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Abstract
The development of distributed systems requires developers

to balance the need for consistency, availability, and partition

tolerance. Conflict-free replicated data types (CRDTs) are

widely used in eventually consistent systems to reduce con-

currency control. However, CRDTs lack consistent totally-

ordered operations which can make them difficult to use.

In this paper, we propose a new consistency protocol,

the observable atomic consistency protocol (OACP). OACP

enables a principled relaxation of strong consistency to im-

prove performance in specific scenarios. OACP combines

the advantages of mergeable data types, specifically, conver-

gent replicated data types, and reliable total order broadcast

to provide on-demand strong consistency. By providing ob-

servable atomic consistency, OACP avoids the anomalies of

related protocols.

We provide a distributed implementation of OACP based

on Akka, a widely-used actor-based middleware. Our experi-

mental evaluation shows that OACP can reduce coordination

overhead compared to other protocols providing atomic con-

sistency. Our results also suggest that OACP increases avail-

ability throughmergeable data types and provides acceptable

latency for achieving strong consistency.
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buted programming languages;

Keywords atomic consistency, eventual consistency, actor
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1 Introduction
Conflict-free replicated data types (CRDTs) [35, 36] arewidely

used in industrial distributed systems such as Riak [5, 9] and

Cassandra. They are objects which can be updated concur-

rently without consensus and converge to the same state if

all updates are executed by all replicas eventually. Thus, they

can provide high availability and scalability for replicated

shared data.

There are two principal categories of CRDTs: operation-

based CRDTs and state-based CRDTs. In operation-based

CRDTs, also called CmRDTs, replicas propagate commutative

update operations to other replicas, in order to guarantee

eventual convergence. In contrast, in state-based CRDTs,

also called CvRDTs, replicas propagate the entire state of

the CRDT to other replicas whenever the state is updated;

commutative functions are used to merge multiple revisions

of the state of a CRDT.

However, themain challenge of programmingwith CRDTs

is the fact that they only provide eventual consistency and

they necessarily provide only a restricted set of operations. In

particular, CRDTs do not support consistent non-convergent

operations; for example, read operationsmay return outdated

values before the replicas have converged, which makes the

usage of CRDTs difficult.

In this paper, we address this challenge by extending

CvRDTs with on-demand strong consistency. A novel proto-

col, the observable atomic consistency protocol (OACP), is

used to guarantee observable atomic consistency for CvRDTs

extended with totally-ordered operations. Totally-ordered

operations provide on-demand atomic consistency, enabling

consistent reads and consistent updates which do not have

to be convergent. As a result, the extended CvRDTs lift an

important restriction of CvRDTs, simplifying their usage.

1.1 Contributions
This paper makes the following contributions:

1. We introduce the observable atomic consistency (OAC)

model which enables a novel extension of CvRDTs

with consistent non-convergent operations. We lift a

major limitation of CvRDTs, and significantly simplify

programming with CvRDTs. We also provide a precise

and formal definition of the OAC model.

2. We prove that systems providing OAC are state conver-

gent. The paper summarizes our definitions and results,

while our companion technical report [41] contains

the complete proofs.
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3. We introduce the observable atomic consistency proto-

col (OACP) which guarantees observable atomic con-

sistency. We provide a distributed, cluster-enabled im-

plementation of OACP on GitHub [40].

4. We experimentally evaluate OACP including latency,

throughput, and coordination. Our evaluation shows

how much OACP benefits from commutative oper-

ations, reducing the number of exchanged protocol

messages compared to baseline protocols. We also ex-

perimentally evaluate an optimization of OACP.

The rest of the paper is organized as follows. Section 2

illustrates how application programmers use OACP. In Sec-

tion 3 we formalize the observable atomic consistency (OAC)

model, and prove that systems providing OAC are state-

convergent. Section 4 explains the observable atomic con-

sistency protocol (OACP). In Section 5 we present a perfor-

mance evaluation of an actor-based implementation of OACP

using microbenchmarks as well as a Twitter-like application.

Section 6 discusses related work, and Section 7 concludes.

2 Overview
We provide an overview of the OACP system from the per-

spective of a programmer to provide a user-friendly interface

towards distributed application development. First, we intro-

duce the system structure, and then we demonstrate how to

use the provided API through an example.

