://github.com/obkson/dotty/tree/dotty-records-final
https://github.com/obkson/wreckage


Extending Scala with Records Scala ’18, September 28, 2018, St. Louis, MO, USA

scala> val u = r + ("grandson", "Morty")

val u: Record{name: String; age: Int; grandson: String}

= Record(name=Rick, age=70, grandson=Morty)

and the same syntax allows (immutable) updates of existing
fields:
scala> val older = r + ("age", r.age + 1)

val older: Record{name: String; age: Int}

= Record(name=Rick, age=71)

Record extension is only allowed if the added field is guar-
anteed to not already exist on the updated record type, or
if the added value has a subtype of the existing field’s type.
Otherwise it is a compile-time error:
scala> val e = r + ("age", "old")

1 |Cannot prove that Record{name: String; age: Int} is

|extensible with String("age") ->> String.

Record extensibility is not limited to concrete record types
but can be supported in polymorphic contexts as well by
adding a type variable with one or more context bounds:
def center[R <: Record : Ext["x",Int] : Ext["y",Int]](r: R)

= r + ("x", 0) + ("y", 0)

scala> val p = center(r)

val p: Record{name: String; age: Int; x: Int; y: Int}

= Record(name=Rick, age=70, x=0, y=0)

Here, each context bound Ext[L, V] ensures that the record
type R can be safely extended with a field with label L and
type V.

4 Design and Approach
One of the main goals of the implementation is to introduce
as few new concepts to the language as possible, and in
particular not to introduce any new syntax. To that end,
Scala 3’s new Selectable trait provides an excellent starting
point. Using a Map data structure to hold the record fields
internally, a simple record implementation can be written in
Scala 3 as follows:
case class Record(m: Map[String, Any]) extends Selectable {

def selectDynamic(name: String) = m(name)

}

Such a record can then be instantiated by supplying the
field map and giving the result a structural refinement type
explicitly:
val r = Record(Map("name"->"Morty", "age"->14)).

asInstanceOf[Record{val name: String; val age: Int}]

Since the Record class extends the Selectable trait the
compiler automatically translates each subsequent field ac-
cess on the structural type into a call to the selectDynamic
method, casting the returned value to the type of the selected
field (see Section 2). This simple implementation using noth-
ing but native Scala 3 constructs already provides much of
the functionality expected from records, such as structural
typing with width, depth, and permutation subtyping and
typesafe field access. However, the implementation does not

provide typesafe record creation nor extensibility. Type safety
is only guaranteed as long as the user assigns the correct
type in the initial explicit cast, and there are no means to add
more fields later and have those fields included in the result
type. This paper addresses precisely these issues by adding
compiler support for typesafe record extension. As shown in
Section 3, typed record creation then comes for free as it can
be expressed as a series of extensions of an empty record.

Extensibility. Scala 3’s new intersection types can almost
be used to express record concatenation at the type level.
Type intersection is defined such that the intersection of
refinement types S and T contains the union of the fields
from both S and T. The result of concatenating a record type
Record{name: String}with Record{age: Int} can there-
fore be typed as the intersection Record{name: String} &
Record{age: Int} which is equivalent to Record{name:
String; age: Int}. A naïve version of record concatena-
tion can therefore be implemented as follows:

def concat[S <: Record, T <: Record](s: S, t: T)

= new Record(s.m ++ t.m).asInstanceOf[S & T]

However, this definition is not sound. If records s and t both
contain a field f with type A in S and with type B in T, type
intersection is by definition applied recursively so that the
resulting type S & T contains a field f: A & B. At the
same time, the map concatenation operator ++ overwrites
the value of f in s with the value of f in t. The result is a
record with a field f of static type A & B but dynamic type B
(or some subtype) and a runtime exception follows:

// val s: Record{f: Int} = Record(Map("f" -> 42))

// val t: Record{f: String} = Record(Map("f" -> v))

scala> val e = concat(s, t)

val e: Record{f: Int & String} = Record(Map(f -> v))

scala> e.f // Exception: String cannot be cast to Integer

In a setting without subtyping, this problem can be addressed
by statically checking that the fields of S and T are disjoint.
As noted by Cardelli and Mitchell [1991] however, subtyping
introduces further difficulties. Even if the types S and T are
statically known to be disjoint, the dynamic record values s
and t might not be. In the above example, the record t has
an equally valid typing Record{} which effectively hides
the dynamic field f from the static type T. With this typing
the record types S and T are disjoint and the result type is
Record{val f: Int}. The value of e.f is still "v", however,
and a runtime exception follows.
Our proposed solution avoids these problems by a) only

allowing a record to be extended by a single, statically known
field at a time (allowing record extension rather than record
concatenation), and b) only allowing a record to be extended
if the resulting type can be expressed as an intersection type.
The general rule here is that a record type R can only be
extended with a field f: B if f is missing in R, or if f: A



Scala ’18, September 28, 2018, St. Louis, MO, USA Olof Karlsson and Philipp Haller

exists in R it holds that B <: A so that B <: A & B and the
updated record’s new value can safely be typed as A & B.
This is accomplished by introducing two new compiler-

synthesized type classes defined as follows:
trait Extensible[R <: Record, L <: String, V]

and
trait FieldTyper[L <: String, V] { type Out <: Record }

The Extensible[R, L, V] type class carries proof that the
record type R can safely be extended with a field with label L
and type V, and the FieldTyper type class makes it possible
to still express the result of this extension as an intersection
type by mapping the field to its corresponding record type
Out. Note that the label is lifted to the type level using a type
variable L which is expected to be a literal singleton type.

