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Abstract—A permutation constraint satisfaction problem
(permCSP) of arity k is specified by a subset Λ ⊆ Sk of
permutations on {1, 2, . . . , k}. An instance of such a permCSP
consists of a set of variables V and a collection of constraints
each of which is an ordered k-tuple of V . The objective is
to find a global ordering σ of the variables that maximizes
the number of constraint tuples whose ordering (under σ)
follows a permutation in Λ. This is just the natural extension
of constraint satisfaction problems over finite domains (such
as Boolean CSPs) to the world of ordering problems.

The simplest permCSP corresponds to the case when Λ
consists of the identity permutation on two variables. This is
just the Maximum Acyclic Subgraph (MAS) problem. It was
recently shown that the MAS problem is Unique-Games hard to
approximate within a factor better than the trivial 1/2 achieved
by a random ordering [6]. Building on this work, in this paper
we show that for every permCSP of arity 3, beating the random
ordering is Unique-Games hard. The result is in fact stronger:
we show that for every Λ ⊆ Π ⊆ S3, given an instance of
permCSP(Λ) that is almost-satisfiable, it is hard to find an
ordering that satisfies more than |Π|

6
+ ε of the constraints

even under the relaxed constraint Π (for arbitrary ε > 0).
A special case of our result is that the Betweenness problem
is hard to approximate beyond a factor 1/3. Interestingly, for
satisfiable instances of Betweenness, a factor 1/2 approximation
algorithm is known.

Thus, every permutation CSP of arity up to 3 resists
approximation beyond the trivial random ordering threshold.
In contrast, for Boolean CSPs, there are both approximation
resistant and non-trivially approximable CSPs of arity 3.

Keywords-hardness of approximation; betweenness; permu-
tation constraint satisfaction problems; approximation resis-
tance

I. INTRODUCTION

Constraint satisfaction problems (CSPs) are a rich class of
optimization problems that arise naturally in many settings.
A large number of well-studied problems such as Max 3SAT,
Max Cut, Max k-colorable subgraph, Max k-set splitting,
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Max 3LIN, Unique Games, etc. are examples of CSPs. A
CSP of arity k over domain [q] = {0, 1, . . . , q − 1} (called
a q-ary kCSP) is specified by a predicate P : [q]k → {0, 1}.
An instance of such a CSP consists of a set of variables
V and a collection C of constraints each of which applies
P to a k-tuple of literals (which are variables or their
“negations,” i.e., translates modulo q). The objective is to
find an assignment A : V → [q] of values to the variables
that maximizes the number of constraints of C that are
satisfied.

For most CSPs, it is NP-hard to find an optimal as-
signment with maximum number of satisfied constraints.
Therefore, one settles for approximation algorithms that
deliver provable guarantees. Ideally, for each CSP, we would
like to know its approximation threshold, i.e., a value α < 1
for which we can give a polynomial time algorithm that
satisfies at least α times the optimum number of constraints
on every instance of that CSP1, together with a matching
hardness result that rules out a factor (α+ε)-approximation
for arbitrary constant ε > 0. For a CSP, we define its random
assignment threshold to be the fraction ρ of assignments that
satisfy its predicate P . A trivial algorithm that ignores the
structure of the instance, and simply picks an assignment
to variables randomly and independently, satisfied an ex-
pected fraction ρ of the constraints. (This algorithm can be
derandomized using standard methods.) The approximation
threshold is thus always at least the random assignment
threshold.

Approximation Resistance. The discovery of the PCP the-
orem and semi-definite programming based approximation
algorithms in the early 90’s has led to a rich body of
work which has identified the approximation threshold for
many important CSPs. The breakthrough paper of Håstad [8]
proved the striking result that many important CSPs are
approximation resistant: it is NP-hard to approximate them
better than their random assignment threshold, and thus their
approximation thresholds equals their random assignment
threshold ! The list of such approximation resistant CSPs
include Max 3SAT, Max 3LIN (whose predicate stipulates
that the parity of 3 literals is 0), and in fact any binary

1For convenience, we are focusing on maximization problems only.



3CSP whose predicate is implied by the parity constraint
x⊕ y ⊕ z = 0, Max k-set splitting for k > 4, etc.

