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Abstract

We prove that approximating the Max Acyclic Subgraph problem within a factor better
than 1/2 is Unique-Games hard. Specifically, for every constant ε > 0 the following holds: given
a directed graph G that has an acyclic subgraph consisting of a fraction (1 − ε) of its edges, if
one can efficiently find an acyclic subgraph of G with more than (1/2+ ε) of its edges, then the
UGC is false. Note that it is trivial to find an acyclic subgraph with 1/2 the edges, by taking
either the forward or backward edges in an arbitrary ordering of the vertices of G. The existence
of a ρ-approximation algorithm for ρ > 1/2 has been a basic open problem for a while.

Our result is the first tight inapproximability result for an ordering problem. The starting
point of our reduction is a directed acyclic subgraph (DAG) in which every cut is nearly-balanced
in the sense that the number of forward and backward edges crossing the cut are nearly equal;
such DAGs were constructed in [3]. Using this, we are able to study Max Acyclic Subgraph,
which is a constraint satisfaction problem (CSP) over an unbounded domain, by relating it to a
proxy CSP over a bounded domain. The latter is then amenable to powerful techniques based
on the invariance principle [13, 19].

Our results also give a super-constant factor inapproximability result for the Min Feedback

Arc Set problem. Using our reductions, we also obtain SDP integrality gaps for both the
problems.

1 Introduction

Given a directed acyclic graph G, one can efficiently order (“topological sort”) its vertices so that
all edges go forward from a lower ranked vertex to a higher ranked vertex. But what if a few, say
fraction ε, of edges of G are reversed? Can we detect these “errors” and find an ordering with few
back edges? Formally, given a directed graph whose vertices admit an ordering with many, i.e.,
1 − ε fraction, forward edges, can we find a good ordering with fraction α of forward edges (for
some α → 1)? This is equivalent to finding a subgraph of G that is acyclic and has many edges,
and hence this problem is called the Max Acyclic Subgraph (MAS) problem.

∗Department of Computer Science & Engineering, University of Washington, Seattle, WA 98195. Work done while

on leave at the Institute for Advanced Study, School of Mathematics, Princeton, NJ 08540. Research supported in

part by a Packard Fellowship, and NSF grant CCR-0324906 to the IAS
†Supported by NSF grants MSPA-MCS 0528414, and ITR 0205594
‡Work done while the author was visiting Princeton University. Supported by NSF grant CCF-0343672

1



It is trivial to find an ordering with fraction 1/2 of forward edges: take the better of an arbitrary
ordering and its reverse. This gives a factor 1/2 approximation algorithm for Max Acyclic

Subgraph. (This is also achieved by picking a random ordering of the vertices.) Despite much
effort, no efficient ρ-approximation algorithm for a constant ρ > 1/2 has been found for Max

Acyclic Subgraph. The existence of such an algorithm has been a longstanding and central
open problem in the theory of approximation algorithms. In this work, we prove a strong hardness
result that rules out the existence of such an approximation algorithm assuming the Unique-Games
conjecture. Our main result is the following.

Theorem 1.1. Conditioned on the Unique Games conjecture, the following holds for every constant
γ > 0. Given a directed graph G with m edges, it is NP-hard to distinguish between the following
two cases:

1. There is an ordering of the vertices of G with at least (1−γ)m forward edges (or equivalently,
G has an acyclic subgraph with at least (1 − γ)m edges).

2. For every ordering of the vertices of G, there are at most (1/2 + γ)m forward edges (or
equivalently, every subgraph of G with more than (1/2+ γ)m edges contains a directed cycle).

To the best of our knowledge, the above is the first tight hardness of approximation result for an
ordering/permutation problem. As an immediate consequence, we obtain the following hardness
result for the complementary problem of Min Feedback Arc Set, where the objective is to
minimize the number of back edges.

Corollary 1.2. Conditioned on the Unique Games conjecture, for every C > 0, it is NP -hard to
find a C-approximation to the Min Feedback Arc Set problem.

Combining the unique game integrality gap instance of Khot-Vishnoi [10] along with the UG
reduction, we obtain SDP integrality gaps for Max Acyclic Subgraph problem. Our integrality
gap instances also apply to a related SDP relaxation studied by Newman [17]. This SDP relaxation
was shown to obtain an approximation better than half on random graphs which were previously
used to obtain integrality gaps for a natural linear program [15].

1.1 Related work

Max Acyclic Subgraph is a classic optimization problem, figuring in Karp’s early list of NP-
hard problems [7]; the problem remains NP-hard on graphs with maximum degree 3, when the
in-degree plus out-degree of any vertex is at most 3. Max Acyclic Subgraph is also complete
for the class of permutation optimization problems, MAX SNP[π], defined in [18], that can be
approximated within a constant factor. It is shown in [15] that Max Acyclic Subgraph is
NP-hard to approximate within a factor greater than 65

66 .
Turning to algorithmic results, the problem is known to be efficiently solvable on planar

graphs [11, 6] and reducible flow graphs [20]. Berger and Shor [2] gave a polynomial time al-
gorithm with approximation ratio 1/2 + Ω(1/

√
dmax) where dmax is the maximum vertex degree in

the graph. When dmax = 3, Newman [15] gave a factor 8/9 approximation algorithm.
The complementary objective of minimizing the number of back edges, or equivalently deleting

the minimum number of edges in order to make the graph a DAG, leads to the Min Feedback Arc

Set (FAS) problem. This problem admits a factor O(log n log log n) approximation algorithm [21]
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based on bounding the integrality gap of the natural covering linear program for FAS; see also
[4]. Using this algorithm, one can get an approximation ratio of 1

2 + Ω(1/(log n log log n)) for Max

Acyclic Subgraph.
Recently, Charikar, Makarychev, and Makarychev [3] gave a factor (1/2+Ω(1/ log n))-approximation

algorithm for Max Acyclic Subgraph, where n is the number of vertices. In fact, their algorithm
is stronger: given a digraph with an acyclic subgraph consisting of a fraction (1/2 + δ) of edges,
it finds a subgraph with at least a fraction (1/2 + Ω(δ/ log n)) of edges. This algorithm, and in
particular an instance showing tightness of its analysis from [3], plays a crucial role in our work.

