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Abstract

We establish two results about the inapproximability of the Densest κ-Subgraph (DκS) prob-
lem. Both results are of similar flavor: ruling out constant factor approximations in polynomial
time for the DκS problem under an “average case” hardness assumption.

The first result asserts that if Random k-AND formulas are hard to distinguish from ones

that are 2−c
√
k satisfiable, then the Densest κ-Subgraph problem is hard to approximate to

within any constant factor.
The second result, which is of a similar flavor, asserts that if the problem of finding a

planted clique of size n1/3 in the random graph G(n, 1/2) is hard, then so is approximating the
Densest κ-Subgraph to within any constant factor, for a subgraph of size κ = N1−ε for any
2/3 ≥ ε > 0 in an N vertex graph. Depending on the hardness of the Hidden Clique problem,
this result carries over to superconstant hardness factors for approximating DκS. Our result
also implies the optimality (assuming appropriate hardness of the planted clique problem) of
an existing algorithm by Feige and Seltser [FS97], for the problem of distinguishing between a
graph containing a clique of size κ and one in which the densest subgraph of size κ is of density
at most δ.

Both results are based on gap-amplification arguments: we believe that these arguments can
be useful elsewhere as well.
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1 Introduction

In the Densest κ-Subgraph Problem (DκS) we are given a graph G = (V,E) and a parameter κ, and
need to find a subset S ⊆ V of size κ that contains the most edges among all such subsets. This is
a natural extension of the MAXCLIQUE problem.

This problem is NP-hard, as a simple consequence of the NP-hardness of MAXCLIQUE, see
[FPK01], and therefore attention has focused on approximation algorithms. Since it is a bicriterion
problem, approximation could be defined in multiple ways. Throughout this paper, by an α-factor
approximation algorithm we mean one that outputs a set of size κ that contains at least 1/α times
as many edges as the optimum subset. Current algorithms only compute fairly weak approxima-
tions; the best algorithm (due to Bhaskara et al [BCC+10]) computes an O(n1/4) approximation
in quasi-polynomial time (and an O(n1/4+ε) approximation in polynomial time). These algorithms
rely on state-of-the-art techniques including spectral methods and lift and project machinery, and
nevertheless achieve rather poor guarantees. Thus researchers tend to believe that the problem is
hard to approximate.

The hardness of the problem has also been found to have important consequences, especially
hardness of the “planted” version whereby a large dense subgraph is planted in a random graph
and the algorithm has to discover it. Note that a good approximation algorithm would find such
a set since the random graph in question is extremely unlikely to have another subgraph of even
remotely the same density. Assuming this planted problem is hard, Applebaum, Barak and Wigder-
son [ABW10] proposed a new public-key cryptosystem, and Arora, Barak, Brunnermeier, and
Ge [ABBG10] showed that derivative pricing is hard on “real-life” distributions.

Unfortunately, the known inapproximability results for the problem are very weak. In his
paper on the connection between average-case complexity and inapproximability, Feige showed that
computing a 1 + ε-approximation is at least as hard as refuting random 3-SAT clauses [Fei02] (for
some ε > 0). In his paper on quasirandom PCPs, Khot attempted to prove hardness results similar
to Feige’s while relying on worst-case hardness assumptions, rather than on average-case ones. He
was only able to show that a 1 + ε-approximation is hard assuming NP 6⊆ ∩ε>0DTIME(2n

ε
).

Assuming what is called the Small Set Expansion Conjecture, Raghavendra et al [RST10] rule out
all constant factor approximation for DκS.

In this paper, we provide additional evidence showing that the Densest κ-Subgraph problem
is hard to approximate to within any constant factor in polynomial time. We actually present
two independent pieces of evidence which both rely on the intractability of other, better known
average-case problems: random k-AND, and hidden CLIQUE.

While incomparable (upto the current state of knowledge), the two conjectures have their merits
that we would like to point out. The hidden CLIQUE problem has received lot of attention (refer
below for a short exposition) in the past few decades and still resisted polynomial time algorithms
making it a natural average case assumption to use.

However, the hidden CLIQUE problem is solvable in nO(logn) time, and hence the inapprox-
imability obtained using it can provide hardness of at most quasi-polynomial time. On the other
hand, the random k-AND problem has no sub-exponential time algorithms and there is a good
evidence suggesting why (refer [Tul09]). The reduction from k-AND thus suggests that DκS is
hard to approximate well by even sub-exponential time algorithms.

Our reduction from the hidden CLIQUE problem provides much higher factors of inapproxima-
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bility for DκS than the known ones: assuming no no(logn) algorithm solves the hidden CLIQUE
problem, the DκS problem cannot be approximated even upto a 2(logn)2/3 factor in polynomial
time.

Finally, both results involve a gap-amplification technique that seems of independent interest
for future study of the densest subgraph problem and related ones. We now describe the two
complexity assumptions and state our main results. The rest of the paper contains the proofs.

Complexity of Random k-AND Formulas. This complexity assumption was introduced by
Feige (Hypothesis 3 in [Fei02]) in his study of random 3-SAT formulas. Our reduction to densest
subgraph is analogous to Feige’s reduction, combined with a gap-amplification technique using
graph powering.

A k-AND formula is a collection of clauses, each containing k literals, where each literal is either
a variable or its negation. A boolean assignment to the variables is said to satisfy a clause if every
literal is set to true in the assignment.