System structure. Figure 1 shows the system structure. There

are three layers from bottom to top: storage, distributed pro-

tocol, and application. We first focus on the top layer and

discuss how applications interface with the protocol.

Application

Distributed Protocol
(RTOB + CvRDT)

R1 R2 R3

Storage

CvRDT Op Totally-ordered Op

Figure 1. High-level view of OACP

The operations submitted by the application are divided

into two categories: CvRDT operations (CvOps) and totally-

ordered operations (TOps). CvOps are commutative. TOps

are supported by reliable total order broadcast (RTOB) [13],

so that their ordering is preserved across the entire system.

The submission of a TOp causes all replicas to atomically

(a) synchronize their convergent states, and (b) lock their

convergent states. A replica with locked convergent state

buffers CvOps until the original TOp has been committed.

Moreover, at the point when a TOp is executed, all replicas

are guaranteed to have consistent convergent states. Thus,

submitting a TOp ensures the consistency of all replicas, in-

cluding their convergent states. We give a resettable counter

as an example.

Resettable counter. The grow-only counter (GCounter) is

one of the most basic counters which is widely used, e.g., in

real-time analytics or in distributed gaming. It is a CvRDT

which only supports increment and merge operations. How-

ever, when a system employs a GCounter to achieve eventual

consistency, often a special “reset” operation is needed for re-

setting the counter to its default initial state. In other words,

we need an “observed-reset” [4] operation for GCounter to

go back to the bottom state, which means when “reset” is

invoked, all effects of the GCounter observed in different

replicas should be equivalently reset. However, the standard

GCounter cannot solve this problem; this limitation is also

well-known in the popular Riak DT implementation.

Thus, we need an implementation of a resettable counter

to make sure that all the replicas are reset at the same time.

A straightforward solution is to define “reset” as a totally-

ordered operation, leveraging the property of TOps.

Figure 2 shows a GCounter definition in Scala. We extend

the CvRDT trait to have an instance of GCounter which sup-

ports operations such as incr and merge. Each replica in

the cluster is assigned an ID; this enables each GCounter
instance to increment locally. When merging the states of

two GCounters, we take the maximum counter of each in-

dex. The comparemethod is used to express the partial order

relationship between different GCounters.

1 trait CvRDT[T] {

2 def myID(): Int

3 def merge(other: T): Unit

4 def compare(other: T): Boolean

5 }

6

7 abstract class GCounter extends CvRDT[GCounter] {

8 val p: Array[Int] = Array.ofDim[Int](3)

9 def incr(): Unit = {

10 val id = myID()

11 p(id) = p(id) + 1

12 }

13 def merge(other: GCounter): Unit =

14 for (i <- 0 until p.length)

15 p(i) = math.max(p(i), other.p(i))

16 def compare(other: GCounter): Boolean =

17 (0 until p.length).forall(i => p(i) <= other.p(i))

18 }

Figure 2. GCounter in Scala.

Actor-based user API. In the following, we illustrate the

user API based on actors. The user-facing API consists of

the following three parts.

• trait CvRDT[T]
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• CvOp (CvValue, CvUpdate)

• TOp (TUpdate)

The CvRDT trait (A trait in Scala can be thought of as

similar to a Java interface enabling a safe form of multiple

inheritance) exposes the implementation of CvRDT to devel-

opers which allows them to define their own CvRDT types

and operations which are provided by the trait such as ini-

tialisation, add, remove and merge. The last two methods

provide access to use the OACP, allowing developers to de-

cide whether the operation should be operated as CvRDTs

or ordered messages. CvOps are used when one wants to

gain benefits from high availability since they are directly

sent to the closest available server. TOps are good options

if the developer wants to make all the replicas reach the

same state for some essential operations. These two message

types give developers more flexibility when they want to

achieve certain consistency as well as the performance of

the implementation.

The objects are expressed using actors since actors are

suitable for expressing concurrent computation using mes-

sages. The message handlers provided by the system need

to be defined on the client side so that the OACP system

can recognize the corresponding operation type. We extend

the client actor with the OACP protocol to connect it to the

application layer. The developer only needs to define which

message to send using the following “Akka-style” message

handler:

1 class CounterClient extends Protocol[GCounter] {

2 val CounterClientBehavior: Receive = {

3 case Incr => self forward CvOp("incr")

4 case Get => self forward TOp("Get")

5 case Reset => self forward TOp("Reset")

6 ...