1.2 Organization

We begin with an outline of the key ideas of the proof in Section 2. In Section 3, we review the
definitions of influences, noise operators and restate the unique games conjecture. The groundwork
for the reduction is laid in Section 4 and Section 5, where we define influences for orderings, and
multiscale gap instances respectively. We present the dictatorship test in Section 6, and convert it
to a UG hardness result in Section 7. Finally, SDP integrality gaps for Max Acyclic Subgraph

are presented in Section 8.

2 Proof Overview

In this section, we outline the central ideas of the proof. To keep the description concise, we will
set up some basic notation. For sake of brevity, let us denote [m] = {1, . . . ,m}. Given an ordering
O of the vertices of a directed graph G = (V,E), let Val(O) refer to the fraction of the edges E
that are oriented correctly in O.

At the heart of all Unique Games based hardness results, lies a dictatorship testing result for
an appropriate class of functions. A function F : [m]R → [m] is said to be a dictator if F(x) = xi

for some fixed i. A dictatorship test (DICT) is a randomized algorithm such that, given a function
F : [m]R → [m], it makes a few queries to the values of F and distinguishes between whether F
is a dictator or far from every dictator. While Completeness of the test refers to the probability of
acceptance of a dictator function, Soundness is the maximum probability of acceptance of a function
far from a dictator. The approximation problem one is showing UG hardness for, determines the
nature of the dictatorship test needed for the purpose.

Now let us turn to the specific problem at hand : Max Acyclic Subgraph. Designing the
appropriate dictatorship test for this problem amounts to the following: Construct a directed graph
over the set of vertices V = [m]R such that :

• For a Dictator ordering O of the vertices V , Val(O) ≈ 1

• For any ordering O which is far from a dictator, Val(O) ≈ 1
2 .

Unlike the case of functions, it is unclear as to what is the right notion of Dictators for orderings.
For every ordering O of [m]R, define m2R functions F [p,q] : [m]R → {0, 1} as follows:

F [p,q](x) =

{

1 if x appears in between the pth and the qthpositions in ordering O
0 otherwise
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The ith coordinate is said to be influential if it has a large influence (> τ) on any of the functions
F [p,q]. Here influence refers to the natural notion of influence for real valued functions on [m]R (see
Section 3). An ordering O is said to be τ -pseudorandom (far from a dictator) if it has no influential
coordinates (> τ). For this notion to be useful, it is necessary that a given ordering O does not
have too many influential coordinates. Towards this, in Lemma 4.3 we show that the number of
influential coordinates is bounded (after certain smoothening). Further this notion of influence is
well suited to deal with orderings of multiple long codes instead of one - a crucial requirement in
translating dictatorship tests to UG hardness.

Armed with the notion of influential coordinates, we obtain a directed graph on [m]R (a dicta-
torship test) for which the following holds:

Theorem 2.1. (Soundness) If O is any τ -pseudorandom ordering of [m]R, then Val(O) 6
1
2 +oτ (1).

This dictatorship test yields tight UG hardness for the Max Acyclic Subgraph problem.
Using the Khot-Vishnoi [10] SDP gap gap instance for unique games, we obtain SDP integrality
gap for the Max Acyclic Subgraph problem.

Now we describe the design of the dictatorship test in greater detail. At the outset, the ap-
proach is similar to recent work on Constraint Satisfaction Problems(CSPs) [19]. Fix a constraint
satisfaction problem Λ. Starting with an integrality gap instance Φ for the natural semi-definite
program for Λ, [19] constructs a dictatorship test DICTΦ. The Completeness of DICTΦ is equal to
the SDP value SDP(Φ), while the Soundness is close to the integral value INT(Φ).

Since the result of [19] applies to arbitrary CSPs, a natural direction would be to pose the Max

Acyclic Subgraph as a CSP. Max Acyclic Subgraph is fairly similar to a CSP, with each
vertex being a variable taking values in domain [n] and each directed edge a constraint between 2
variables. However, the domain, [n], of the CSP is not fixed, but grows with input size. We stress
here that this is not a superficial distinction but an essential characteristic of the problem. For
instance, every 2-CSP over a domain of fixed size admits an approximation ratio better than a ran-
dom assignment [5], while the Max Acyclic Subgraph problem has resisted such approximation
algorithms.

Towards using techniques from the CSP result, we define the following variant of Max Acyclic

Subgraph:

Definition 2.2. A t-ordering of a directed graph G = (V,E) consists of a map O : V → [t]. The
value of a t-ordering O is given by

Valt(O) = Pr
(u,v)∈E

(

O(u) < O(v)
)

+
1

2
Pr

(u,v)∈E

(

O(u) = O(v)
)

In the t-Order problem, the objective is to find an t-ordering of the input graph G with maximum
value.

On the one hand, the t-Order problem is a CSP over a fixed domain that is similar to MAS.
However, to the best of our knowledge, for the t-Order problem, there are no known SDP gaps, which
constitute the starting point for results in [19]. For any fixed constant t, Charikar, Makarychev
and Makarychev [3] construct directed acyclic graphs (i.e., with value of the best ordering equal
to 1), while the value of any t-ordering of G is close to 1

2 . For the rest of the discussion, let us fix
one such graph G on m vertices. Notice that the graph G does not serve as SDP gap example for
either the MAS or the t-Order problem.
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As the graph G has only m vertices, and an ordering of value ≈ 1, it has a good t-ordering for
t = m. Viewing G as an instance of the m-Order CSP (corresponding to predicate <), we obtain
a directed graph, G, on [m]R. As a m-order CSP, the dictator m-orderings yield value ≈ 1 on G.
In turn, this implies that the Dictator orderings have value ≈ 1 on G. Turning to the soundness
proof, consider a τ -pseudorandom ordering O. Obtain a t-ordering O∗ by the following coarsening
process : Divide the ordering O in to t equal blocks, and map the vertices in the ith block to value
i. The crucial observation relating O and O∗ is as follows:

“For a τ -pseudorandom ordering O, Valt(O∗) ≈ Val(O).”
Clearly, Val(O)−Valt(O∗) is bounded by the fraction of edges whose both endpoints fall in the

same block, during the coarsening. We use the Gaussian noise stability bounds of [13], to bound
the fraction of such edges. From the above observation, in order to prove that Val(O) ≈ 1

2 , it is
enough to bound Valt(O∗). Notice that O∗ is a solution to t-order problem - a CSP over finite
domain. Consequently, the soundness analysis of [19] can be used to show that Valt(O∗) is at most
the value of the best t-ordering for G, which is close to 1

2 .
Summarizing the key ideas, we define the notion of influential coordinates for orderings, and

then use it to construct a dictatorship test for orderings. Using gaussian noise stability bounds, we
relate the value of a pseudorandom ordering to a related CSP, and then apply techniques from [19].

3 Preliminaries

For a positive integer t, ∆t denotes the the t dimensional simplex. We will use bold face letters z
to denote vectors z = (z(1), . . . , z(R)). A t-ordering O of the graph G consists of a map O : V → [t].
Note that the map O need not be injective or surjective. If the map O is a bijection, then it
corresponds to an ordering of the vertices V . In a t-ordering O, an edge e = (u, v) is a forward
edge if O(u) < O(v).

Observation 3.1. For all directed graphs G, and integers t 6 t′, Valt(G) 6 Valt′(G) 6 Val(G)

3.1 Noise Operators and Influences

Let Ω denote the finite probability space corresponding to the uniform distribution over [m]. Let
{χ0 = 1, χ1, χ2, . . . , χm−1} be an orthonormal basis for the space L2(Ω). For σ ∈ [m]R, define
χσ(z) =

∏

k∈[R] χσi
(z(k)). Every function F : ΩR → R can be expressed as a multilinear polyno-

mial as F(z) =
∑

σ F̂(σ)χσ(z). The L2 norm of F in terms of the coefficients of the multilinear

polynomial is ||F||22 =
∑

σ F̂2(σ)

Definition 3.2. For a function F : ΩR → R, define Infk(F) = Ez[Varz(k)[F ]] =
∑

σk 6=0 F̂2(σ).

Here Varz(k) [F ] denotes the variance of F(z) over the choice of the kth coordinate z(k).

Definition 3.3. For a function F : ΩR → R, define the function TρF as follows:

TρF(z) = E[F(z̃) | z] =
∑

σ∈[m]R

ρ|σ|F̂(σ)χσ(z)

where each coordinate z̃(k) of z̃ = (z̃(1), . . . , z̃(R)) is equal to z(k) with probability ρ and with the
remaining probability, z̃(k) is a random element from the distribution Ω.

5



We will need the following simple facts.

Lemma 3.4. Given a function F : [m]R → [0, 1], if H = T1−ǫF then
∑R

k=1 Infk(H) 6
1

e ln 1/(1−ǫ) 6

1
ǫ

Proof. Let F(x) =
∑

σ∈[m]R F̂σχσ(x) denote the expansion of F . The function H is given by

H(x) =
∑

σ(1 − ǫ)|σ|F̂σχσ(x). Hence we get,

R
∑

k=1

Infk(H) =

R
∑

k=1

∑

σ,σk 6=0

(1 − ǫ)2|σ|F̂2
σ =

∑

σ∈[m]R

(1 − ǫ)2|σ||σ|F̂2
σ

6 max
σ∈[m]R

(

(1 − ǫ)2|σ||σ|
)

·
∑

σ

F̂2
σ 6 max

σ∈[m]R
(1 − ǫ)2|σ||σ|

The function φ(x) = x(1 − ǫ)2x achieves a maximum at x = −1/2 ln(1 − ǫ). Substituting we get
∑R

k=1 Infk(H) 6
1

e ln 1/(1−ǫ) .

Lemma 3.5. Consider two functions F ,G : [m]R → [0, 1] with E[F ] = E[G] = µ, such that for all
k, Infk(T1−ǫF), Infk(T1−ǫG) 6 τ . Let x,y be random vectors in [m]R whose marginal distributions
are uniform over [m]R but are arbitrarily correlated. For small enough µ, we have

Ex,y[T1−2ǫF(x)T1−2ǫG(y)] 6 µ
2

2−ǫ

Proof. The lemma essentially follows from the Majority is Stablest theorem (see Theorem 4.4
in [14]). We bound each factor individually as follows:

||T1−2ǫF||22 =
∑

σ∈[k]R

(1 − 2ǫ)2|σ|F̂2(σ)

6
∑

σ∈[k]R

(1 − ǫ)|σ|F̂2(σ)(1 − ǫ)2|σ|F̂2(σ) 6 E[(T1−ǫF)T1−ǫ(T1−ǫF)]

Now, since the influences of F are low, the last expression can be bounded by the noise stability
in gaussian space, Γ(1−ǫ)(µ). This can now be bounded using standard estimates (see Theorem B.2
in [14]).

E[(T1−ǫF)T1−ǫ(T1−ǫF)] 6 Γ(1−ǫ)(µ) + oτ (1) 6 µ
2

2−ǫ + oτ (1)

Applying a similar bound for G and applying Cauchy-Schwartz gives the result:

Ex[T1−2ǫF(x)T1−2ǫG(y)] 6

√

||T1−2ǫF||22||T1−2ǫG||22
6 µ

2
2−ǫ + oτ (1) (for µ small enough)
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3.2 Semidefinite Program

We use the following natural SDP relaxation of the Max Acyclic Subgraph problem. Given a
directed graph G = (V,E) with |V | = n, the program has n variables {u1, . . . , un} for each vertex
u ∈ V . In the intended solution, the variable ui = 1 and uj = 0 for all j 6= i if and only if u is
assigned position i.