Using these two type classes, a polymorphic function
extend can be implemented that only extends a record r
with label l and value v if it is safe to do so:
def extend[R <: Record, V](r: R, l: String, v: V)(implicit

ev: Extensible[R, l.type, V],

ft: FieldTyper[l.type, V])

= Record(r.m.updated(l, v)).asInstanceOf[R & ft.Out]

Both the Extensible and FieldTyper type classes require
special compiler support to be automatically derived and
instantiated when required. This is achieved by augmenting
the implicit resolution process of the Scala 3 compiler, so
that whenever an instance of Extensible or FieldTyper is
required as an implicit argument, but cannot be found in the
current scope, an algorithm inspects the type of the required
instance and, if possible, instantiates it. Following certain
derivation rules, the algorithm may also reject instantiating
the type class, resulting in a compilation error. Scala already
has similar language-provided type classes that are automati-
cally instantiated when required as implicit parameters, such
as the ClassTag, TypeTag and Eq type classes, and so we
argue that this is a natural extension to the overall design of
the compiler.
Again, consider the example of extending a record r of

type Record{name: String} with an age field:
val e = extend(r, "age", 123)

Since the type Record{name: String} lacks a field with
label age, it is safe to extend using type intersection and an
instance of Extensible[R, "age", Int] is synthesized by
the compiler. Furthermore, the compiler synthesizes an in-
stance ft of type FieldTyper["age", 123] and calculates
the path-dependent type ft.Out to equal the correspond-
ing record type Record{age: Int}. The resulting type of
extension is Record{name: String} & Record{age: Int}
as desired.

Furthermore, extending a record with a field that already
exists with an incompatible type is rejected:
scala> val e = extend(r, "name", 123)

1 |Cannot prove that Record{name: String} is extensible...

This restriction only applies to the static type of the extended
record however, since it is safe to overwrite the value of a
field hidden by widening:

scala> val e = extend(r: Record{}, "name", 123)

val e: Record{name: Int} = Record(Map(name -> 123))

Derivation Rules. An instance of Extensible[R, "l", V]
is automatically synthesized by the compiler if R can be
proven to be extensible with field (l: V) by a recursive case
analysis on the type tree of R. For the complete set of rules,
the reader is referred to the documentation;7 here, we only
cover the most interesting cases. Extending a record type R
with field (l: V) is allowed if either

1. an instance of Extensible[R,"l",V] exists in scope;
2. R is an intersection type A & B, and extension is allowed

for both A and B;
3. R is a type variable, and extension is allowed for its

lower type bound;
4. R is a concrete refinement type S{Fs}where S is a sub-

type of Record and Fs a set of refinement declarations,
for which it holds that
a. S{Fs} has no member with name l, or
b. the refinement declarations Fs contain a member

with name l and type U, where V is a subtype of U.
As an example, consider the following function:

0| def f[R >: Record{val name: String} <: Record](r: R)

(implicit ev: Extensible[R, "age", Int]) = {

1| val s = extend(r, "ssn", "n/a")

2| val t = extend(s, "age", 99) }

In the first extension on line 1 the type of r is the abstract
type variable R, and there exists no evidence in scope that
this type is extensible with the field (ssn: String). How-
ever, the type variable R is lower bounded by the concrete
refinement type Record{val name: String} for which rule
4a applies. The intuition here is that R is guaranteed to be
a super type of this bound, and so it cannot contain any
more fields, and in particular not a field with label ssn and
a conflicting type. Thus, R is extensible and an instance of
Extensible[R, "ssn", String] can safely be synthesized
and passed to the extend function.

In the second extension on line 2 the type of s is the more
complicated intersection type R & Record{ssn: String}.
Following rule 2, extensibility must then be proven for both
operands. In the case of R the implicit instance ev of type
Extensible[R, "age", Int] is already in scope, and so
rule 1 applies. In the case of Record{ssn: String}we again
have a concrete refinement type for which rule 4a applies.
Having proven that extension will interfere with no fields in
R and no fields in Record{ssn: String}, the whole inter-
section is safe to extend and the Extensible is synthesized.