7 }

8 override def receive =

9 CounterClientBehavior.orElse(super.receive)

10 ...

11 }

When the CounterClient receives a certain message, it

behaves according to the user’s definition. For example, when

the received message matches case Incr, the client actor

forwards a CvOp message to the protocol layer. In this way,

the concrete implementation of the system is hidden from

the developers.

Server-side stores a log which contains CvRDT states and

the sequence of totally-ordered operations. The registry does

not record submitted CvOps, and only when a TOp is exe-

cuted the current CvRDT state will be stored together with

the TOp label in the log entry. The log might look like the

following:

When the user requires log from server-side, the counter

value is the difference between the latest CvRDT state and

the most recent CvRDT state with Reset label.

CvRDT 
State 1 “Get” CvRDT 

State 2 “Reset” CvRDT 
State 3 “Get”

Figure 3. Log abstraction in OACP.

3 Observable Atomic Consistency
Definition 3.1 (CvT order). Given a set of operationsU =
C ∪ T where C ∩ T = ∅, a CvT order is a partial order

O = (U ,≺) with the following restrictions:

• ∀u,v ∈ T such that u , v . u ≺ v ∨v ≺ u
• ∀p ∈ C , u ∈ T . p ≺ u ∨ u ≺ p

According to the transitivity of the partial order, we could

derive that ∀l ,m,n ∈ U such that l ≺m,m ≺ n. l ≺ n.

Definition 3.2 (Cv-set). Given a set of operationsU = C∪T
where C ∩T = ∅, a Cv-set Ci is a set of C operations with

the restriction that:

• ∀p,q ∈ Ci ⇒ p ⊀ q ∧ q ⊀ p
• ∀p ∈ C \Ci .∃q ∈ Ci such that p ≺ q ∨ q ≺ p

Replica 1 Replica 2 Replica 3

C1 C3

C4

T1

T2

T3

C2

C5

1 2

Cv-set1

Cv-set2

Figure 4. CvT order of operations.

In Figure 4, the partial order is labeled with black dash

arrow, while we could derive line 1 and 2 (red dash arrow)

from the transitivity of ≺. There are two different Cv-sets

in this situation while the CvRDT updates inside have no

partial order relationship.

In CvT order, only the operations in one same Cv-set could

happen concurrently. Now we consider the operations on

different sites. Suppose each site i executes a linear exten-
sion compatible with the CvT order. Then, the replicated

system with n sites provides local atomic consistency, which

is defined as follows.

Definition 3.3 (Local atomic consistency (LAC)). A repli-

cated system provides local atomic consistency (LAC) if each

site i applies operations according to a linear extension of

the CvT order.

The three replicas in Figure 4 could have different linear

extensions of the CvT order. However, despite possible re-

orderings, LAC guarantees state convergence.

Definition 3.4 (State convergence). A LAC system is state

convergent if all linear extensions of the underlying CvT

order O reach the same state S .
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Theorem 3.5. Given a CvT order, if all operations in eachCv-
set are commutative, then any LAC system is state convergent.

A complete proof of the theorem is included in our com-

panion technical report [41].

Definition 3.6 (Observable atomic consistency). A repli-

cated system provides observable atomic consistency (OAC)

if it provides local atomic consistency and for all p ∈ C ,
u ∈ T . (a) p ≺PO u in program order (of some client) implies

that p ≺ u in the CvT order, and (b) u ≺PO p in program

order (of some client) implies that u ≺ p in the CvT order.

The constraints for OAC guarantee that the system state

is consistent with the order of operations on each client side.

Since OAC is a special case for LAC, the state convergence

also holds for OAC, and we have the following corollary:

Corollary 3.7. Given a CvT order, if all operations in eachCv-
set are commutative, then any OAC system is state convergent.