A random k-AND formula with m clauses and n variables is picked by picking each of the
literals in each of the clauses independently at random from the 2n literals.

For m large enough compared to n, at most 2−km(1 + o(1)) clauses can be satisfied simul-
taneously by any assignment to the variables. On the other hand, it is NP-hard to distinguish

(∼ 2−km)-satisfiable instances from (∼ 2−c
√
km)-satisfiable instances for some c > 0 (see [ST00]).

Feige conjectures that even random instances (which are ∼ 2−km-satisfiable) are indistinguishable

from (∼ 2−c
√
km)-satisfiable instances.

Hypothesis 1.1. For some constant c > 0, for every k, for ∆ a sufficiently large constant inde-
pendent of n, there is no polynomial time algorithm that on most random k-AND formulas with n
variables and m = ∆n clauses outputs typical, but never outputs typical on k-AND formulas

with at least m/2c
√
k satisfiable clauses.

Our reduction will exploit the structure (or lack thereof to be more precise) in random instances:
for example, in such instances, every assignment would set roughly half the literals in most clauses
to true. This fact is used to prove:

Theorem 1.2. If Hypothesis 1.1 is true, then no polynomial time approximation algorithm achieves
a constant factor approximation for the DκS problem.

The Hidden Clique Problem. The problem of finding a hidden clique in a random graph has
been open since the works of [Jer92], [Kuc95]. The input for this problem is a graph G obtained
by planting a clique of size t in the random graph G(n, 1/2), where t is much bigger than the
typical clique number of G(n, 1/2), which is roughly 2 log2 n. The objective is to find the clique, or,
more modestly, to distinguish between the random graph G(n, 1/2) and the random graph with the
t-clique planted in it. For t = o(

√
n), there is no known polynomial time algorithm that finds even

a (1 + ε) log2 n clique, for any constant ε > 0. When t = Θ(
√
n), the authors of [AKS98] describe a

polynomial time algorithm that does find the hidden clique of size t. Subsequent algorithms with
similar performance appear in [FK00] , [FR10], [DGGP10].

It is widely believed that there is no polynomial time algorithm that solves the hidden clique
problem, even when t is as large as nc for any fixed c < 1/2, see [AAK+07, AKS98, HK11, Jer92,
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Kuc95, FK00, DGGP10]. Indeed, there are some known hardness results for various computational
problems assuming the hidden clique problem is hard. In [AAK+07] it is shown that hardness of
the hidden clique problem implies a hardness result for the problem of deciding whether a given
distribution is close to being k-wise independent. In [HK11] it is shown that hardness of the hidden
clique problem implies hardness of the problem of approximating best Nash Equilibrium.

In the present paper we prove that hardness of the hidden clique problem implies hardness of
approximation of the densest κ-subgraph problem to within any constant factor.

Theorem 1.3. If there is no polynomial time algorithm for solving the hidden clique problem for
a planted clique of size n1/3, then for any 2/3 ≥ ε > 0, δ > 0, there is no polynomial time algorithm
that distinguishes between a graph G on N vertices containing a clique of size κ = N1−ε, and a
graph G′ on N vertices in which the densest subgraph on κ vertices has density at most δ.

The hidden clique problem can be easily solved in time nO(logn), by simply enumerating all
subsets of size, say, 3 log n of the given input graph, to check if there is a clique of size at least
3 log n (which is, with high probability, a subset of the planted clique). Therefore, our proof of the
theorem above, described in Section 3, only establishes a conditional quasi-polynomial hardness for
the densest κ-subgraph problem. In fact, even assuming that the best running time of an algorithm
for solving the hidden clique problem with t = n1/3 is nΩ(logn) (which is the best known running
time of an algorithm for the problem), our proof only provides an N c(ε,δ) logN lower bound for the
running time of any algorithm for the instances of the κ-densest subgraph problem described in the
theorem. This is tight, as these instances deal with the problem of distinguishing between a graph
containing a clique of size κ and one in which the densest subgraph of size κ is of density at most
δ. For this problem, there is a simple elegant algorithm of Feige and Seltser [FS97] that solves the
problem in time N c(δ) logN for any δ < 1.

2 Reduction from random k-AND formulas

The reduction from k-AND formulas to DκS is along the lines of Feige’s followed by a gap ampli-
fication technique. We will describe the two parts and how we put them together once we set up
notation.

2.1 Notation and Setup

Graphs, Subsets and Powers For an integer m, let [m] denotes the set {1, 2, . . . ,m}. For a
set S and a natural number t, let St denotes the set of t-tuples of S: {(x1, x2, . . . xt) | xi ∈ S}.

Given a bipartite graph, G = (A∪B,E) and a subset S∪T , S ⊆ A, T ⊆ B, we will be interested
in the number of edges in the subset as a function of the sizes of the sets S and T . We will represent
S by its indicator function f : A→ [0, 1] and similarly, T by g. The number of edges inside S ∪ T
is therefore |E| ·E(a,b) [f(a)g(b)], where the expectation is over a random edge (a, b) ∈ E. The size

of the set S is represented by µG(f)
def
= 1/|A|

∑
a∈A f(a), and similarly for T . We will drop the

subscripts when the graph in question is clear from the context.