7Available here: https://github.com/obkson/dotty/blob/dotty-records-final/
Records.md

https://github.com/obkson/dotty/blob/dotty-records-final/Records.md
https://github.com/obkson/dotty/blob/dotty-records-final/Records.md


Extending Scala with Records Scala ’18, September 28, 2018, St. Louis, MO, USA

Note that it is only the Extensible type class that has to
be passed around to carry proofs of extensibility into poly-
morphic contexts. In contrast, instances of the FieldTyper
type class must always be generated at the invocation site of
the above extend method, since the type member Out of an
already-existing instance would always be equal to its less
informative upper bound Record.

Library Component Implementation. To allow the
Extensible and FieldTyper type classes to refer unam-
biguously to Record types without restricting their usability
to a single record implementation, the Record type is defined
as a trait extending Selectable.

trait Record extends Selectable {

def updated(name: String, value: Any): Record

}

The default concrete implementation of the Record trait
uses the immutable hash map from Scala’s collections li-
brary as its underlying data structure. Field selection through
selectDynamic is implemented as a regular key-lookup, and
the updated method implements immutable update by cre-
ating a new record with an updated internal map:

class MapRec(val _data: Map[String, Any]) extends Record {

def selectDynamic(name: String) = _data(name)

def updated(name: String, value: Any): Record =

new MapRec(_data.updated(name, value))

}

To make the syntax for extending records more conve-
nient, the extendsmethod in earlier examples is provided as
an extension method + that delegates the actual updating op-
eration to the extended records implementation of updated,
and assigns the correct type to the result:

implicit class RecOps[R <: Record](r: R) extends AnyVal {

def +[V, S <: Record](l: String, v: V)(implicit erased

ev: Extensible[R, l.type, V]

ft: FieldTyper.Aux[l.type, V, S])

= r.updated(l, v).asInstanceOf[R & S]

}

As an optimization, the implicit Extensible and FieldTyper
parameters are marked as erased. This is a new feature of
Scala 3 that indicates that the parameters are only needed
to carry type information at compile time, but can safely be
removed after type-checking to get rid of the overhead of
passing them around at runtime.

Finally, a shorthand for the Extensible type class is pro-
vided in the form of the Ext context bound. This is imple-
mented as a type alias that partially applies the Extensible
type and returns a type lambda that takes a record type as
its single argument:

type Ext[L <: String, V] =

[R <: Record] => Extensible[R, L, V]

Since the returned type is parameterized by a single type ar-
gument it can then be used as a context bound using regular
Scala syntax.

Intersection Type Merging. Although the intersection of
two refinement types such as Record{a: A} & Record{b: B}
by definition is equivalent to Record{a: A; b: B}, the cur-
rent Scala 3 compiler only performs the actual merging under
a limited set of circumstances. To keep record types smaller,
reducing compile time and making them easier to read, our
implementation makes one final modification of the type
checker so that intersections of refinement types are always
merged if possible.

Limitations. Under some circumstances Scala 3’s type in-
ference algorithm puts unnecessarily strict bounds on the
operands of intersection types. In our proposed solution, the
resulting type of extending Record{a: A}with a field (b: B)
is the intersection type Record{a: A} & Record{b: B}
which is then merged to Record{a: A; b: B}. If the ex-
pected return type is inferred or explicitly given as a type
ascription such as Record{a: A; b: B}, however, the cur-
rent Scala 3 compiler not only applies this bound to the
intersection type as a whole, but also to each of the operands.
A type error then results from the fact that Record{a: A}
is not a subtype of Record{a: A; b: B}. This problem is
believed to be solvable in future work by loosening the type
inference rules for intersection types. In the meantime, it can
be circumvented by either avoiding explicit type ascriptions
or by wrapping the created record in an identity function
def id[T](x: T) = x that guards the intersection type
from type inference.

Our approach also inherits some limitations from Scala’s
current support for structural typing. For example, neither
Scala 2 nor 3 allows recursive type aliases. This means that
it is not possible to define recursive record types, and a type
declaration such as
type Tree = Record{val c: List[Tree]}

results in an “illegal cyclic reference” error. This is a funda-
mental limitation of Scala’s current type system, though, and
beyond the scope of this paper to address.

5 Experimental Results
The runtime performance for various approaches to records
was evaluated using Wreckage,8 a novel benchmarking
source-code generator built on top of the JMH microbench-
marking harness.9 Given an abstract syntax description for a
record implementation, Wreckage generates source code for
JMH benchmarks of various common record operations such
as creation, update, and field access. This significantly sim-
plifies the otherwise tedious and error-prone process of man-
ually writing benchmarks for records with a large number of
8Available here: https://github.com/obkson/wreckage
9See http://openjdk.java.net/projects/code-tools/jmh/

https://github.com/obkson/wreckage
http://openjdk.java.net/projects/code-tools/jmh/


Scala ’18, September 28, 2018, St. Louis, MO, USA Olof Karlsson and Philipp Haller

fields, and repeating the process for each approach-specific
syntax. Furthermore, by generating source code rather than
using, for example, macros, the executed code can easily be
inspected and verified.10 The supported languages are Java,
Scala, and Whiteoak, and the generated code is compiled
and built into a standalone executable jar using Maven.