Comparison to RedBlue Consistency. A closely related

consistency model is RedBlue consistency [27]. Red opera-

tions are the ones which need to be totally ordered while

the blue ones can commute globally. Two operations can

commute means that the order of the operations does not

affect the final result. In order to adapt an existing system

to a RedBlue system, shadow operations with commutativity

property need to be created and then adjust the applica-

tion to use these shadow operations. The shadow operations

can “introduce some surprising anomalies to a user expe-

rience” [27]. In other words, the final system state might

not take all messages into account that were received by the

different replicas. Thus, RedBlue consistency can only main-

tain a local view of the system. In OAC, the CvRDT updates

can only commute inside a specific scope, namely, between

two totally-ordered operations. This restricts the flexibility

of CvRDT updates, but at the same time, it provides a con-

sistent view of the state. Importantly, the final system state

always matches the state resulting from a linear extension

of the original partial order of the operations. An example

comparing OAC and RedBlue consistency is included in our

companion technical report [41].

4 Observable Atomic Consistency Protocol
Following the definition of observable atomic consistency

(See Definition 3.6), we now introduce a protocol that en-

forces this notion of consistency. We present the observable

atomic consistency protocol (OACP) in four steps: first, we

describe the so-called data model, similar to prior related

work [12]; second, we describe the client-side protocol; third,

we describe the server-side protocol; finally, we discuss dif-

ferences to the most closely related previous protocol.

Data model. The function Eval : Op∗ × Op → Value ob-
tains the result of applying a sequence of operations to

a single object. Value is an abstract data type represent-

ing the result of reading the log. We define three differ-

ent cases for the Op abstract data type: CvUpdate repre-

sents CvRDT updates, TUpdate represents totally-ordered
updates, and Read represents totally-ordered read operations.
The data model is then given by the function OACPVal :

Read × {CvUpdate, TUpdate}∗ → Value.
In the following, we use the type Log to represent a log that

records the totally-ordered sequence of all operations and

states. Whenever a totally-ordered operation is committed,

an entry is created and added to the log. Each log entry is of

type Entry which is defined as follows:

class Entry {

origin: Client, nextLogIndex: N, cState: CvRDT, op: TOp }

Each entry contains a reference to the client that submitted

the TOp (origin); the index of the next log entry

(nextLogIndex); the state of the underlying CvRDT (cState);
and the committed totally-ordered operation (op). We use

the notation ++ to represent the concatenation of two se-

quences.

OACP client protocol. We now show the basic version of

the OACP client-side protocol in Listing 1. When invoking

a CvOp, the client sends the update to a random available

server. When invoking a TOp, the client submits the update

to the current leader according to the chosen consensus

protocol (in our case, Raft [34]).

Listing 1. Client-side OACP pseudocode.

1 role OACP_Client {

2 var result: Promise[Value];

3 var response: Promise[Value];

4

5 // client interface

6 CvOp(u: CvUpdate) {

7 response := new Promise[Value];

8 CRDT_submit(u); // send to random replica

9 return response;

10 }

11

12 TOp(msg: TUpdate | Read): Promise[Value] {

13 result := new Promise[Value];

14 RTOB_submit(msg); // send to leader replica

15 return result;

16 }

17

18 // network interface

19 onReceive(log: Log) {

20 result.complete(OACPVal(updates(log)));

21 }

22

23 onReceive(response) {

24 response.complete()

25 }

26

27 function updates(l: Log): (TUpdate*, cState) =
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28 return (l[0].tUpdate ++ ... ++ l[l.length-1].tUpdate,

29 l.cState);

30 }

An important assumption of the protocol is that the same

client never invokes an operation before the promise of a

previous invocation has been completed. In particular, when

a TOp happens directly after a CvOp, the client awaits an

acknowledgment of the previous message from the server

side before invoking the TOp. This means the program order

on the client side is preserved on the server side.

OACP server protocol. We now move on to the server side

of the protocol. We assume that the application has contin-

uous access to the network since this mirrors the practical

usage of many existing applications, such as chat and Twitter-

like micro-blogging.

In Listing 2, CRDT .merge (line 11) is a merge operation

for the abstract CRDT type; Log.nextIndex (line 41) is the

next store index for Entry according to the Raft consensus

protocol; Broadcast () (line 12) is a gossip message which is

sent to all other replicas; the RTOB function consistently

appends the argument Entry to the logs of all replicas.

When the server receives a CvOp, it merges the current

CvRDT state and broadcasts the change to the other servers.