Given G as above, G⊗` is the graph (A`∪B`, E`) where vertices (a1, a2, . . . a`) and (b1, b2, . . . b`)
are connected if for every i, (ai, bi) is in E. Subsets of these graphs are represented by functions
f` : A` → [0, 1] and similarly g`.
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Random k-degree Bipartite Graphs Given integers m, n, and k, Gkm,n is the ensemble of
bipartite graphs over [m] ∪ [n] where each vertex on the left, a ∈ [m], is connected to k random
vertices from [n] picked at random with replacement. It is well-known that in almost all graphs
in this family, the number of edges contained in subsets is strongly determined by the size of the
subset. We will need an analog of this fact for “fractional subsets”, which we make precise as
follows.

Theorem 2.1. There exists (non-negative) constants k0 and c0 such that for every k ≥ k0 there
exists ∆0 = ∆0(k) such that for every m ≥ ∆0n, a graph G = (A ∪ B,E) randomly picked from
Gkm,n satisfies the following property with probability at least 1− exp(−c0n):

For every f : A→ [0, 1] and g : B → [0, 1] (to be thought of as “fractional subsets”),

E(a,b)∈E [f(a)g(b)] ≤ µ(f)µ(g) +
1

k1/9
µ(f) + 2−k

3/4

Proof Outline. The expected value of the left hand side is exactly µ(f)µ(g). Further, for large
enough k, and µ(f), µ(g) big enough (say, both Ω(1)), the quantity on the left can be shown to be
tightly concentrated around its mean. However, for sets of much smaller size (µ(f) ' exp(−k)),

one needs the additive error term 2−k
3/4

. The proof follows from a case analysis, based on µ(f).
We defer the full proof to the appendix (refer Section C).

2.2 Reduction to Bipartite Densest Subgraph Problem

Bipartite DκS. The bipartite variant of DκS is where we are given a bipartite graph G =
(A ∪ B,E) and two parameters κ1 and κ2. We need to find a subsets S ⊆ A, T ⊆ B such that S
contains κ1 elements, T contains κ2 elements and the number of edges contained in S ∪ T is the
maximum possible among such subsets.

Feige’s Reduction. Given a k-AND formula F on n variables consisting of m = ∆n clauses,
construct a bipartite graph G = (A ∪ B,E) with A = [m] identified by the clauses, B = [2n]
identified by the literals. An edge (a, b) is in G exactly when the clause a contains the literal b.

Now, set κ1 = 2−c
√
km (where c is from Hypothesis 1.1) and κ2 = n.

If the k-AND formula has an assignment satisfying κ1 clauses, pick T to be the set of true
literals (one per variable; sums to n vertices in B). Vertices corresponding to satisfied clauses have
all their k neighbors in T . Thus, G contains subsets of the required sizes (the satisfiable clauses
and the true literals) that contain κ1k edges.

On the other hand, in a typical random k-AND formula, a fixed assignment is expected to set
roughly half the literals in a clause to true. For large enough ∆, this intuition can be proven.
Observe that a random k-AND formula maps to a random element of Gkm,n. Fix subsets S and T
of the prescribed sizes; let f : and g denote their indicators. Then, µ(f) = κ1/m and µ(G) = 1/2.
Applying Theorem 2.1, we get that

E[f(a)g(b)] ≤
(

2−c
√
k(1/2) + 2−c

√
kk−1/9 + 2−k

−3/4
)
≤ 2−c

√
k · (1/2 + o(1))

for large enough k and ∆. Thus, the densest subgraph of the prescribed sizes contains at most
κ1k(1/2 + o(1)) edges. Now, Hypothesis 1.1 already gives a factor 2-inapproximability for the
bipartite version.
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2.3 Gap Amplification using Products

Amplification via graph products is a standard technique for increasing the gap in the value of the
objective. For example, the clique number of G⊗l is the clique number of G raised to power l. The
analogous statement for densest subgraph is false since dense subsets of the product graph may not
correspond to a single dense subset of the original graph. Luckily we can argue such a thing in the
case when the graph we started with was random.

Let F be a k-AND formula as in the above section and let G be the graph produced from the
above reduction. For a parameter `, let G⊗` = (A` ∪B`, E`) denote `-th power of G. The following
lemma extends Theorem 2.1 to graph powers. Qualitatively, we show that the number of edges in
a set of size κ` in G⊗` is roughly at most the number of edges in a set of size κ in G raised to the
`-th power; the slack in the bound decays with `.

Lemma 2.2. There exist constants k1, c1 such that for every k ≥ k1, there is a ∆1 = ∆1(k) such
that, for every m ≥ ∆1n, a G = (A ∪ B,E) randomly picked from Gkm,n satisfies the following
property with probability at least 1− exp(−c1n):

For every non-negative integer `, and every pair of functions f` : A` → [0, 1], g` : B` → [0, 1];
the graph G⊗` = (A` ∪B`, E`) satisfies

Ea1,a2,...,a`,b1,b2,...,b`∈E` [f`(a1, a2, . . . , a`)g`(b1, b2, . . . , b`)] ≤ µ(f`)µ(g`) + `δµ(f`) + `ε

where δ = 1/k1/9 and ε = 2−k
3/4

.

Proof. Given f` and g`, define

fi(a1, a2, . . . ai)
def
=

1

|A|`−i
∑

(ai+1,...,a`)

f(a1, . . . a`)

and gi similarly for 1 ≤ i < `. Now, for a fixed a1, a2, . . . , a`−1, b1, b2, . . . , b`−1, Theorem 2.1 implies
that with probability 1− exp(−c0n),

Ea`,b` [f`(a1, a2, . . . , a`)g`(b1, b2, . . . , b`)] ≤ f`−1(·)g`−1(·) + δf`−1(·) + ε

where “(·)” represents the first ` − 1 coordinates. Now, E[f`−1] = µ(f`). Leaving only the first
term. Applying this iteratively `− 1 more times gives the result (with c1 = c0).