JMH is the de-facto standard tool for micro-benchmarking
on the JVM [Stefan et al. 2017], and helps with protecting
against JIT compilation optimisations that would render
the results invalid, such as constant folding and dead code
elimination, as well as making sure the measurements are
not affected by the system clock latency and granularity.
All benchmarks were executed on a 4-core 3.1 GHz Intel

Core i7 CPU with 16 GB DDR3 RAM, running the 64-bit
server HotSpot JVM version 8 (build 25.112-b16, mixedmode)
on MacOS 10.13.

The benchmarks include the following approaches:
• Scala 3 Records: The suggested approach in this paper.
• Scala 3 Case class: For reference, using nominal typing.
• Scala 3 Trait fields: A class implementing one trait per
field, achieving field access through interface calls on
the JVM. See Section 6, "Interface Fields".

• Scala 2.12 Compossible 0.2: A macro-based library sup-
porting unsafe extension using the same hash map as
Scala 3 Records.

• Scala 2.12 Shapeless 2.3.2: Ordered records using het-
erogeneous lists (HLists).

• Scala 2.12 Structural: Using structural member access
on an underlying class instance. See Section 6, "Reflec-
tion with Inline Caching".

5.1 Micro Benchmarks
Themicro benchmarks measure mean steady-state execution
time with 95 % confidence intervals using the statistically
rigorous approach suggested by Georges et al. [2007]. Each
micro benchmark is run until a window of 10 consecutive
measurements shows a coefficient of variation (CV) below
0.02. Then steady state is assumed, and the window mean
execution time is calculated. This process is repeated n = 10
times in independent JVM forks, and the mean steady-state
execution time is the mean over the results from each fork.
The confidence interval is calculated using the students t-
distribution with n − 1 degrees of freedom.

Creation Time against Record Size. The time it takes to
create a record was measured as a function of the size of
the created record, where the size denotes the number of
integer fields. The results are presented in Figure 1, and
reveal significant differences in performance between the
benchmarked approaches.
Except for the case class baseline, Shapeless requires the

least creation time. This is to be expected as the linked HList
10Samples of the generated benchmarking code can be found at https://
github.com/obkson/wreckage/blob/master/README.md

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 320
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Record size

Cr
ea
tio

n
tim

e
[m

s]

Scala 3 Records
Scala 3 Case class
Scala 2.12 Compossible 0.2
Scala 2.12 Shapeless 2.3.3

Figure 1. Record creation time against record size in number
of integer fields.

20 40 60 80 100 120 140 160 180 200 220 2400

200

400

600

800

1,000

1,200

1,400

Record size

U
pd

at
e
tim

e
[n
s]

Scala 3 Records
Scala 3 Case class
Scala 2.12 Compossible 0.2
Scala 2.12 Shapeless 2.3.3

Figure 2. Record update time against record size in number
of integer fields. After 200 fields Compossible exceeded the
JVM code size limit.

is constructed by simply prepending each element to the
previous list in constant time. Both Compossible and our
approach use a hash map as underlying data structure and
implement record creation as a series of extensions. The
difference in performance can be explained by the fact that
Compossible’s extension is implemented as record concate-
nation. This means that every added field must first be con-
verted to a complete record instance that is then merged
with the extended record. Our approach on the other hand
adds the fields directly and only has to instantiate records to
hold the result of each extension.

Update Time against Record Size. A record of increasing
size is created before the measurement and then the field
with highest index is updated by increasing its value by one

https://github.com/obkson/wreckage/blob/master/README.md
https://github.com/obkson/wreckage/blob/master/README.md


Extending Scala with Records Scala ’18, September 28, 2018, St. Louis, MO, USA

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 320
5
10
15
20
25
30
35
40
45
50

Field index

A
cc
es
st
im

e
[n
s]

Scala 3 Records
Scala 3 Case class
Scala 3 Trait Fields
Scala 2.12 Compossible 0.2
Scala 2.12 Shapeless 2.3.3
Scala 2.12 Structural

Figure 3. Record access time against field index on a record
with 32 integer fields.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 320
5
10
15
20
25
30
35
40
45
50

Record size

A
cc
es
st
im

e
[n
s]

Scala 3 Records
Scala 3 Case class
Scala 3 Trait Fields
Scala 2.12 Compossible 0.2
Scala 2.12 Shapeless 2.3.3
Scala 2.12 Structural

Figure 4. Record access time against record size in number
of integer fields. For each record size, the field with highest
index was accessed.

in an immutable update operation. For ordered records (only
Shapeless) the last index corresponds to the last element
in the linked list, whereas for the unordered approaches
the index merely identifies the field name. The results are
presented in Figure 2.
Shapeless shows a linear curve as the last index is the

worst case for each record size, and the complete HList has
to be copied in every update. This is also the case for the
case classes, which has to be copied regardless of updated
field. Our approach and Compossible on the other hand
show rather stable performance across record size, as Scala’s
immutable hash maps have effectively constant time com-
plexity for adding key values [Odersky and Miller 2017]. For
big records with more than 60 fields this characteristic turns
out to be a huge benefit.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 320

5

10

15

20

25

30

35

40

45

Degree of polymorphism

A
cc
es
st
im

e
[n
s]

Scala 3 Records
Scala 3 Case class
Scala 3 Trait Fields
Scala 2.12 Structural
Scala 2.12 Compossible 0.2

Figure 5. Record access time against degree of polymor-
phism on an array of different records with 32 integer fields.