Maximize Ee=(u,v)

[

∑

i<j

ui · vj + 1
2

∑

i

ui · vi

]

(MAS-SDP)

Subject to ui · vj ≥ 0, ui · uj = 0 ∀u, v ∈ V, i, j ∈ [n]
∑

i∈[n]

|ui|2 = 1 ∀u ∈ V

∣

∣

∣

∑

i∈[n]

ui −
∑

i∈[n]

vi

∣

∣

∣

2
= 0 ∀u, v ∈ V

As shown in [16], this relaxation is equivalent to the relaxation in [17].

3.3 Unique Games

Definition 3.6. An instance of Unique Games represented as Γ = (A∪B, E,Π, [R]), consists of a
bipartite graph over node sets A,B with the edges E between them. Also part of the instance is a
set of labels [R] = {1, . . . , R}, and a set of permutations πab : [R] → [R] for each edge e = (a, b) ∈ E.
An assignment Λ of labels to vertices is said to satisfy an edge e = (a, b), if πab(Λ(a)) = Λ(b). The
objective is to find an assignment Λ of labels that satisfies the maximum number of edges.

For a vertex a ∈ A ∪ B, we shall use N(a) to denote its neighborhood. For the sake of
convenience, we shall use the following version of the Unique Games Conjecture[9] which was
shown to be equivalent to the original conjecture by [8].

Conjecture 3.7. (Unique Games Conjecture [9, 8]) For all constants δ > 0, there exists large
enough constant R such that given a bipartite unique games instance Γ = (A ∪ B, E,Π = {πe :
[R] → [R] : e ∈ E}, [R]) with number of labels R, it is NP-hard to distinguish between the
following two cases:

• (1− δ)-satisfiable instances: There exists an assignment Λ of labels such that for 1− δ fraction
of vertices a ∈ A, all the edges incident at a are satisfied.

• Instances that are not δ-satisfiable: No assignment satisfies more than a δ-fraction of the
constraints Π.

4 Orderings

In this section, we develop the notions of influences for orderings and prove some basic results about
it.
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Definition 4.1. Given an ordering O of vertices V , its t-coarsening is a t-ordering O∗ obtained by
dividing O in to t-contiguous blocks, and assigning label i to vertices in the ith block. Formally, if
M = |V |/t then

O∗(u) =
⌊O(u)

M

⌋

+ 1

For an ordering O of points in [m]R. Define functions F [p,q]
O : [m]R → {0, 1} for integers p, q as

follows:

F [p,q]
O (x) =

{

1 if O(x) ∈ [p, q]

0 otherwise

We will omit the subscript and write F [p,q] instead of F [p,q]
O , when it is clear.

Definition 4.2. For an ordering O of [m]R, define the set of influential coordinates Sτ (O) as
follows:

Sτ (O) = {k | Infk(T1−ǫF [p,q]) ≥ τ for some p, q ∈ Z}
An ordering O is said to be τ -pseudorandom if Sτ (O) is empty.

Lemma 4.3. (Few Influential Coordinates) For any ordering O of [m]R, we have |Sτ (O)| 6
400
ǫτ3

Proof. For integers p, q, δ1, δ2 such that |δi| < τ
8mR, let f = T1−ǫF [p,q] and g = T1−ǫF [p+δ1,q+δ2].

Now,

Infk(f − g) 6 ||f − g||22 6 ||F [p,q] −F [p+δ1,q+δ2]||22 = Pr
z

[F [p,q](z) 6= F [p+δ1,q+δ2](z)] 6 τ/4

Hence,

Infk(f) =
∑

σk 6=0

f̂2(σ) 62





∑

σk 6=0

ĝ2(σ) +
∑

σk 6=0

(

f̂(σ) − ĝ(σ)
)2



 (Using a2
6 2(b2 + (a − b)2))

6 2Infk(g) + τ/2

Thus, if Infk(f) > τ , then Infk(g) > τ/4. It is easy to see that there is a set N = {F [p,q]} of size

at most 100/τ2 such that for every F [p,q] there is a F [r,s] ∈ N such that max |p − r|, |q − s| < τmR

8 .

Further, by Lemma 3.4, the functions T1−ǫF [p,q] have at most 4
ǫτ coordinates with influence more

than τ/4. Hence, |Sτ (O)| 6
400
ǫτ3 .

Claim 4.4. For any τ -pseudorandom ordering O of [m]R, its t-coarsening O∗ is also τ -pseudorandom.

Proof. Since the functions {F [·,·]
O∗ } are a subset of the functions {F [·,·]

O }, Sτ (O∗) ⊆ Sτ (O).

5 Multiscale Gap Instances

In this section, we will construct acyclic directed graphs with no good t-ordering. These graphs
will be crucial in designing the dictatorship test (Section 6).

Definition 5.1. For η > 0 and a positive integer t, a (η, t)-Multiscale Gap instance is a weighted
directed graph G = (V,E) with the following properties:
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• Val(G) = 1 and Valt(G) 6 1
2 + η

• There exists a solution {ui |u ∈ V, 1 6 i 6 |V |} to SDP with objective value at least 1 − η
such that for all u, v ∈ V and 1 6 i, j 6 |V |, we have |ui|2 = 1

|V | .

The cut norm of a directed graph, G, represented by a skew-symmetric matrix W is:

||G||C = max
xi,yj∈{0,1}

∑

ij

xiyjwij

We will need the following theorem from [3] relating the cut norm of a directed graph G to
Val(G).

Theorem 5.2 (Theorem 3.1, [3]). If a directed graph G on n vertices has a maximum acyclic

subgraph with at least a 1
2 + δ fraction of the edges, then, ||G||C > Ω

(

δ
log n

)

.

The following lemma and its corollary construct Multiscale Gap instances starting from graphs
that are the “tight cases” of the above theorem.

Lemma 5.3. For every η > 0 and a positive integer t, there exists directed graph G = (V,E) such
that Val(G) = 1 and Valt(G) 6

1
2 + η.