This motivates the natural question of classifying ap-
proximation resistant predicates. Posed in this generality,
this is a very challenging goal. But we now know fairly
broad classes of CSPs which are approximation resistant, as
well as those that are not. We now discuss some of these
results. Complementing Håstad’s hardness result for 3-CSPs,
Zwick [16] gave approximation algorithms outperforming a
random assignment for every 3-ary predicate not implied
by parity, thereby leading to a precise classification of
approximation resistant binary 3CSPs. The situation for arity
4 and higher gets more complicated as one might imagine.
Hast succeeds in characterizing 355 out of 400 different
predicate types for binary 4CSPs [7]. Håstad [9] showed
that most predicates (a fraction 1−o1(k) of k-ary predicates)
are approximation resistant (this relies on the Unique Games
conjecture).

It is known that every 2CSP, even over non-binary do-
mains, can be approximated better than the random assign-
ment threshold [5], [4], [8]. The approximation threshold of
2CSPs (such as Max Cut) remained a fascinating mystery
until recent progress based on the Unique Games conjecture
(UGC) tied it to the integrality gap of semi-definite program-
ming (SDP) relaxations [11], [1], [15]. In fact, under the
UGC, Raghavendra showed the striking result [15] that for
every CSP, the approximation threshold equals the integrality
gap of a natural SDP. Thus believing the UGC is equivalent
to believing that SDPs are the “best algorithms out there”
for approximating CSPs.

Note that this result does not pinpoint the value of the
approximation threshold, but only ties it to the integrality
gap. For various CSPs, identifying the integrality gap itself
is a challenging task (this is especially so for arity 3 and
higher). So this connection per se does not advance the
classification of approximation resistant predicates.
Permutation CSPs. As discussed above, there have been
significant advances on the approximability of CSPs, both
in algorithms and hardness results. However, a rich class
of CSP-like problems that have resisted such progress are
ordering (or permutation) problems. At a high level, an
ordering problem seeks a permutation of the variables of
a CSP (or vertices of a graph) to optimize some objective
function. The list of ordering problems that have been
studied in the literature include Bandwidth, Minimum Linear
Arrangement, Feedback arc set, Maximum acyclic subgraph,
Betweenness, etc.

Our understanding of approximability of ordering prob-
lems lags that of CSPs significantly. In terms of algorithms,
for CSPs, one typically rounds a SDP/linear program solu-
tion into a small number of values (0/1 for binary CSPs),
whereas for ordering problems, the rounding algorithm has
to pick one of an unbounded number of values. In terms
of hardness results, due to the bounded range for CSPs,

powerful techniques from the analysis of Boolean functions
can be directly employed to establish strong results, whereas
permutations tend to resist such an analysis.

In a recent work [6], a tight inappproximability result was
shown for the Maximum Acyclic Subgraph (MAS) problem
(assuming the UGC). In the MAS problem, one is given a
collection of u < v constraints (for variables u, v ∈ V )
and the goal is to permute V so that a maximum number
of these local constraints are met. A random permutation
will satisfy an expected fraction 1/2 of constraints, and the
result of [6] shows that beating this is Unique Games-hard.
In other words, MAS is approximation resistant. This was
the first such result, and indeed the first tight hardness of
approximation result, for an ordering problem.

In this paper, we study problems with more general
ordering constraints. A permutation constraint satisfaction
problem (permCSP) of arity k is specified by a subset
Λ ⊆ Sk of permutations on {1, 2, . . . , k}. An instance of
such a permCSP consists of a set of variables V and a
collection of constraints each of which is an ordered k-
tuple of V . The objective is to find a global ordering σ
of the variables that maximizes the number of constraint
tuples whose ordering (under σ) follows a permutation in
Λ. This is just the natural extension of CSPs to the world of
ordering problems. As with CSPs, we say a permCSP Λ is
approximation resistant if its approximation threshold equals
|Λ|
k! , which is the expected fraction of constraints satisfied by

a random permutation of the variables.
Note that in this language, MAS corresponds to the

simplest permCSP: the arity 2 permCSP where Λ consists
of the identity permutation on two variables. Also note that
MAS is the only non-trivial permCSP of arity 2.

Our main result is that every permCSP of arity 3 is ap-
proximation resistant. Specifically, for every such permCSP
outperforming the trivial approximation ratio achieved by
random ordering is Unique Games-hard. The result is in
fact stronger:

Theorem 1. For every ε > 0, Λ ⊆ Π ⊆ S3, the following
is Unique Games hard: given an instance of permCSP(Λ)
that is (1− ε)-satisfiable, it is hard to find an ordering that
satisfies more than |Π|/6 + ε of the constraints even under
the relaxed constraint Π.

A special case of our result is that the Betweenness
problem is hard to approximate beyond a factor 1/3. The
Betweenness problem consists of constraints of the form “j
lies between i and k” corresponding to the subset {123, 321}
of S3. Interestingly, for satisfiable instances of Betweenness,
it is possible to outperform the random ordering: using a
semidefinite programming relaxation, Chor and Sudan [3]
gave a factor 1/2 approximation algorithm.