Access Time against Field Index and Record Size. In Fig-
ure 3 a record with 32 integer fields f1, f2, ..., f32 is created
and used during all measurements, and then the execution
time is measured for accessing field f1 up to f32. In Figure 4
a record of increasing size is created before measurement
and then the access time is measured for the field with the
highest index. Again, the index corresponds to the field’s
position in the record type for ordered records whereas the
index merely identifies the field’s name for unordered ones.
It is somewhat surprising that the cached reflection of

Scala 2’s structural typing in many cases turns out to be the
fastest of the structurally-typed approaches. On the other
hand, in this benchmark the call site is monomorphic and so
reflection is only carried out once per JVM fork and then the
cached method handle gives an immediate match for every
subsequent call.
In contrast to all the other approaches, Shapeless shows

a clear linear access time in field index as the whole list
has to be traversed to find the accessed field. This trend is
also clear when measuring access time against record size,
where the last index is accessed for each size. In practice
though, this approach is actually the fastest for the first 6
fields (except for the case class baseline) and on par with
the hash maps for the first 12 fields. The access time for
our approach and Compossible fluctuates depending on the
accessed field but with no noticeable increasing trend with
record size, supporting the claim of effectively constant time
complexity for hash look-up [Odersky and Miller 2017].

Access Time against Degree of Polymorphism. The de-
gree of polymorphism at a call site is defined as the total
number of different runtime record types that are repre-
sented among the receivers of the call. The general bench-
marking technique is described by Dubochet and Odersky
[2009], and is here implemented as follows: an array of 32



Scala ’18, September 28, 2018, St. Louis, MO, USA Olof Karlsson and Philipp Haller

Scala 3 Re
cords
Scala 3 Ca

se class

Scala 2.12
Compossible 0

.2

Scala 2.12
Shapeless

2.3.3
0

5

10

15

20

25

30

35

40
Ru

nn
in
g
tim

e
[s
]

Figure 6. Mean running time for 10 executions of com-
plete case study: parsing, reading and updating records. Plot-
ted with 95 % confidence intervals, assuming normally dis-
tributed measurements.

records with different record types is created, but where all
records have size 32 and a single field (g: Int) in common.
To make a measurement at a call site with polymorphism
degree d , the benchmark cycles over the first d records in
this array and in each iteration the field g is accessed on a
record with a different type from the preceding iteration. It
should be noted that due to this cycling, each measurement
also includes a small overhead of incrementing the index
modulo d and making an array access operation. The results
are presented in Figure 5.
Scala 2’s structural member access shows a clear linear

trend in the degree of polymorphism, confirming the results
of Dubochet and Odersky [2009]. It is also worth noting that
the JVM struggles with making interface calls efficient as the
degree of polymorphism increases; the Scala 3 Trait Fields
approach is still faster than Scala 2 Structural, but shows the
same linear dependency on degree of polymorphism. This
should be contrasted with the hash-map based approaches
which are stable across degrees of polymorphism. After type-
checking, the hash-map-based field lookup is independent
of the type of the accessed record, and so the internal record
type at the Scala language level can be erased during com-
pilation to a single Record base class. The resulting JVM
bytecode in fact contains a monomorphic call to the hash
lookup method and the performance is not affected by the
polymorphism at the Scala language level. For polymorphism
degrees higher than 12 the hash-map-based approaches are
faster than Scala 2 Structural, and for polymorphism degrees
higher than 20 they are also faster than Scala 3 Trait Fields.
Shapeless was not included as the benchmark requires the
records to support permutation and width subtyping.

Scala 3 Re
cords
Scala 3 Ca

se class

Scala 2.12
Compossible 0

.2

Scala 2.12
Shapeless

2.3.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ru
nn

in
g
tim

e
[s
]

Figure 7. Running time for 10 executions of part of the
case study: only reading and updating records. Plotted with
95 % confidence intervals, assuming normally distributed
measurements.