Parameters. Let δ, ε be as above. Set ` such that `δ ≤ 2−` and `ε ≤ 2−k
5/8

(` = θ(log k) for large

enough k). Set k large enough and ∆ = ∆1(k) from the above theorem. Finally, set κ1 = 2−c
√
k`m`

and κ2 = 2−`n`.

As before, suppose F had a 2−c
√
k fraction of the clauses that could be simultaneously satisfied

by an assignment. Let S denote the satisfied clauses and T denote the set of true literals in the

assignment. In G⊗`, S` ∪ T ` contains at least 2−c
√
k`m`k` edges. Further S and T have κ1 and κ2

edges respectively. On the other hand, typical k-AND formulas output G such that G⊗` has no

such S and T containing more than 3 · 2−`2−c
√
k`m`k` edges (by direct application of the above

theorem with the set parameters), improving the gap to 2−`/3 = kΩ(1) for large enough k.
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2.4 Reduction to DκS

Keeping the setup and parameters as above, we are now in a shape to describe the complete
reduction. Given a k-AND formula F , construct G as in 2.2 and its power, G⊗` = (A` ∪ B`, E`).
Let κ1, κ2 be as immediately above.

To reduce to DκS, we use a Lagrangian relaxation style trick. Set λ = ∆2`(κ2 + `δn`)/κ1 and
κ = κ1λ + κ2. Construct graph H by taking λ disjoint copies of A` and connecting them in the
same way to B` as in G⊗`. Output H and κ as the final DκS instance.

Running Time. For a fixed large enough k and ∆, the total reduction runs in ∆O(log k)mO(log k)

steps which is polynomial in m for any fixed k. A closer look into Theorem 2.1 says that ∆ = exp(k)
suffices. Thus, for large enough k, the reduction runs in type exp(k)mO(log k).

Density of κ-subgraphs in H As before, if F is well satisfiable, we can find a subgraph of size
κ containing λκ1k

` edges (since H is just a disjoint union of many copies of G⊗`).

Fix a subset S containing κ vertices in H. Let f1, f2, . . . fλ be the indicator of S within each
of the disjoint copies of A`. Let g be the indicator of S ∩B`. Now κ =

∑
i µ(fi)m

` + µ(g)n`. The
number of edges in S is, by Lemma 2.2, at most

∑
im

` (µ(fi)µ(g) + `δµ(fi) + `ε). For the purpose
of bounding this expression, we can assume that µ(fi) = µ(f) (independent of i).

Our choice of λ was such that the function f(x, y) = xy + `δx + `ε under the constraint that
λx + y = λκ1/m

` + κ2/n
` is maximum when x = κ1/m

` and y = κ2/n
`. In the above setting,

this means that typical k-AND formulas produce H with at most 3λκ1κ2k
`/n` edges in any subset

induced on κ vertices (a 3 · 2−` factor lesser than when F is well satisfiable). We finish by stating
this as a theorem; Theorem 1.2 is a corollary of the following.

Theorem 2.3. There are constants k2, c2 and c3 and an algorithm A that takes an AND formula
and outputs a DκS instance (H,κ) such that for all k ≥ k2:

� Given a k-AND formula on n variables consisting of m clauses, A runs in 2O(k)mO(log k)

steps.

� For every k, there is a ν = ν(k,m) such that on typical random k-AND formulas, A produces
graphs with at most ν in any subgraph of size κ whilst always outputting graphs that contain

a kc2ν subgraph of the same size when fed a formula that is m/2c
√
k satisfiable.

3 Reduction from Hidden Clique

3.1 Notations and Setup

For notational ease, in this section, we measure the density of subsets of vertices in graphs as
follows.

Graph density For any (undirected) graph G = (V,E), and for any subset X ⊆ V , the density

of X, denoted d(X), is defined as d(X) = |E(X)|
(|X|2 )

where E(X) is the number of edges in the induced
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subgraph G|X . Similarly, for any two disjoint subsets X,Y ⊆ V , the density between X and Y is

d(X,Y ) = |E(X,Y )|
|X||Y | , where E(X,Y ) is the number of edges that have one endpoint in X and the

other in Y in the induced subgraph G|X∪Y .

We denote by G(n, 1/2) the random graph on n vertices, where each edge is drawn independently
at random with probability 1/2.

The following definition, which is a slight variant of the power graph definition used in section
2 will be central to our analysis:

Definition 3.1 (Subset Power Graphs). Let G = (V,E) be an (undirected) graph on |V | = n
vertices. For any integer `, the `-th subset power graph of G, denoted G` = (V `, E`), is the
graph whose set of vertices V ` consists of all

(
n
`

)
subsets of cardinality ` of V, and for any pair

(A = (u1, u2, ..., u`), B = (v1, v2, ..., v`)), (A,B) ∈ E` ⇐⇒ A ∪ B forms a clique in G (that is, for
every two distinct a, b ∈ A ∪B, ab ∈ E).