Proof. Charikar et al (Section 4, [3]) construct a directed graph, G = (V,E), on n vertices whose
cut norm is bounded by O (1/ log n). The graph is represented by the skew-symmetric matrix W ,

where wij =
∑

k sin π(j−i)k
n+1 . It is easy to verify that for every 0 < t < n,

∑

k sin
(

πtk
n+1

)

> 0. Thus,

wij > 0 whenever i < j, implying that the graph is acyclic (in other words, Val(G) = 1).
We bound Valt(G) as follows. Let Valt(G) = 1

2 +δ and let O : V → [t] be the optimal t-ordering.
Construct a graph H on t vertices with a directed edge from O(u) to O(v) for every edge (u, v) ∈ E

with O(u) 6= O(v). Now, using Theorem 5.2, the cut norm of H is bounded from below by Ω
(

δ
log t

)

.

Moreover, since O is a partition of V , the cut norm of G is at least the cut norm of H. Thus, we
have the following:

Ω
(

δ
log t

)

6 ||H||C 6 ||G||C 6 O (1/ log n)

Thus, δ 6 O
(

log t
log n

)

implying that Valt(G) 6
1
2 + O

(

log t
log n

)

. Choosing n large enough gives the

required result.

Corollary 5.4. For every η > 0 and positive integer t, there exists a Multiscale Gap instance with
a corresponding SDP solution {ui|u ∈ V, 1 6 i 6 |V |}.

Proof. Let G = (V,E) be the graph obtained by taking ⌈1/η⌉ disjoint copies of the graph guaranteed
by Lemma 5.3 and let m = |V |. Note that the graph still satisfies the required properties: Val(G) =
1, Valt(G) 6 1

2 + η. Let O be the ordering of [m] that satisfies every edge of G. Let D denote
the distribution over labellings obtained by shifting O by a random offset cyclically. For every
u ∈ V, i ∈ [m], Pr[D(u) = i] = 1/m. Further, every directed edge is satisfied with probability at
least 1− η. Being a distribution over integral labellings, D gives raise to a set of vectors satisfying
the constraints in Definition 5.1. G along with these vectors form the required (η, t)-multiscale gap
instance.
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6 Dictatorship Test

Definition 6.1. For an edge e = (u, v) ∈ E in a (η, t)-multiscale gap instance G, define the local
integral distribution Pe over [m]2 as follows:

Pe(i, j) = ui · vj

The details of the dictatorship test DICTG are described below:

DICTG Test

• Pick an edge e = (u, v) ∈ E at random from the Multiscale gap instance G.

• Sample ze = {zu, zv} from the product distribution PR
e , i.e. For each 1 6 k 6 R,

z
(k)
e = {z(k)

u , z
(k)
v } is sampled using the distribution Pe(i, j) = ui · vj.

• Obtain z̃u, z̃v by perturbing each coordinate of zu and zv independently. Specifically,

sample the kth coordinates z̃
(k)
u , z̃

(k)
v as follows: With probability (1 − 2ǫ), z̃

(k)
u = z

(k)
u

, and with the remaining probability z̃
(k)
u is a new sample from Ω.

• Introduce a directed edge z̃u → z̃v. (alternatively test if O(z̃u) < O(z̃v))

Theorem 6.2. (Soundness Analysis) For any τ -pseudorandom ordering O of [m]R, Val(O) 6

Valt(G) + O(t−
ǫ

2−ǫ ) + oτ (1).

Let F [p,q] : [m]R → {0, 1} denote the functions associated with the t-ordering O∗. For the sake
of brevity, we shall write F i for F [i,i]. The result follows from Lemma 6.4 and Lemma 6.3 shown
below.

Lemma 6.3. For any τ -pseudorandom ordering O of [m]R

Val(O) 6 Valt(O∗) + O(t−
ǫ

2−ǫ ) + oτ (1)

where O∗ is the t-coarsening of O.

Proof. As O∗ is a coarsening of O, clearly Val(O) ≥ Valt(O∗). Note that the loss due to coarsening,
is because for some edges e = (z, z′) which are oriented correctly in O, fall in to same block during
coarsening, i.e O∗(z) = O∗(z′). Thus we can write

Val(O) 6 Valt(O∗) +
1

2
Pr

(

O∗(z̃u) = O∗(z̃v)
)

Pr
(

O∗(z̃u) = O∗(z̃v)
)

=
∑

i∈[t]

Ee=(u,v)Ezu,zvEz̃u,z̃v

[

F i(z̃u) · F i(z̃v)
]

=
∑

i∈[t]

Ee=(u,v)Ezu,zv

[

T1−2ǫF i
u(zu) · T1−2ǫF i

v(zv)
]

As O is a t-coarsening of O, for each value i ∈ [t], there are exactly 1
t fraction of z for which

O∗(z) = i. Hence for each i ∈ [t], Ez[F i
u(z) = 1

t ]. Further, since the ordering O∗ is τ -pseudorandom,
for every k ∈ [R] and i ∈ [t], Infk(T1−ǫF i

a) 6 τ . Hence using Lemma 3.5, the above probability is

bounded by t · t−
2

2−ǫ + t · oτ (1) = O(t−
ǫ

2−ǫ ) + oτ (1) .
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Lemma 6.4. For any τ -pseudorandom t-ordering O∗ of [m]R , Valt(O∗) 6 Valt(G) + oτ (1).

Proof. The t-ordering problem is a CSP over a finite domain, and is thus amenable to techniques
of [19]. In fact, we shall use the soundness analysis of [19] to infer the result. The details of the
proof are below.

Consider the payoff function P : [t]2 → [0, 1] defined by: P (i, j) = 1 for i < j, P (i, j) = 0
for i > j and P (i, j) = 1

2 otherwise. The t-ordering problem is a Generalized CSP(see Definition
3.1, [19]) with the payoff function P . Let DICTG denote the dictatorship test obtained by running
the reduction of [19] on the t-ordering instance G. DICTG is a dictatorship test on functions
F : [m]R → ∆t, with the following soundness condition:
(Corollary 2.2, [19]) Soundnessγ,τ (DICTG) 6 Valt(G) + oτ,ǫ,α,γ(1)

In other words, for any function F : [m]R → ∆t that is (γ, τ) pseudorandom, the expected
payoff obtained in DICTG is close to Valt(G).