5.2 Case Study
Although micro benchmarks are good for pinpointing differ-
ences in performance between the different implementation
strategies, it is not obvious how these differences affect the
performance of a real program performing more meaningful
work. To shed some light on this we also provide benchmarks
of a more realistic case study. The benchmarked program
parses 392440 JSON-encoded commit events from the GitHub
API11 into typed records. This list is then aggregated into a
collection of user statistics keeping a count of the number
of commits by each user, grouped by weekday. Thus, the
program consists of a good mix of all the previously bench-
marked operations: creating a nested structure of records
during parsing, reading each commit event to find out its
author and timestamp, and updating a user stats record for
each commit event.
Each parsed commit event is stored into the following

nested record structure, corresponding to the structure of
the source JSON data:
{ ...7 fields, commit: { ... 6 fields, author: {

name: String, email: String, date: java.time.Instant }}}

For each commit event, the fields commit.author.email
and commit.author.date are read to get the commit au-
thor and date. These fields are last in the record structure
which results in a worst-case scenario for Shapeless. For each
user, the aggregated statistics are stored in a record of the
following structure

Record{email: String, mon: Int, tue: Int, ... , sun: Int}

and placed in a hash map using the email as key.

11See https://developer.github.com/v3/repos/commits/

https://developer.github.com/v3/repos/commits/


Extending Scala with Records Scala ’18, September 28, 2018, St. Louis, MO, USA

Create, Read, and Update. In a first run of the case study,
the total execution time from parsing the JSON data to col-
lecting the complete user stats was measured. Before the
benchmark begins the complete JSON file has been read into
memory in the form of a list of strings to prevent disk I/O
from affecting the measured running time. The results are
shown in Figure 6.

Shapeless is the fastest of the record libraries and performs
almost as well as nominally typed classes. Our approach has a
significantly lower running time than Compossible, although
they both use a hash map as underlying data structure. Over-
all, the results agree well with the micro benchmark for
record creation (Fig. 1) which suggests that creating records
from the parsed JSON data is the bottleneck of the applica-
tion. Judging by the confidence intervals, our approach is
between 18 % and 42 % slower than nominally-typed classes.

Read and Update. To see how much of the execution time
is spent on JSON parsing and record creation compared to
reading and updating, the case study was run again, but with
all parsing already done before the measurement begins.
Thus, the benchmark starts with a complete list of parsed
commit event records in memory and only the part of the
case study that reads this list and updates the user stats
records is taken into account. The result is shown in Figure 7.

Comparing the running time of this part of the case study
with the complete case study in Figure 6, it is evident that
more than 95 % of the execution time is spent on parsing
and creating records. With most of the operations consist-
ing of reading and updating records, a new trend emerges;
Case classes still have the best overall performance, but
now our approach is the fastest of the record libraries. The
read fields commit, commit.user, commit.user.email and
commit.user.data have index 8, 7, 2 and 3 respectively,
which suggests that Shapeless should be faster than our ap-
proach and Compossible (Figure 3). On the other hand, the
updated fields on the user statistics record have indices 2 to
8, which is within the interval where Shapeless is expected
to perform worse than our approach but better than Com-
possible (Figure 2).

6 Discussion and Related Work
In this section we discuss related work and how alternative
approaches to records may provide more efficient structural
field access, but at the expense of violating some of our
design goals.
For nominally typed records (F#, Haskell) or structurally

typed monomorphic records (Standard ML, OCaml objects)
it is trivial to compile field selection to a constant-time oper-
ation by storing the record values in an array and mapping
each label to a statically-known offset. Record polymorphism,
however, typically introduces abstract record types for which
only a subset of the fields a record value might contain are
present in the type. Consequently, the index of each field in

the underlying value’s data structure is not trivially known
at compile time.

Implicit Index Abstractions. Ohori [1995] suggests a com-
pilation scheme that resolves this difficulty in his record
calculus with kinded quantification, and Gaster and Jones
[1996] independently suggested essentially the same com-
pilation scheme in their record calculus based on qualified
types. In this scheme, the record values are stored in an array
and sorted according to a global ordering on the set of labels,
and field access on concrete record types is translated into
direct array indexing. To allow field access on abstract record
types, every polymorphic function is augmented with extra
index parameters during compilation that provides the cor-
rect runtime indices for the known fields. At each call-site,
the record type parameter is then either instantiated to a
concrete record type for which the appropriate index argu-
ment values are statically known, or instantiated to another
abstract record type for which similar index values already
exists in scope. Gaster and Jones [1996] showed that the
scheme can be augmented to also support extensible records
by inserting conditional index fix-ups after each record ex-
tension operation. It should be noted however, that none
of the systems of Ohori [1995] or Gaster and Jones [1996]
support record polymorphism through structural subtyping,
but strictly through various forms of parametric polymor-
phism. Without structural subtyping a concrete record type
always matches its record value exactly, and this is indeed
the core assumption that makes it possible for the compiler
to eventually derive the required field indices from static
information. In the presence of subtyping, however, this
assumption breaks down.

itables. An alternative approach that supports subtyping
takes inspiration from a common implementation technique
for multiple inheritance and interface calls as described by
Alpern et al. [2001]. A record value r with static record type
S but dynamic fields corresponding to type R can be compiled
to an array of dynamic values together with a interface-table-
like structure that maps each statically known field index
in S to its right index in the dynamic array. Whenever r
is passed to a reference of static supertype T the compiler
then automatically updates the table to map from T to R. The
runtime cost of field selection is a single index indirection
and the amortized cost of updating the table in every cast.
However, this compilation scheme breaks down in the

face of Scala’s variant generics; for example, Scala’s lists are
covariant and so an instance of List[S] can at any time be
upcasted to List[T], in which case it is unclear where and
how the compiler should insert the required table coercion
for every record in the collection. One solution would be to
forbid implicit upcasts, and always force upcasting to be an
explicit operation (as in Whiley [Pearce and Noble 2011] and
OCaml), but we argue that such semantics fits badly with
the existing semantics for subtyping in Scala.