3.2 The proof of Theorem 1.3

The reduction we present proceeds as follows. First, we take the subset-power graph of the given
hidden clique instance, so that in the “Yes” case the clique is preserved whereas in the “No” case
we show that the density of any subgraph (of the right size) decreases exponentially with the square
of ` (the powering parameter). Theorem 3.3 together with Corollary 3.4 assert this fact. Then, we
“blow up” the graph, replacing each vertex of the power graph with a clique, so that the relative
size of the largest clique grows from n1/3 to N1−ε, while this operation is shown to have negligible
contribution to the density of the sparse graphs of the “No” instances. We wrap up the proof with
Theorem 3.7.

We begin with the following lemma which will come handy in the proof of Theorem 3.3:

Lemma 3.2. Let G = G(n, 1/2) and G` = (V `, E`) be the `-th subset-product graph of G for some
constant ` ≥ 1. Then with probability 1− o(1) the following condition holds:

Condition (1): For every two disjoint subsets A`,A`′ ⊆ V `, |A`| = |A`′ | = c log n where c =

c(`) = 2`
2

and ∀ A ∈ A` ∪ A`′ |SA`,A`′ (A)| ≥ 0.1` where SA`,A`′ (A)
def
= {v ∈ A : ∀ B ∈

A`∪A`′ , B 6= A v /∈ B} (that is, every set in the collection A`∪A`′ has at least a constant fraction
of elements which do not appear in any other set of the collection), the density d(A`,A`′) satisfies:

d(A`,A`′) ≤ 2 · 2−0.01`2

Proof sketch. The proof uses a standard Chernoff bound to upper bound the number of edges
between two given sets A` and A`′ which satisfy the premises of the condition. We defer the proof
to the appendix.

Theorem 3.3. Let G = G(n, 1/2) and G` = (V `, E`) be the `-th subset-product graph of G for
some constant ` ≥ 1, and suppose that G satisfies condition 1 in Lemma 3.2. Then

∀ B` ⊂ V `, |B`| =
(
n1/3

`

)
d(B`) ≤ 3 · 2−0.01`2
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Notation. For convenience, we denote ∆ =
(
n1/3

`

)
.

Proof. Given B`, define the set Y = {v ∈ V | v belongs to more than ∆ · n−1/20 members of B`}.
Note that the total number of vertices (from the original graph G) in all members of B` (double
counting appearances) is `|B`| = ` · ∆, and so the average number of members in which v ∈ V
appears is `·∆

n . Thus, the number of vertices v ∈ V which appear in more than ∆ ·n−1/20 members

is at most `∆
∆·n−1/20 = ` · n1/20. Therefore, |Y | ≤ ` · n1/20.

Intuitively, we say a member A ∈ B` is bad if it has ”too many” vertices in Y . We claim that

B` has a small number of bad members. Indeed, let Bbad`
def
= {B ∈ B` | |B ∩ Y | ≥ 0.9`}. Then

|Bbad` | ≤
( |Y |

0.9`

)
n0.1` < Θ(n)

0.9`
20 · n0.1` < n

5`
33 . Let Bgood`

def
= B` − Bbad` . Then for large enough n,

|Bgood` | ≥ ∆− n
5`
33 (1)

For A ∈ V `, let T (A)
def
= {v ∈ A | v /∈ Y } (note that every A ∈ Bgood` has T (A) ≥ 0.1`. W.l.o.g

we can assume equality, otherwise take an arbitrary subset of exact size 0.1`). Partition Bgood`

arbitrarily into q =
|Bgood` |
c logn ≤

∆
c logn sets Si of size c log n (we assume w.l.o.g that q is an integer.

otherwise, throw the remainder of the vertices into Bbad` ). Define an auxiliary graph on the sets
Si, where Si is connected to Sj iff i 6= j and ∃A ∈ Si, B ∈ Sj s.t T (A) ∩ T (B) 6= ∅. Then each
Si (1 ≤ i ≤ q) is connected to at most |Si| · 0.1`∆n−1/20 distinct Sj ’s. Thus, there are at most
q·c log(n)0.1`∆n−1/20

2 ≤ ∆2n−1/30 pairs Si, Sj connected. By Lemma 3.2, the number of edges of G`

between disconnected Si, Sj is at most |Si||Sj |2 · 2−0.01`2 (since the pair Si, Sj satisfies (?)). Thus,
the total number of edges in B` is at most

|Bbad
` ||B`|+ q

(
c log n

2

)
+ ∆2n−1/30(c log n)2 +

(
q

2

)
(c log n)2 · 2 · 2−0.01`2 (2)

where the first term upper bounds the number of edges that have at least one endpoint in Bbad
` ,

the second accounts for the edges inside each set Si for all 1 ≤ i ≤ q, the third term accounts for
the number of edges between all connected pairs Si, Sj (for which we assume a complete bipartite
graph) and the fourth accounts for the edges between all of at most

(
q
2

)
disconnected pairs. Plugging

in the numbers in (2), we get

|E(B`)| ≤ ∆n5`/33 +
∆

c log n
(c log n)2 + ∆2n−1/30(c log n)2 +

(
∆

2

)
2 · 2−0.01`2 (3)

and dividing by
(|B`|

2

)
=
(

∆
2

)
yields

d(B`) =
|E(B`|(|B`|

2

) ≤ 4
n5`/33

∆
+

4c log(n)

∆
+ 4n−1/30(c log n)2 + 2 · 2−0.01`2 (4)

where for the three first terms we used the fact that
(

∆
2

)
≥ ∆2

4 . Note that for any fixed ` these
three terms in (4) tend to 0 when n −→ ∞. In particular, there exists an m = m(`) such that for
all n ≥ m all three terms are at most 1

3 · 2
−0.01`2 . Thus, if n ≥ m, we have

8



d(B`) ≤ 2−0.01`2 + 2 · 2−0.01`2 = 3 · 2−0.01`2 (5)

as desired.