Consider the function F = (F1, . . . ,F t) over the domain [m]R. For each point z ∈ [m]R, exactly
one of these functions take value 1 while others are zero. Thus the range of F is the t-dimensional
simplex ∆t.

The dictatorship test described in this section is equivalent to DICTG. Specifically, it produces
a distribution of queries identical to DICTG. In fact, Valt(O∗) is exactly equal to the expected
payoff obtained by the function F on the dictatorship test DICTG.

With the ordering O being τ -pseudorandom, for every k ∈ [R] and i ∈ [t], we have Infk(T1−ǫF i) 6

τ . Consequently, the function F = (F1, . . . ,F t) is “(γ, τ)-pseudorandom” with γ = 0, as per Defi-
nition 4.1, and Definition 4.2 in [19]. This implies that the expected payoff of F = (F1, . . . ,F t) is
at most Valt(G)

In [19], the corollary 2.2 is shown for a dictatorship test DICTΦ for functions over domain
[m]R taking values in the m-dimensional simplex ∆m. However, the proof extends without any
modifications for functions F : [m]R → ∆t.

In terms of the functions F i, the expression for Valt(O∗) is as follows:

Valt(O∗) = Ee=(u,v)Ezu,zvEz̃u,z̃v

[1

2

∑

i=j

F i(z̃u) · F j(z̃v) +
∑

i<j

F i(z̃u) · F j(z̃v)
]

= Ee=(u,v)Ezu,zvEz̃u,z̃v

[1

2

∑

i=j

F i(z̃u) · F j(z̃v) +
∑

i<j

F i(z̃u) · F j(z̃v)
]

Here we restate the above lemma, in terms of the function F .

Claim 6.5. For a function F : [m]R → ∆t satisfying Infk(T1−ǫF) 6 τ for all k ∈ [R],

Ee=(u,v)Ezu,zvEz̃u,z̃v

[1

2

∑

i=j

F i(z̃u)F j(z̃u) +
∑

i<j

F i(z̃u)F j(z̃u)
]

6 Valt(G) + oτ (1)

7 Hardness Reduction

Let G = (V,E) be a (η, t)-Multiscale gap instance, and let m = |V |. Further let {ui|u ∈ V, i ∈ [m]}
denote the corresponding SDP solution. Let Γ = (A ∪ B, E,Π = {πe : [R] → [R]|e ∈ E}, [R]) be

11



a bipartite unique games instance. Towards constructing a MAS instance G = (V, E) from Γ, we
shall introduce a long code for each vertex in B. Specifically, the set of vertices V of the directed
graph G is indexed by B × [m]R.

Hardness Reduction
Input : Unique games instance Γ = (A ∪ B, E,Π = {πe : [R] → [R]|e ∈ E}, [R]) and a (η, t)
Multiscale gap instance G = (V,E).
Output : Directed graph G = (V, E) with set of vertices : V = B × [m]R and edges E given by the
following verifier:

• Pick a random vertex a ∈ A. Choose two neighbours b, b′ ∈ B independently at random. Let
π, π′ denote the permutations on the edges (a, b) and (a, b′).

• Pick an edge e = (u, v) ∈ E at random from the Multiscale gap instance G.

• Sample ze = {zu, zv} from the product distribution PR
e , i.e. For each 1 6 k 6 R, z

(k)
e =

{z(k)
u , z

(k)
v } is sampled using the distribution Pe(i, j) = ui · vj.

• Obtain z̃u, z̃v by perturbing each coordinate of zu and zv independently. Specifically, sample

the kth coordinates z̃
(k)
u , z̃

(k)
v as follows: With probability (1 − 2ǫ), z̃

(k)
u = z

(k)
u , and with the

remaining probability z̃
(k)
u is a new sample from Ω.

• Introduce a directed edge (b, π(z̃u)) → (b′, π′(z̃v)).

Theorem 7.1. For every γ > 0, there exists choice of parameters ǫ, η, t, δ such that:

• Completeness: If Γ is a (1 − δ)-satisfiable instance of Unique Games, then there is an
ordering O for the graph G with value at least (1 − γ). i.e. Val(G) ≥ 1 − γ.

• Soundness: If Γ is not δ-satisfiable, then no ordering to G has value more than 1
2 + γ, i.e

Val(G) 6 1
2 + γ.

In the rest of the section, we will present the proof of the above theorem. To begin with, we fix
the parameters of the reduction.
Parameters : Fix ǫ = γ/8 and η = γ/4. Let τ, t be the constants obtained from Theorem 7.5.
Finally, let us choose δ = min{γ/4, γǫ2τ8/109}.

7.1 Completeness

In order to show that Val(G) ≥ 1 − γ, we will instead show that Valm(G) ≥ 1 − γ. From
Observation 3.1, this will imply the required result.