Scala ’18, September 28, 2018, St. Louis, MO, USA Olof Karlsson and Philipp Haller

Wrapper Classes at Runtime. Whiteoak [Gil and Maman
2008] is an extension to the Java language that implements
structural typing on the JVM through runtime bytecode gen-
eration. Each structural type S is compiled into an interface
IS , but classes that conform structurally to S are not declared
to do so at compile time–due to separate compilation, it is
not feasible to let a class declare every possible structural
supertype interface it implements. Instead, whenever an in-
stance of dynamic typeC and structural static type S is used
as an instance of IS , a wrapper classWS,C is generated at
runtime that implements the interface IC and delegates each
method call to the wrapped class C . The runtime cost of
field selection is then a single interface call with wrapper
class delegation, plus the amortized cost of generating the
wrapper class. However, bytecode generation introduces a
runtime dependency on a bytecode generation framework,
and furthermore requires class-loader access [Dubochet and
Odersky 2009], thus violating design goal 4.

Reflection with Inline Caching. Scala 2 uses another com-
pilation scheme to achieve structural typing on the JVMwith-
out runtime bytecode generation [Dubochet and Odersky
2009]. Instead of representing structural types as interfaces
and generating wrapper classes at runtime, structural field
access is simply carried out using reflection. To improve
runtime performance a strategy using polymorphic inline
caches is employed. The cache is implemented as a linked
association list using the receiver’s dynamic class as key,
and so the lookup time grows linearly with the degree of
polymorphism at the call-site.
Field-access performance aside, this approach has the

drawback that it is unclear how to implement polymorphic
record extension. Consider, for example, extending a record
r: Rwith a field f. If the resulting record is to be constructed
by instantiating a class, that class declaration has to be some-
how automatically generated first. As long as all fields are
known at compile time, such a class declaration can surely be
generated by the compiler (as is done for anonymous classes).
Due to polymorphism however, this is not always the case.
If the extension should be implemented at the call-site, the
compiler would have to generate a class declaration extend-
ing every possible record type R. Likewise, if the extension
was to be implemented as a method on the record class of
type R itself, the compiler would have to generate a class
declaration for every possible set of fields the record could
be extended with. It is unclear how to solve this difficulty
at compile time. Granted, this could be solved by reflection
and bytecode generation at runtime, but that would be a
violation of design goal 4.

Interface Fields. Both Whiteoak and Scala 2 solve a more
general problem than structural typing of records, since they
allow retroactive structural typing of any Java class. The
next scheme, suggested by Odersky [2015], treats records
specially by representing each field (f: T) as an interface

(or trait in Scala) like field_f[T](f: T). A record type
with fields (f1: T), (f2: T2), ... , (fn: T) can then be
represented as the intersection type

field_f1[T1] & field_f2[T2] &| ... & field_fn[Tn]

and a record value is an instance of a class that implements
the corresponding interfaces. The cost of field selection is
a single interface call. However, to preserve separate com-
pilation (design goal 3) the field interfaces would have to
be generated at runtime rather than compile time–again
violating design goal 4.

Runtime Search. As a last resort, field access can be im-
plemented as a runtime search for the value corresponding
to the accessed field. One possibility is to store the fields
with both labels and values in a sorted association list. Using
binary search, field access can then be done in time O(logn)
in the size of the record.

Another alternative is to use Scala’s immutable hash map
from the standard collections library. The hash map is im-
plemented as a hash trie with effectively constant execution
time for selection, extension, and update. This approach is
used by both scala-records and Compossible, two macro-
based record libraries for Scala 2, as well as our proposed
implementation of the Record trait.

Shapeless HList-based Records. The Shapeless library pro-
vides an example of structurally-typed records with ordered
fields (violating design goal 1) for which the index of the
accessed field is known at compile time. Since the values are
stored as a linked list, however, access times are still linear
in the size of the record.

7 Conclusion
This paper shows that a novel combination of new features
of Scala 3 significantly simplifies the implementation of type-
safe, extensible records; essentially, the only required com-
piler extension is the automatic synthesis of two new type
classes. In Scala, certain type classes are already automat-
ically synthesized, such as Eq and ClassTag. Thus, we ar-
gue that our approach fits nicely with the overall design
principles of the language. We evaluate our implementation
experimentally using a new benchmarking suite generator,
supporting a range of compilers and record implementations
for the JVM. Performance-wise, our approach is competitive
with cached reflection for structural field access, as well as
solutions using the deprecated, experimental macro system
of Scala 2. In summary, the paper presents the first imple-
mented design for records in Scala which enables typesafe
record operations also in polymorphic contexts while only re-
quiring minimal, idiomatic compiler support, and satisfying
design goals such as separate compilation without runtime
bytecode generation.