Corollary 3.4. Let G = G(n, 1/2) and G` = (V `, E`) be the `-th subset-product graph of G for
some constant ` ≥ 1. Then with probability 1− o(1)

∀ B` ⊂ V `, |B`| = ∆ d(B`) ≤ 3 · 2−0.01`2

Proof. By Lemma 3.2, condition 1 holds w.p 1−o(1), and so the claim follows from Theorem 3.3.

Remark: Note that Theorem 3.3 is completely deterministic. The randomness of the underlying
graph G(n, 1/2) affects only the probability of satisfying condition 1.

We proceed to the second step of our reduction.

Definition 3.5. Let G = (V,E) be an undirected graph. The k-clique blowup of G is the graph
Gk = (Vk, Ek) whose vertices are V × [k] and (v, i) is connected to (u, j) whenever (u, v) ∈ E or
u = v. That is, each vertex v ∈ G is mapped to a clique of size k, which we refer to as the block Bv
of v, and two blocks are connected (form a complete bipartite graph) whenever their corresponding
vertices are connected in G.

Lemma 3.6. Let Gk = (Vk, Ek) be a k-clique blowup of G = (V,E), and let ds denote the maximal
density of a set of size s in G. Then the maximum density of a set of size k · s in Gk is at most
ds + 1

s .

Proof. We defer the proof to the appendix.

We are now ready to prove Theorem 1.3 for which we consider the following counter-positive version:

Theorem 3.7. If ∃ ε > 0, δ > 0 for which the Densest κ-Subgraph(1, δ) with κ = N1−ε can be

solved in time NO(1), then the Hidden Clique for clique of size n1/3 can be solved in time nO(

√
log( 1

δ
)

ε
).

Proof. Let G = (V,E), |V | = n be the given instance of the Hidden Clique problem. Let G` be the

`-subset product graph of G, and G`q be the q-clique blowup of G`, for ` =
√
c log(1

δ ) (we determine

c shortly), and q such that
(
n1/3

`

)
q = (

(
n
`

)
q)1−ε. It is easy to check that q = nΘ(`/ε). Let N denote

the number of vertices of G`q, so N =
(
n
`

)
q. Note that G`q can be constructed in polynomial time.

If G has a planted clique H of size n1/3, then G` has a clique of size ∆ (all
(
n1/3

`

)
subsets of H),

and G`q ”blows” up this clique by a factor of q, so that G`q has a clique of size κ = ∆ · q = N1−ε

(by the choice of q). Thus in the ”Yes” instance G`q has a κ-subgraph of density 1. On the other
hand, if G is a ”No” instance, i.e G = G(n, 1/2), then by Corollary 3.4, with probability 1 − o(1)
any induced subgraph H` of size ∆ in G` satisfies d(H`) ≤ 3 · 2−0.01`2 . But G`q is a q-clique blowup

of G`, and thus by Lemma 3.6, the density of any induced subgraph of size ∆q = N1−ε is at most

9



(
max

B`⊆V `,|B`|=∆
d(B`)

)
+

1

∆
≤ 3 · 2−0.01`2 +

1

∆
= 3 · 2−0.01c log(1/δ) +

1

∆
= 3 · δ0.01c +

1(
n1/3

`

) (6)

and for an appropriate choice of c and large enough n, each of the terms in (6) is no larger than δ
2 ,

which yields

(
max

H⊆V `q ,|H|=N1−ε
d(H)

)
≤ δ

2
+
δ

2
= δ (7)

completing the soundness side of the proof. The resulting graph is therefore an instance of DκS

(1, δ), κ = N1−ε, which by the premises of the theorem is solvable in time NO(1) = nO(

√
log( 1

δ
)

ε
)

It is not hard to see that the proof of Theorem 1.3 carries over to sub-constant values of δ as
well, depending on the hardness of the Hidden Clique problem. In particular,

Corollary 3.8. If the Hidden Clique problem for a planted clique of size t = n1/3 in G(n, 1/2)
cannot be solved in time no(logn), then there is no algorithm that distinguishes between a graph on
N vertices containing a clique of size κ = N1/3 and one in which the densest subgraph on κ vertices
has density at most 2−Ω((logN)2/3)) in time No((logN)1/3).

Proof. Set ` = Θ(
√

log n) in the proof of Theorem 3.7 (Note that one cannot take a bigger `, as 2`
2

cannot exceed some fixed power of n for the proof to work). With this choice of `, N = nΘ(
√

logn)

and δ = 2−Θ(`2) = 2−Θ(logn) = 2−Θ((logN)2/3). The existence of an algorithm with running time
No((logN)1/3) = no(logn) for identifying a clique of size N1/3 in the subset power graph G` would show
that we can identify the hidden clique in the original graph G(n, 1/2) in time no(logn), contradicting
the hardness assumption.