Thus, every permutation CSP of arity up to 3 resists
approximation beyond the trivial random ordering threshold.
In contrast, as mentioned above for binary CSPs, there are



both approximation resistant and non-trivially approximable
CSPs of arity 3 (and we even precisely know which ones
are in each category).

Our work suggests the intriguing possibility that this
approximation resistance holds for larger arities as well,
and that every permutation CSP might be approximation
resistant. Such a result would be striking for its generality
— it would highlight the fundamental difficulty of satisfying
ordering constraints in a powerful way, and be in sharp
contrast to the situation for binary and other bounded domain
CSPs.

II. PROOF OVERVIEW AND RELATION TO [15], [6]

In this section, we describe the high level ideas behind
inapproximability results for ordering problems, and place
it in context with two closely related works [15], [6]. The
underlying theme in these works is to convert some kind of
combinatorial “gap instance” into a reduction from Unique
Games (UG) which preserves this gap. After describing this
framework, we then highlight the main technical contribu-
tion that is new to this work.

As explained above, Raghavendra [15] showed how to
convert an integrality gap instance of a natural SDP for
an arbitrary CSP into a matching hardness result. Consider
a permCSP problem specified by Λ ⊆ Sk. An instance
of permCSP(Λ) with m variables can be viewed as an
instance of a CSP with domain size m, and viewed this
way admits a similar SDP relaxation. Suppose there is a
“c vs s” gap instance for this SDP that has m variables. In
other words, the SDP optimum is at least c but the permCSP
instance admits no ordering satisfying more than fraction s
of constraints. Using the techniques of [15], one can then get
a UG-hardness for an m-ordering version of permCSP(Λ).
In this version, the goal is to map the variables to m ordered
buckets (the variables inside a bucket are not ordered), and
the payoff of a constraint is the probability that it is satisfied
if each bucket is randomly and independently permuted. For
example, if Λ = 123, the payoff for a constraint i < j < k
when i, j are placed in the same bucket and k is placed in
a later bucket equals 1/2.

In fact, one can conclude something stronger. Using
Gaussian noise stability bounds, and the notion of influential
coordinates for orderings put forth in [6], one can show
the following fact in the soundness case: For the instance
of permCSP(Λ) produced by the reduction, the value of
the best ordering cannot be much higher than the best m-
ordering. Thus one can conclude a “c vs s” inapproximabil-
ity result for permCSP(Λ).

So why are we not done? The problem is that we do not
know strong integrality gaps to use as starting point for the
above reduction. In fact, even for the simplest permCSP,
the MAS problem, tight integrality gaps were obtained only
from the UG-hardness in [6]!

In light of this difficulty, the approach taken in [6] is to
relax the requirements on the gap instance. Start with a gap
instance on m vertices that has good SDP value, but much
smaller t-ordering value, for t � m. Thus, the instance
is only required to perform poorly on t-orderings and not
on normal orderings (i.e., m-orderings). In fact, given the
difference in objectives (m vs. t-orderings), we can even
hope for an instance with a “c vs. s” gap between optimum
integral m-orderings (not SDP vectors) and t-orderings. We
can plug in such a gap instance into the above-mentioned
UG reduction. This will yield an instance of permCSP(Λ)
with m-ordering value (and hence also optimum ordering
value) at least c− ε for Yes instances of UG, and t-ordering
value at most s + ε for No instances of UG. In the latter
case, using Gaussian noise stability bounds, the optimum
ordering value will also be close to s (for t chosen large
enough). We thus get a “c vs s” inapproximability result for
permCSP(Λ).

For the MAS problem, the authors of [6] showed how
to use a construction of a directed acyclic graph with low
cut-norm due to Charikar, Makarychev, and Makarychev [2]
to obtain the required gap instance. The gap instance is a
directed graph on m vertices which is nearly acyclic, and
yet for t� m the MAS value of any t-ordering is close to
1/2. We will refer to this graph as the CMM instance in
the sequel.

Our technical contribution in this work is to construct
an appropriate gap instance for arity 3 permutation CSPs
with the completeness and soundness properties listed below.
Plugging this instance into the above UG-reduction frame-
work of [6] then gives our inapproximability result. (Specif-
ically, this gives a strong hardness for permCSP(123), or
the 3-ary monotone ordering problem, where the constraints
are of the form i < j < k. Our general result for all 3-ary
permCSPs follows by a simple reduction.)