When a TOp is received, the leader server collects the current

states from the other replicas and performs an RTOB, so that

each replica maintains the same, consistent log. Compared

with CvOp, TOp requires one RTOB together with 2(n − 1)
gossip messages (where n is the number of replicas).

In our OACP reference implementation, RTOB is imple-

mented by the Raft distributed consensus protocol. When

TUpdate and Read are handled by a non-leader server, the

server forwards the update to the current leader. Moreover,

we define Read as a TOp to guarantee strong consistency.

The protocol description contains a special flag “frozen”.

This flag is set to true during the processing of a TOp, on

each replica (lines 20 and 30). This means that subsequent

operations are stashed (lines 9 and 18), and the current state

remains unchanged. Only when the TOp has been committed

is the flag reset and previously stashed messages are put back

into the message queue.

Listing 2. Server-side OACP pseudocode (unoptimized).

1 role OACP_Server {

2 var currentState: CRDT;

3 var log: Log;

4 var currentLeader: Server;

5 var frozen: Boolean;

6 var result: Promise[Value];

7

8 onReceive(u: CvUpdate) {

9 if frozen then { buffer.stash(u); }

10 else {

11 currentState = CRDT.merge(currentState, u);

12 Broadcast(currentState);

13 client.reply(); //acknowledge to client

14 }

15 }

16

17 onReceive(msg: TUpdate | Read) {

18 if currentRol.isLeader && frozen then { stash(msg); }

19 else if (currentRole.isLeader) {

20 frozen = true;

21 numStateMsgReceived = 0;

22 result = new Promise[Value];

23 result.onSuccess { v => client.reply(v);}

24 Broadcast(GetState);

25 }

26 else {forward(currentLeader, msg);}

27 }

28

29 onReceive(msg: GetState) {

30 frozen = true;

31 reply(StateIs(currentState));

32 }

33

34 onReceive(msg: StateIs) {

35 if currentRole.isLeader then {

36 numStateMsgReceived += 1;

37 currentState = CRDT.merge(currentState, msg.cState);

38 if numStateMsgReceived == numReplicas-1 then {

39 RTOB(new Entry {

40 origin = msg.sender,

41 number = Log.nextIndex(log),

42 cState = currentState,

43 toUpdate = msg });

44 Broadcast(Melt);

45 result.complete(log);

46 }

47 if timeout then { // fault handler

48 RTOB(new Entry {

49 origin = msg.sender,

50 number = Log.nextIndex(log),

51 cState = Log.cState,

52 toUpdate = Recovery });

53 Broadcast(Melt);

54 result.complete(failure);

55 }

56 }

57 }

58 }

59

60 onReceive(msg: Melt) {

61 frozen = false;

62 buffer.unstash() or discard();

63 }

64 }

When the leader receives acknowledgments from a major-

ity of servers, a “Melt” message (line 60) is broadcast to reset

the “frozen” flag to false. If there are n servers in the cluster,

then there are 2(n − 1) messages added to the messages ex-

changed by the protocol. Therefore, we devised an optimized
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version (see Listing 3) to reset the flag to false each time a

server makes a commit in the consensus protocol.

Listing 3. Server-side OACP pseudocode (optimized)

1 onCommit(e: Entry) {

2 frozen = false;

3 buffer.unstash() or discard();

4 }

Fault Model. During the processing of an RTOB, crash fail-

ures of n nodes are tolerated in a cluster with 2n + 1 nodes
using Raft. During the state gathering phase (line 38), if the

receiving time of the leader exceeds a timeout (line 47), then

the failure recovery strategy is to retrieve the cState in the

last log entry and to synchronize all replicas. This strategy

will cause observable data loss for the CvOps that are sent

to failed replica, but it avoids inconsistent data.

Actor-based Implementation. Different mechanisms can

be used to implement the protocol based on the abstraction

above. In particular, the protocol can be directly mapped

to an actor-based implementation, since asynchronous mes-

sages can be used for the submission of operations (CvOps

and TOps), and the onReceive protocol methods can be ex-

pressed using actor message handlers.

Comparison to GSP. GSP [12, 33] is an operational model

for replicated shared data. It supports update and read op-

erations from the client. Update operations are stored both

in the local pending buffer so that when a read happens, it

will perform “read your own writes” directly from the local

storage. That property makes offline read possible so that

even when the network is broken, the application can work

properly and the following updates will be stashed in the

buffer and resent until the network is recovered.