Remark 3.9. It is worth to note that an analogous extension of theorem 1.2 to super-constant den-
sity ratios also requires a stronger version of hypothesis 1.1 (namely, that random k-SAT formulas
are hard to distinguish for super-constant values of k). For super-constant density ratios, the above
reduction has the advantage that the density of the “No” instance produced by it decreases in a rate
proportional to 2−`

2
(` being the graph-powering parameter), whereas in the reduction described in

the proof of theorem 1.2 it only deceases as fast as 2−`. Thus, for a super-constant value of `, the
above reduction produces hardness for a significantly higher approximation ratio.

4 Open Problems

It seems plausible that the DκS problem is hard to approximate even up to an nc factor in poly-
nomial time for some fixed c > 0. It will be interesting to decide whether or not some version of
our gap amplification technique can yield such an nΩ(1) inapproximability result.

As mentioned in the introduction, the complexity of finding a hidden dense subgraph in a
random graph has interesting applications, and it will be nice to establish hardness for this problem

10



using some hardness assumptions like the ones considered here. Note that our reduction in Section
3 provides hardness of finding dense subgraphs in certain semi-random graphs (obtained by taking
powers of a random graph), but not in usual random graphs.

Finally, proving a 1 + ε NP-hardness of approximation for DκS for any fixed ε > 0 is a long
standing open problem.
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A Proof of Lemma 3.2

Proof. We say that two sets A`,A`′ satisfy (?) if they have the properties specified in condition (1).
Let A`,A`′ ⊂ V ` be two subsets that satisfy (?) , and let |E(A`,A`′)| denote the random variable
whose value is the number of edges between the two sets in the induced subgraph Gl|A`∪A`′ . Let

S
def
=
∑

A∈A`,A′∈A`′
IA,A′ where IA,A′ is the indicator random variable whose value is 1 iff all the

vertices in SA`,A`′ (A) are connected to all the vertices in SA`,A`′ (A
′) in G (i.e, the edges between

SA`,A`′ (A) and SA`,A`′ (A
′) form a complete bipartite graph on these two sets). Note that this

event contains the event that (A,A′) ∈ E`, and so |E(A`,A`′)| ≤ S. W.l.o.g, we can assume that
|SA`,A`′ (A)| = 0.1` ∀A ∈ A` ∪ A`′ (otherwise, take an arbitrary subset T ⊂ SA`,A`′ (A) of size 0.1`
and use it in our following analysis).

Clearly, E[IA,A′ ] = 2−(0.1`)2 for any pair (A,A′) (as the number of edges (from G) in the complete
bipartite graph K|SA`,A`′ (A)|,|SA`,A`′ (A

′)| is (0.1`)2). By (?) and linearity of expectation, we therefore

have

E[|E(A`,A`′)|] ≤ E[S] =
∑

A∈A`,A′∈A`′

E[IA,A′ ] = |A`||A`′ |2−(0.1`)2 (8)

where the expectation is over the edges in G(n, 1/2). By (?), the events IA,A′ are independent
(we never considered a single edge from G more than once), and so S is the sum of |A`||A`′ | i.i.d
0/1-random variables and has expectation µ = |A`||A`′ | · 2−0.01`2 . We can therefore apply Chernoff
bound1 to obtain

Pr[S > 2 · |A`||A`′ | ·2−(0.1`)2 ] = Pr[S > 2µ] ≤ Pr[|S−µ| > µ] < 2e−µ/3 < 21− 1
3

(c2 log2(n)2−0.01`2 ) (9)

where the first transition is by (8). Since |E(A`,A`′)| ≤ S, we get

Pr[d(A`,A`′) > 2 · 2−(0.1`)2 ] ≤ Pr[S > |A`||A`′ |2 · 2−(0.1`)2 ] ≤ 21− 1
3

(c2 log2(n)2−0.01`2 ) (10)

Since the total number of pairs of disjoint subsets of size c log n in V ` is at most
( |V `|
c logn

)2
<

n2`c logn = 22`c log2 n, a union bound on all pairs yields that the probability that there exist a pair

1See N.Alon and J. Spencer, ”The Probabilistic Method” (Third Edition) ,Corollary A.1.14, p.312. Note that
since ε = 1 in our case, cε = min(ln 4− 1, 1/2) > 1

3
.
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of subsets A`,A`′ with d(A`,A`′) > 2 · 2−(0.1`)2 is at most

21+c log2 n(2`− 1
3
c2−0.01`2 )

which is o(1) (with respect to n) for c = 2`
2
.

B Proof of Lemma 3.6

Given a set of vertices T ⊆ Vk in Gk, let g(T ) =
∑

v∈T B(v), where B(v) is the number from [n]
associated with u s.t v ∈ Bu. (I.e, g is charging each vertex its block number).

Let T ⊆ Vk, |T | = ks be a set of maximal density in Gk. We first show that among all such sets
W of maximal density, if T also minimizes g(W ), then T must be a union of exactly s full blocks
(I.e, blocks B s.t T ∩ B = B). Indeed, if this is not the case, then let Bv1 , Bv2 , ..., Bvm be the set
of all non-full blocks which have nonempty intersection with T (i.e, 0 < |T ∩Bvi | < k) and assume
w.l.o.g that Bv1 and Bvm have the maximal and minimal degrees in T , dmax and dmin respectively
(where a degree of a block is simply the degree of any of its vertices. This is well defined since by
construction, all vertices in a block have the same degree). If dmax > dmin, then we claim that
replacing a vertex from T ∩ Bvm with a vertex from Bv1 − (T ∩ Bv1) increases the density of T .
Indeed, removing a vertex from T ∩Bvm incurs a loss of dmin edges, while inserting a vertex from
Bv1 − (T ∩ Bv1) contributes dmax edges in case Bv1 was connected to Bvm

2, and dmax + 1 if the
blocks were not connected. Since dmax > dmin, in both cases this operation increases the number
of edges, resulting in a set T ′ of size ks with d(T ′) > d(T ), which contradicts the maximality of
d(T ).