We now describe the properties of the gap instance. For
integer parameters t < m, and η > 0, the gap instance
consists of a distribution D on [m] × [m] × [m] with the
following properties:
• Completeness: Pr(i,j,k)∈D

[
i < j < k

]
> 1− η.

• Soundness: For every permutation π ∈ S3 and every
t-ordering Ot of [m], the probability over random linear
extensions of Ot that a sample (i, j, k) ∈ D is ordered
according to π is at most 1

6 + η.

We obtain such a distribution over triples by first sampling
3-tuples from the circle S1 according to a suitable con-
tinuous distribution, and then discretizing the distribution.
We use Fourier analysis over the circle S1 to prove the
soundness property. The continuous view also gives an
alternate, somewhat simpler, explanation of why the CMM
instance works in the MAS setting. The extension to the
arity 3 case presents additional challenges and technical
difficulties compared to the CMM analysis, and working in



the continuous setting makes it possible to overcome these
with a reasonable economy of analysis.

A gap instance with similar properties for larger arity k
would show that every permutation CSP is approximation
resistant (under the UGC) via the same reduction framework.
However, we do not know whether such gap instances
exist for arities larger than 3. Our proof technique for
triples proceeds by some sort of “reduction” to the CMM
construction for arity 2. It is not clear if such a method can
be extended to the larger arity case.

III. PRELIMINARIES

For a positive integer t, Simt denotes the the t dimensional
simplex. We will use boldface letters z to denote vectors
z = (z(1), . . . , z(R)). Let oτ (1) denote a quantity that tends
to zero as τ → 0, while keeping all other parameters fixed.
For an integer m, we denote by [m] the set {1, 2, . . . ,m}.
For notational convenience, an ordering O of a set of points
V is represented by a map O : V → Z. On the other hand,
a t-ordering O consists of a map O : V → [t]. For a t-
ordering, the map need not be injective or surjective, but an
ordering is required to be injective.

An instance of the 3-ary Monotone Ordering (3-MO)
problem, G, is a set of points V along with a (weighted)
set E of 3-tuples of V . A 3-tuple (u, v, w) in E is said to
be satisfied by an ordering O if O(u) < O(v) < O(w).
The quantity Val(G) refers to the maximum over orderings
of V the (weighted) fraction of satisfied constraints. We will
use Val(G,O) to denote the fraction satisfied by a particular
ordering O.

The problem can be naturally extended to t-orderings as
follows. A t-orderingO can be extended to a (total) ordering,
O′, by ordering within the t partitions randomly, while
retaining the natural order amongst the partitions. Define
the payoff of a tuple (u, v, w) in E in the t-ordering O
is to be the probability that O′(u) < O′(v) < O′(w). For
example, if O(u) = O(v) < O(w), then the tuple is ordered
correctly with probability half and hence the payoff is 1/2.
The quantity Valt(G) refers to the maximum expected total
payoff (where the expectation is taken over choice of a
random tuple from G) over all t-orderings.

We will be interested in general arity 3 ordering problems
where the constraints may accept an arbitrary subset of
the permutations of 3 elements. For a permutation π of
3 elements, the payoff of a tuple (u, v, w) with respect
to π in a t-ordering O is the probability that the random
extension O′ orders the tuple according to π. The quantity
Valπt (G) refers to the maximum expected payoff with respect
to π in a t-ordering. The quantity Valt(G), then, is a short-
form for Validt (G) where id is the identity permutation. As
before, we will use Valπt (G,O) and Valt(G,O) to denote
the value obtained by a particular ordering O. Finally, the
quantity Valπ(G) is simply the maximum expected payoff
with respect to π in any ordering. The following observations

follow immediately from the definition of the quantities
involved.

Observation 2. For all 3-MO instances G, and integers
t 6 t′ and all π, Valπt (G) 6 Valπt′(G) 6 Valπ(G).

Observation 3. For all 3-MO instances G and integers t, for
any ordering O of the points in G,

∑
π∈S3

Valπt (G,O) = 1.

A. Fourier analysis over S1

We review the basis facts that we will use about Fourier
analysis of real valued functions defined on the circle S1 =
R/Z. A great reference for this topic is Körner’s book [13].
For a Riemann integrable function f : S1 → R, define the
Fourier coefficients of f by

f̂(n) =
∫ 1

0

f(t)e−2πintdt ,

for integers n ∈ Z. Under fairly general conditions, for
example if f is continuous everywhere and has a continuous
bounded derivative except at finitely many points, then the
Fourier series

∑M
n=−M f̂(n)e2πinx converges uniformly to

f(x) as M →∞, and we can write

f(x) =
∞∑

n=−∞
f̂(n)e2πinx .