GSP also relies on RTOB to send back a totally ordered

sequence of updates to the locally known buffer. The exis-

tence of known and pending buffers provides the possibility

for updating these buffers fully asynchronously. In order

to achieve high throughput, it also provides the batching

option so that it does not require RTOB for every operation.

To support the offline property, GSP performs local reads.

However, the local read operations provide some confus-

ing conditions such as the following from paper [12]:

wr (A, 2) .

. wr (B, 1)

. wr (A, 1)

. rd (A) → 2

rd (B) → 0 .

Above is the key-value store shared data model which

initially stores 0 for each address. In GSP protocol, such

interleaving will be possible since rd (B) can get 0 before the

local storage gets the update fromwr (B, 1).

Ohio London Sydney

Ohio 0.53ms 85.6ms 194ms

London 0.42ms 279ms

Sydney 0.88ms

Figure 5. Average round-trip latency between Amazon sites

In OACP, we process read as a TOp and it always gets the

updated state from the server. Thus, only the following is

possible, and the observable strong consistency is preserved:

wr (A, 2) .

. wr (B, 1)

. wr (A, 1)

. rd (A) → 1

rd (B) → 1 .

In GSP, one can also execute all reads as linearizable reads

which is equivalent to OACP reads. However, it requires

additional implementation for read operations, and all the

operations in GSP will need RTOB which has a high cost.

5 Performance Evaluation
We evaluate the performance of OACP from the perspec-

tive of latency, throughput, and coordination. We use a mi-

crobenchmark as well as a Twitter-like application inspired

by Twissandra [39].

Experimental set-up. Our OACP implementation is based

on the cluster extension of the widely-used Akka [29]. The

cluster environment is configured using three seed nodes;

each seed node runs an actor that detects changes in cluster

membership (i.e., nodes joining or leaving the cluster). This

enables freely adding and removing cluster nodes.

The experiments on coordination are performed on a 1.6

GHz Intel Core i5 processor with 8 GB 1600 MHz DDR3

memory running macOS 10.13. The experiments on latency

and throughput are performed on Amazon EC2 cluster which

includes three T2micro instances (1 vCPU, 1 Gbmemory, and

EBS-only storage. ) running in Ohio, London, and Syndey.

Figure 5 shows the average round-trip latency between each

pair of sites. Our implementation, available open-source [40],

is based on Scala 2.11.8, Akka 2.4.12, AspectJ 1.8.10, and JDK

1.8.0_162 (build 25.162-b01).

Latency. In OACP, any CvOp gets an immediate response

once the request arrives at any of the servers in the cluster.

In contrast, the TOp runs consensus protocol underneath

to achieve consistency. In order to understand the effect of

CvOps and TOps, we measure the latency for CvOps and

TOps on Amazon EC2 in three different regions: Ohio, Lon-

don and Sydney and we plot the CDFs of observed latencies

in Figure 6. The cluster in our experiments consists of three

nodes which locate in different regions. A leader node needs

to be elected to keep consensus. We put the client node in

London and measure different conditions when the leader
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Figure 6. Latency CDF for CvOps and TOps when leader

node locates on different regions. In (b), the green (the right

most) line corresponds to the condition where leader locates

in Sydney, the blue line corresponds to Ohio and the red (the

left most) line corresponds to London.

node locates in different regions. In general, CvOps get quick

responses as we can see that the maximum latency is 60 ms,

and 90% of the response latency is within 40 ms. The latency

of TOps depends on the location of the leader node. When

the leader node locates in Sydney, the maximum latency is

600 ms. Moreover, when the leader node locates in the other

two regions, the maximum latency is around 350ms.

Throughput. Now we focus on the throughput of OACP.

We generate benchmarks with different proportion of CvOps

and TOps. While we increase the number of concurrent re-

quests to the same consistent log in the cluster, we measure

the duration for processing all of the requests. The through-

put is then the number of requests divided by the duration.

The results in Figure 7 show that increasing the ratio of TOps

decreases the throughput. TOps require the leader node to

force all the other replicas to reach consensus on the same
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Figure 7. Throughput for a 3 site cluster with varying CvOp

and TOp workload mixes.

log. Thus there will be a request queue on the server side.