Extending Scala with Records Scala ’18, September 28, 2018, St. Louis, MO, USA

References
Bowen Alpern, Anthony Cocchi, Stephen Fink, and David Grove. 2001.

Efficient Implementation of Java Interfaces: Invokeinterface Considered
Harmless. In Proceedings of the 16th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications (OOPSLA
’01). ACM, New York, NY, USA, 108–124. https://doi.org/10.1145/504282.
504291

Luca Cardelli and John C Mitchell. 1991. Operations on records. Mathemat-
ical structures in computer science 1, 1 (1991), 3–48.

Gilles Dubochet and Martin Odersky. 2009. Compiling structural types
on the JVM: a comparison of reflective and generative techniques from
Scala’s perspective. In Proceedings of the 4th Workshop on the Imple-
mentation, Compilation, Optimization of Object-Oriented Languages and
Programming Systems (ICOOOLPS ’09). ACM, New York, NY, USA, 34–41.
https://doi.org/10.1145/1565824.1565829

Benedict R. Gaster and Mark P. Jones. 1996. A Polymorphic Type System
for Extensible Records and Variants. Technical Report NOTTCS-TR-96-3.
Department of Computer Science, University of Nottingham.

Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically
Rigorous Java Performance Evaluation. In Proceedings of the 22Nd Annual
ACM SIGPLAN Conference on Object-oriented Programming Systems and
Applications (OOPSLA ’07). ACM, New York, NY, USA, 57–76. https:
//doi.org/10.1145/1297027.1297033

Joseph Gil and Itay Maman. 2008. Whiteoak: Introducing Structural Typing
into Java. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-
oriented Programming Systems Languages and Applications (OOPSLA
’08). ACM, New York, NY, USA, 73–90. https://doi.org/10.1145/1449764.
1449771

Vojin Jovanovic, Tobias Schlatter, Hubert Plocziniczak, et al. 2014-2018.
scala-records, Labeled records for Scala based on structural refinement
types and macros. https://github.com/scala-records/scala-records.

Martin Odersky. 2015. Add Records To Dotty #964. https://github.com/
lampepfl/dotty/issues/964. [Online; accessed 22-May-2017].

Martin Odersky and Heather Miller. 2017. Scala collection library perfor-
mance characteristics. https://docs.scala-lang.org/overviews/collections/
performance-characteristics.html. [Online; accessed 29-July-2018].

Atsushi Ohori. 1995. A Polymorphic Record Calculus and Its Compilation.
ACM Transactions on Programming Languages and Systems 17, 6 (Nov.
1995), 844–895. https://doi.org/10.1145/218570.218572

Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. 2010. Type
Classes As Objects and Implicits. In Proceedings of the ACM Interna-
tional Conference on Object Oriented Programming Systems Languages
and Applications (OOPSLA ’10). ACM, New York, NY, USA, 341–360.
https://doi.org/10.1145/1869459.1869489

David J Pearce and James Noble. 2011. Implementing a language with flow-
sensitive and structural typing on the JVM. Electronic Notes in Theoretical
Computer Science 279, 1 (2011), 47–59.

Miles Sabin et al. 2011-2018. Shapeless, Generic programming for Scala.
https://github.com/milessabin/shapeless.

Petr Stefan, VojtechHorky, Lubomir Bulej, and Petr Tuma. 2017. Unit Testing
Performance in Java Projects: Are We There Yet?. In Proceedings of the
8th ACM/SPEC on International Conference on Performance Engineering
(ICPE ’17). ACM, New York, NY, USA, 401–412. https://doi.org/10.1145/
3030207.3030226

Jan Christopher Vogt. 2015. Compossible, Extensible records and type-
indexed maps. https://github.com/cvogt/compossible.

https://doi.org/10.1145/504282.504291
https://doi.org/10.1145/504282.504291
https://doi.org/10.1145/1565824.1565829
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1145/1449764.1449771
https://doi.org/10.1145/1449764.1449771
https://github.com/scala-records/scala-records
https://github.com/lampepfl/dotty/issues/964
https://github.com/lampepfl/dotty/issues/964
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://docs.scala-lang.org/overviews/collections/performance-characteristics.html
https://doi.org/10.1145/218570.218572
https://doi.org/10.1145/1869459.1869489
https://github.com/milessabin/shapeless
https://doi.org/10.1145/3030207.3030226
https://doi.org/10.1145/3030207.3030226
https://github.com/cvogt/compossible

	Abstract
	1 Introduction
	2 Background
	3 Overview
	4 Design and Approach
	5 Experimental Results
	5.1 Micro Benchmarks
	5.2 Case Study

	6 Discussion and Related Work
	7 Conclusion
	References