If dmax = dmin, let B1, B2, ..., Bn be an ordering of all blocks according to B(v) (i.e, Bj is the
block of vertex j in G. Thus, if v ∈ Bj , B(v) = j), and let Bio be the first non-full block according
to that order. Since the total number of vertices in T is a multiple of k, there must exist another
non-full block Bj , with i0 < j. If Bi0 and Bj are not connected, then by the above argument,
replacing a vertex w ∈ (Bj ∩ T ) with a new vertex w′ ∈ (Bi0 − (T ∩ Bi0)) yields a set T ′ with
higher density, in contradiction to the maximality of d(T ). Finally, if the blocks are connected,
since i0 < j, g(T ′) − g(T ) = B(w′) − B(w) = i0 − j < 0, which contradicts the minimality of T
with respect to g (note that the new set maintains the maximal density).

By the above, it is enough to analyze the maximal density of T in the case that it is a union of
s full blocks (as we can always find such T with equivalent density). Let T = Bv1 ∪Bv2 ∪ ....∪Bvs ,
and denote S = {v1, v2, ...., vs}. Note that since S ⊆ V is a set of size s in the original graph G, it
satisfies d(S) ≤ ds. The density of T can be therefore written as

d(T ) =
|edges between blocks|+ |edges inside blocks|(

ks
2

) =
k2|E(S)|+

(
k
2

)
s(

ks
2

)
≤ k2s(s− 1)ds + k(k − 1)s

ks(ks− 1)
≤ ds +

1

s

2since the degrees of vertices inside the same block are equal, but may have decreased by one if the blocks of the
removed and the added vertices were connected. The degree of the added vertex inside Bv1 ∩ T is higher by 1 than
it was before the replacement.
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C Proof of Theorem 2.1

Theorem C.1 (Theorem 2.1, restated). There exists (non-negative) constants k0 and c0 such
that for every k ≥ k0 there exists ∆0 = ∆0(k) such that for every m ≥ ∆0n, a G = (A ∪ B,E)
randomly picked from Gkm,n satisfies the following property with probability at least 1− exp(−c0n):

For every f : A→ [0, 1] and g : B → [0, 1],

E[f(a)g(b)] ≤ µ(f)µ(g) +
1

k1/8
µ(f) + 2−k

3/4

Proof. Note that the inequality is multilinear in f and g; hence, f and g can be assumed to map
onto {0, 1}. Fix one such f and g. Let S = {a ∈ A|f(a) = 1} and let {Xi

a} be a collection of
independent random-variables taking 1 with probability µ(g) and 0 otherwise. From the definition
of Gkm,n,

E[f(a)g(b)] =
1

mk

∑
i,a

Xi
a.

Note that the expected value of the above quantity is exactly µ(f)µ(g). The rest of the argument
follows in three cases, based on µ(f).

Case 1: µ(f) ≤ θ = 2−k
3/4
/k5: Using Talagrand’s inequality,

Pr [E[fg] ≥ µ(f)µ(g) + ε] = Pr[
∑
a,i

Xi
a ≥ µ(f)µ(g)mk +

(
ε
√
mk/µ(f)

)√
µ(f)mk]

≤ exp(−cε2mk/µ(f)) ≤ exp(−cε2mk/θ)

There are at most exp(H(θ)m) different choices for f and 2n different choices for g. Setting
ε = exp(−Ω(k3/4)), choosing large enough ∆ and k, and a simple union bound argument gives that
with probability at least 1− exp(−Ω(n)), E[fg] ≤ µ(f)µ(g) + ε for all f , g such that µ(f) < θ.

Case 2: θ < µ(f) < 1/
√
k: Again, using Talagrand’s inequality,

Pr [E[fg] ≥ µ(f)µ(g) + δµ(f)] = Pr[
∑
a,i

Xi
a ≥ µ(f)µ(g)mk + δµ(f)mk]

= Pr[
∑
a,i

Xi
a ≥ µ(f)µ(g)mk + δ

√
µ(f)mk

√
µ(f)mk]

≤ exp(−cδ2µ(f)mk)

Again, there are at most exp(H(µ(f))m) different choices for f , 2n different choices for g and
m different choices for µ(f). H(µ(f)) ≤ µ(f) log(1/µ(f)) ≤ µ(f)k3/4. Thus, setting δ = Ω

(
k−1/8

)
gives that E[fg] ≤ µ(f)µ(g) + Ω

(
k−1/8

)
µ(f) with probability at least 1− exp(−Ω(n)).
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Case 3: µ(f) ≥ 1/
√
k: As in the previous case, set δ = k−1/8 and using H(µ(f)) < 1 gives the

required bound, with probability exponentially close to 1.

Putting together all the cases, we have that:

E[f(a)g(b)] ≤ µ(f)µ(g) +
1

k1/8
µ(f) + 2−k

3/4

with probability at least 1− exp(−cn).
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