By assumption, there exists labelings to the Unique Game instance Γ such that for 1−δ fraction
of the vertices a ∈ A all the edges (a, b) are satisfied. Let Λ : X ∪Y → [R] denote one such labelling.
Define an m-ordering of G as follows:

O(a, z) = z(Λ(a)) ∀a ∈ A, z ∈ [m]R

Clearly the mapping O : V → [m] defines an m-ordering of the vertices V = B× [m]R. To determine
Valm(O), let us compute the probability of acceptance of a verifier that follows the above procedure

12



to generate an edge in E and then checks if the edge is satisfied. Arithmetizing this probability, we
can write

Valm(O) =
1

2
Pr

(

O(b, π(z̃u)) = O(b′, π′(z̃v))
)

+ Pr
(

O(b, π(z̃u)) < O(b′, π′(z̃v))
)

With probability at least (1 − δ), the verifier picks a vertex a ∈ A such that the assignment Λ
satisfies all the edges (a, b). In this case, for all choices of b, b′ ∈ N(a), π(Λ(a)) = Λ(b) and
π′(Λ(a)) = Λ(b′). Let us denote Λ(a) = l. By definition of the m-ordering O, we get O(b, π(z)) =
(π(z))(Λ(b)) = z(π−1(Λ(b))) = z(l) for all z ∈ [m]R. Similarly for b′, O(b′, π′(z)) = z(l) for all z ∈ [m]R.
Thus we get

Valm(O) ≥ (1 − δ) ·
(1

2
Pr

(

z̃(l)
u = z̃(l)

v

)

+ Pr
(

z̃(l)
u < z̃(l)

v

)

)

With probability at least (1 − 2ǫ)2, for both z̃u and z̃v we have z̃
(l)
u = z

(l)
u and z̃

(l)
v = z

(l)
v . Hence,

Valm(O) ≥ (1 − δ)(1 − 2ǫ)2 ·
(1

2
Pr

(

z(l)
u = z(l)

v

)

+ Pr
(

z(l)
u < z(l)

v

)

)

Note that each coordinate z
(l)
u , z

(l)
v is generated according to the local distribution Pe for the edge

e = (u, v). For the local distribution Pe corresponding to an edge e = (u, v) ∈ E,

Pr
(

z(l)
u = z(l)

v

)

=
∑

i=j

ui · vj Pr
(

z(l)
u < z(l)

v

)

=
∑

i<j

ui · vj

Substituting in the expression for Valm(O) we get,

Valm(O) ≥ (1 − δ)(1 − 2ǫ)2Ee=(u,v)

[1

2

∑

i=j

ui · vj +
∑

i<j

ui · vj

]

Recall that the SDP vectors {ui} have an objective value at least (1 − η). Thus for small enough
choice of δ, ǫ and η, we have Valm(O) ≥ 1 − γ.

7.2 Soundness

Let O be an ordering of G with Val(O) ≥ 1
2 + γ. Using the ordering, we will obtain a labelling Λ

for the unique games instance Γ. Towards this, we shall build machinery to deal with multiple long
codes. For b ∈ B, define Ob as the restriction of the map O to vertices corresponding to the long
code of b. Formally, Ob is a map Ob : [m]R → Z given by Ob(z) = O(b, z). Similarly, for a vertex
a ∈ A, let Oa denote the restriction of the map O to the vertices N(a)× [m]R, i.e Oa(b, z) = O(b, z).

7.2.1 Multiple Long Codes

Throughout this section, we shall fix a vertex a ∈ A and analyze the long codes corresponding to
all neighbours of a. For a neighbour b ∈ N(a), we shall use πb to denote the permutation along

the edge (a, b). Let F [p,q]
b denote the functions associated with the ordering Ob. Define functions

F [p,q]
a : [m]R → R as follows:

F [p,q]
a (z) = Pr

b∈N(a)

(

Oa(b, πb(z)) ∈ [p, q]
)

= Eb∈N(a)[F [p,q]
b (πb(z))]

13



Definition 7.2. Define the set of influential coordinates Sτ (Oa) as follows:

Sτ (Oa) = {k|Infk(T1−ǫF [p,q]
a ) ≥ τ for some p, q ∈ Z}

An ordering Oa is said to be τ -pseudorandom if Sτ (Oa) is empty.

Lemma 7.3. For any influential coordinate k ∈ Sτ (Oa), for at least τ
2 fraction of b ∈ N(a), πb(k)

is influential on Ob. More precisely, πb(k) ∈ Sτ/2(Ob).

Proof. As the coordinate k is influential on Oa, there exists p, q such that Infk(F [p,q]
a ) ≥ τ . Recall

that F [p,q]
a (z) = Eb∈N(a)[F [p,q]

b (πb(z))]. Using convexity of Inf this implies,

Eb∈N(a)[Infπb(k)(F [p,q]
b )] ≥ τ

All the influences Infπb(k)(F [p,q]
b ) are bounded by 1, since each of the functions F [p,q]

b take values in

the range [0, 1]. Therefore for at least τ/2 fraction of vertices b ∈ N(a), we have Infπb(k)(F [p,q]
b ) ≥

τ/2. This concludes the proof.

Lemma 7.4. For any vertex a ∈ A, |Sτ (Oa)| 6 800/ǫτ4.

Proof. From Lemma 7.3, for each coordinate k ∈ Sτ (Oa) there is a corresponding coordinate πb(k)
in Sτ/2(Ob) for at least τ/2 fraction of the neighbours b. Further from Lemma 4.3, the size of each
set Sτ/2(Ob) is at most 400/ǫτ3. By double counting, we get that |Sτ (Oa)| is at most 800/ǫτ4.

Theorem 7.5. For all ǫ, γ > 0, there exists constants t, τ > 0 such that for any vertex a ∈ A, if
Oa is τ -pseudorandom then Val(Oa) 6 Valt(G) + γ/4.

Proof. The proof outline is similar to that of Theorem 6.2. Let O∗
a denote the t-coarsening of Oa.