Any of the server nodes can process CvOps, and the com-

mutative property of CvOps allows them to be processed

in a random order. The throughput of the mix workloads

is located between the pure workloads which give the pro-

grammer a range of choices.

Coordination. We consider this aspect because previous

work has shown that reducing the coordination within the

protocol can improve the throughput of user operations

dramatically [7]. In order to evaluate the performance inde-

pendent of specific hardware and cluster configurations, our

experiments count the number of exchanged messages. The
message counting logic is added via automatic instrumenta-

tion of the executed JVM bytecode using AspectJ [21].

5.1 Microbenchmark
We start the evaluation with a simple shopping cart bench-

mark to see the advantages and weakness of the OACP pro-

tocol. We define the “add” and the “remove” operation as

CvOps in OACP. The “checkout” operation in OACP is de-

fined as a TOp (to ensure consistency upon checkout). Then

we generate sequences of n operations where n ∈ (0, 1000];
each operation can be either “add”, “remove”, or “checkout”.

We compare the performance of OACP with the other two

baseline protocols which are described as follows.

• Baseline protocol: every operation is submitted using

RTOB to keep consistency on all the replicas.

• Baseline protocol with batching: an optimized version

which gives a fixed batching buffer and allows to sub-

mit multiple buffered operations at once.

• OACP protocol: the protocol as described in Section 4.

We compared the number of exchanged messages among

the baseline protocol, the batching protocol (batching buffer
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Figure 8. Comparison on coordination among different pro-

tocols

size: 5000 operations), and the OACP protocol, using a 3-node

cluster. The results are shown in Figure 8a.

The x-axis represents the ratio of “add” or “remove” op-

erations in the whole sequence of operations (10k requests

in this case), the y-axis represents the number of exchanged

messages. From Figure 8a, we can see that the baseline proto-

col requires a much higher number of exchanged messages,

namely 12× the number of messages compared to both the

batching protocol and the OACP protocol. In the more de-

tailed Figure 8b, we can see that when the ratio of CvOps

increases, OACP benefits more. In OACP, when CvOp is 90%,

the number of messages can be reduced by 30% compared

with the batching protocol.

These results suggest the following guidelines for helping
developers choose which protocol to use. When the per-

centage of CvOps is low (less than 50% in the above mi-

crobenchmark), i.e., when the application needs TOps quite

frequently, then batching for TOps is a better choice. When

more CvOps are happening between two TOps, then OACP

performs better.

5.2 Case Study: Twitter-Like Application
Following the shopping cart microbenchmark, we now ex-

tend our experiments to a more realistic application. This

also allows us to investigate more aspects of our system since

the application makes use of all features of OACP. We define

a simple Twitter-like social networking application which

supports AddFollower, Tweet, and Read operations. We

define Tweet and Read as TOps and AddFollower as a

CvOp in OACP. In the benchmarks, we focus on one specific

user with a certain number of followers and send tweets.

Optimized observable atomic consistency protocol. For
Twitter-like applications, the frequency of different events

varies for different users. Some popular accounts tend to

tweetmore and to follow fewer users, while some newcomers

followmore and tweet less. Consider the following operation

sequence:

(1) Tweet→ (2) Tweet→ (3) AddFollower→ (4) Tweet.

Since we define Tweet as a TOp, the state of all replicas is

consistent after each Tweet operation. Therefore, there is

no need for a merge operation to be executed between (1)

and (2). However, in the case (3)→ (4), the state updated by

(3) first needs to be merged into all replicas before executing

(4). Thus, one possible optimization is to notify the system of

the sequence of operations, so that when two TOps happen

consecutively (e.g., (1) → (2)), the OACP system does not

need to gather state information first. In this way, the system

can decrease the number of exchanged messages. We call

this optimization O
2
ACP.

In order to make performance comparison to the original

OACP, we generate random sequences of operations accord-

ing to the proportion of CvOps and then excute through

both protocols. The results are shown in Figure 9a. When

the proportion of tweets grows, the increase of messages is

significantly smaller in the case of O
2
ACP than in the case of

OACP. In the case of 100 tweets, O
2
ACP only requires about

50% of the messages of OACP, which is a significant improve-

ment. We made another measurement for random sequences

of TOps and CvOps, by varying the proportion of CvOps

between 0% and 95%. The total number of client requests

is 100. The results are shown in Figure 9b. In each case, we

take the average of 10 measurements for each proportion.

The proportion of CvOps has a more substantial effect in

the case of OACP than in the case of O
2
ACP, since when

CvOps increase from 0% to 95%, the exchanged messages in
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Figure 9. OACP vs. O
2
ACP

OACP reduce from around 1400 to 600, while in O
2
ACP, the

number of exchanged messages remains quite stable.

6 Related Work
Consistency levels. The CAP theorem [14] points out the

impossibility for any distributed system to achieve consis-

tency, availability and partition tolerance at the same time.

Zookeeper [18] provides sequential consistency [15] such

that updates from a client are applied in the order in which

they were sent. Bayou [38] is designed for supporting real-

time collaborative applications and thus gives up consistency

for high availability, providing eventual consistency [11].

Consistency Rationing [22] allows a user to define the consis-

tency guarantees as well as switch the guarantees at runtime

automatically. There are also many classifications in multi-

level consistency. Fork consistency [28, 32] allows users to

read from forked sites that may not be up-to-date. In con-

trast, write operations require all sites to be updated. Lazy

replication [23] provides a solution to ensure high avail-

ability while keeping the data consistent. It divides updates

into three categories: causal, forced, and immediate. The

immediate operation is equivalent to our totally-ordered

operation. RedBlue consistency [27] is closely related to ob-

servable atomic consistency; we provide a comparison at the

end of Section 3. SIEVE [26] is a system based on RedBlue

consistency which automatically chooses consistency levels

according to a user’s definition of system invariants. Explicit

consistency in Indigo [3] guarantees the preservation of spe-

cific invariants to strengthen consistency beyond eventual

consistency.

Distributed application development frameworks. Cor-
rectables [16] is an abstraction to decouple applications from

their underlying database, which also provides incremen-

tal consistency guarantees to compose multiple consistency

levels. QUELEA [37] enables programmers to provide fine-

grained application-level consistency constraints which are

mapped automatically to the guarantees ensured by the un-

derlying data store. GSP [12, 33] provides an operational

reference model for replicated shared data. It abstracts from

the data model so that it can be applied to different kinds

of data structures. A comparison between GSP and OACP

is mentioned in Section 4. Orleans [6] provides a virtual ac-
tor abstraction for modeling and implementing distributed

systems. The Akka framework [17, 29], which we use to

implement OACP (see Section 5) provides a widely-used im-

plementation of the actor model [1] on the JVM for writing

highly concurrent, distributed, and resilient applications.

Datamanagement in distributed systems. Paxos [25] and
Raft [34] are popular consensus protocols in replicated sys-

tems and serve as the basis for reliable total-order broad-

cast [13]. The ZooKeeper Atomic Broadcast protocol [19]

(Zab) guarantees the replication order in ZooKeeper using

Paxos. Our RTOB implementation is inspired by Zab but

uses Raft because of its simplicity. For resolving shared-

data conflicts in distributed systems, there are several ap-

proaches. CRDTs [35] and cloud types [8, 10] resolve con-

flicts automatically using convergent operations, but they

impose important restrictions on data structures. Cassan-

dra [24], CaCOPS [30], Eiger [31], and ChainReaction [2] use

the last-write-wins strategy to ensure availability; however,

they may lose data if concurrent writes happen frequently

enough. Riak [9] and mergeable types [20] provide the ability

to resolve write conflicts on the application level.

7 Conclusion
We introduced the observable atomic consistency (OAC)

model which enables a new extension of CvRDTswith totally-

ordered operations.While lifting amain limitation of CvRDTs,

we believe that it can significantly simplify programming

with CvRDTs. We presented a proof of state convergence

for systems providing observable atomic consistency. We

then discussed a new consistency protocol, called observable
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atomic consistency protocol (OACP), which guarantees OAC

for distributed systems, and reduces the ambiguous consis-

tency guarantee caused by local read in global sequence

protocol. Experimental results show that OACP can reduce

the coordination compared to the baseline consistency pro-

tocol in several microbenchmarks and there are space for

optimization on individual cases.
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