Then we can write,

Val(Oa) 6 Valt(O∗
a) +

1

2
Pr

(

O∗
a(b, πb(z̃u)) = O∗

a(b
′, πb′(z̃v))

)

The t-coarsening O∗
a is obtained by dividing the order Oa in to t-blocks. Let [p1 + 1, p2], [p2 +

1, p3], . . . , [pt + 1, pt+1] denote the t blocks. For the sake of brevity, let us denote F i
a = F [pi+1,pi+1]

a

and F i
b = F [pi+1,pi+1]

b . In this notation, we can write:

Pr
(

O∗
a(b, πb(z̃u)) = O∗

a(b
′, πb′(z̃v))

)

=
∑

i∈[t]

Ee=(u,v)Eb,b′Ezu,zvEz̃u,z̃v

[

F i
b(πb(z̃u)) · F i

b′(πb′(z̃v))
]

=
∑

i∈[t]

Ee=(u,v)Ezu,zvEz̃u,z̃v

[

F i
a(z̃u) · F i

a(z̃v)
]

=
∑

i∈[t]

Ee=(u,v)Ezu,zv

[

T1−2ǫF i
a(zu) · T1−2ǫF i

a(zv)
]

As the ordering Oa is τ -pseudorandom, for every k ∈ [R] and i ∈ [t], Infk(T1−ǫF i
a) 6 τ . Hence by

Lemma 3.5, the above value is less than O(t−
ǫ

2−ǫ ) + oτ (1).
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Now we shall bound the value of Valt(O∗
a). In terms of the functions F i

b , the expression for
Valt(O∗

a) is as follows:

Valt(O∗
a) = Ee=(u,v)Eb,b′Ezu,zvEz̃u,z̃v

[1

2

∑

i=j

F i
b(πb(z̃u)) · F j

b′(πb′(z̃v)) +
∑

i<j

F i
b(πb(z̃u)) · F j

b′(πb′(z̃v))
]

= Ee=(u,v)Ezu,zvEz̃u,z̃v

[1

2

∑

i=j

F i
a(z̃u) · F j

a(z̃v) +
∑

i<j

F i
a(z̃u) · F j

a(z̃v)
]

Again, since the ordering Oa is τ -pseudorandom, for every k ∈ [R] and i ∈ [t], Infk(T1−ǫF i
a) 6 τ .

Hence by Claim 6.5, the above value is bounded by Valt(G) + oτ (1). From the above inequalities,

we get Val(Oa) 6 Valt(G) + O(t−
ǫ

2−ǫ ) + oτ (1), which finishes the proof.

7.2.2 Defining a Labelling

Define the labelling Λ for the unique games instance Γ as follows: For each a ∈ A, Λ(a) is a
uniformly random element from Sτ (Oa) if it is non-empty, and a random label otherwise. Similarly
for each b ∈ B, assign Λ(b) to be a random element of Sτ/2(Ob) if it is nonempty, else an arbitrary
label.

If Val(O) is greater than 1
2 + γ, then

Val(O) = Ea∈A[Val(Oa)] ≥
1

2
+ γ

For at least γ/2 fraction of vertices a ∈ A, we have Val(Oa) ≥ 1
2 +γ/2. Let us refer to these vertices

a as good vertices. From Theorem 7.5, for every good vertex the order Oa is not τ -pseudorandom. In
other words, for every good vertex a, the set Sτ (Oa) is non-empty. Further by Lemma 7.3 for every
label l ∈ Sτ (Oa), for at least τ/2 fraction of the neighbours b ∈ N(a), πb(l) belongs to Sτ/2(Ob).
For every such b, the edge (a, b) is satisfied with probability at least 1/|Sτ (Oa)| × 1/|Sτ/2(Ob)|.
By Lemma 4.3 and Lemma 7.4, this probability is at least ǫτ4/800 × ǫτ3/3200. Summarizing the
argument, the expected fraction of edges satisfied by the labelling Λ is at least γǫ2τ8/10240000.
By a small enough choice of δ, this yields the required result.

8 SDP Integrality Gap

In this section, we construct integrality gaps for the MAS-SDP relaxation using the unique games
hardness reduction. Specifically we show,

Theorem 8.1. For any γ > 0, there exists a directed graph G such that the value of semi definite
program (MAS-SDP) is at least 1 − γ, while Val(G) 6

1
2 + γ.

The proof uses a bipartite variant of the Khot-Vishnoi [10] Unique Games integrality gap
instance as in [19, 12]. Specifically, the following is a direct consequence of [10].

Theorem 8.2. [10] For every δ > 0, there exists a UG instance, Γ = (A ∪ B, E,Π = {πe : [R] →
[R] | e ∈ E}, [R]) and vectors {Vk

b } for every b ∈ B, k ∈ [R] such that the following conditions
hold :
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• No assignment satisfies more than δ fraction of constraints in Π.

• For all b, b′ ∈ B, k, l ∈ [R] , Vk
b ·Vl

b′ > 0 and Vk
b · Vl

b = 0.

• For all b, b′ ∈ B, k, l ∈ [R] , Vk
b ·

∑

l∈[R] V
l
b′ = |Vk

b |2 and
∑

k∈[R] |Vk
b |2 = 1

• The SDP value is at least 1 − δ: Ea∈A,b,b′∈B

[

∑

k∈[R] V
π(k)
b · Vπ′(k)

b′

]

> 1 − δ

Let G be a (η, t)-multiscale gap instance with m vertices. Apply Theorem 8.2, with a sufficiently
small δ to obtain a UGC instance Γ and SDP vectors {Vk

b |b ∈ B, k ∈ [R]} ∪ {I}. Consider the
instance G constructed by running the UG hardness reduction in Section 7 on the UG instance Γ.
The set of vertices of G is given by B × [m]R. Set M = |B| × mR and N = |B|. Further, fix an
arbitrary ordering {b1, . . . , bN} of the vertices in B.

The program MAS-SDP on the instance G contains M vectors {W(bj ,z)
i |i ∈ [M ]} for each vertex

(bj , z) ∈ B× [q]R and a special vector I denoting the constant 1. Define a solution to MAS-SDP as
follows: Set the vector I to be the corresponding vector in the instance Γ. For each (bj , z) ∈ B×[m]R

and i ∈ [R] define

W
(bj ,z)

N(i−1)+j =
∑

zk=i

Vk
bj

∀i ∈ [R], (bj , z) ∈ B

W
(bj ,z)
l = 0 for any other choice of l ∈ [M ], (bj , z) ∈ B

It is easy to check that the vectors {W(bj ,z)
i } satisfy the constraints of MAS-SDP and have an SDP

value close to 1. On the other hand, the soundness analysis in Section 7 implies that the integral
optimum for G is at most 1

2 +γ. The details of the proof will appear in the full version of the paper.
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