We will only encounter such functions in our application.
In this case, for such functions f and g, Parseval’s identity
says that ∫

S1
f(x)g(x)dx =

∞∑
n=−∞

f̂(n)ĝ(n) , (1)

which in particular implies that if |f(x)| 6 1 for every x,
then

∑∞
n=−∞ |f̂(n)|2 6 1. If f, g : S1 → R are continuous

functions, then their convolution f ∗ g is a continuous
function given by

(f ∗ g)(r) =
∫
S1
f(r − u)g(u) du .

Its Fourier coefficients are given by f̂ ∗ g(n) = f̂(n)ĝ(n).
The Fourier coefficients of the function h(x) = f(−x) are
given by ĥ(n) = f̂(−n).

B. Noise Operators and Influences

Let Ω denote the finite probability space correspond-
ing to the uniform distribution over [m]. Let {χ0 =
1, χ1, χ2, . . . , χm−1} be an orthonormal basis for the space
L2(Ω). For σ ∈ [m]R, define χσ(z) =

∏
k∈[R] χσi

(z(k)).
Every function F : ΩR → R can be expressed as a
multilinear polynomial as F(z) =

∑
σ F̂(σ)χσ(z). The L2

norm of F in terms of the coefficients of the multilinear
polynomial is ||F||22 =

∑
σ F̂2(σ).

Definition 4. For a function F : ΩR → R, define Infk(F) =
Ez[Varz(k) [F ]] =

∑
σk 6=0 F̂2(σ).



Here Varz(k) [F ] denotes the variance of F(z) over the
choice of the kth coordinate z(k).

Definition 5. For a function F : ΩR → R, define the
function TρF as follows:

TρF(z) = E[F(z̃) | z] =
∑

σ∈[m]R

ρ|σ|F̂(σ)χσ(z)

where each coordinate z̃(k) of z̃ = (z̃(1), . . . , z̃(R)) is equal
to z(k) with probability ρ and with the remaining probability,
z̃(k) is a random element from the distribution Ω.

The following result is established in [6] using the Majority
is Stablest theorem (see Theorem 4.4 in [14]).

Lemma 6. For every ε > 0, there exists a µ0 > 0
for which the following holds for all µ 6 µ0. Suppose
F ,G : [m]R → [0, 1] are two functions with E[F ] =
E[G] = µ, and Infk(T1−εF) 6 τ , Infk(T1−εG) 6 τ
for all k ∈ [R]. Let x,y be random vectors in [m]R

whose marginal distributions are uniform over [m]R but are
arbitrarily correlated. Then

Ex,y[T1−2εF(x)T1−2εG(y)] 6 µ1+ε/2 + oτ (1) .

Lemma 7. Given a function F : [m]R → [0, 1], then∑R
k=1 Infk(T1−εF) 6 1

e ln 1/(1−ε) 6 1
ε

C. Unique Games

Definition 8. An instance of Unique Games represented as
Υ = (A ∪ B, E,Π, [R]), consists of a bipartite graph over
node sets A,B with the edges E between them. Also part of
the instance is a set of labels [R] = {1, . . . , R}, and a set of
permutations πab : [R]→ [R] for each edge e = (a, b) ∈ E.
An assignment Λ of labels to vertices is said to satisfy an
edge e = (a, b), if πab(Λ(a)) = Λ(b). The objective is to
find an assignment Λ of labels that satisfies the maximum
number of edges.

For a vertex a ∈ A ∪ B, we shall use N(a) to denote
its neighborhood. For the sake of convenience, we shall use
the following version of the Unique Games Conjecture [12]
which is equivalent to the original conjecture [10].

Conjecture 9. (Unique Games Conjecture [12], [10]) For
all constants δ > 0, there exists large enough constant R
such that given a bipartite unique games instance Υ = (A∪
B, E,Π = {πe : [R]→ [R] : e ∈ E}, [R]) with number of
labels R, it is NP-hard to distinguish between the following
two cases:

• (1−δ)-satisfiable instances: There exists an assignment
Λ of labels such that for 1−δ fraction of vertices a ∈ A,
all the edges incident at a are satisfied.

• Instances that are not δ-satisfiable: No assignment
satisfies more than a δ-fraction of the constraints Π.

D. Influential variables for orderings

We will use the notion of influence for orderings first
introduced in [6].

Definition 10. Given an ordering O of vertices V , its t-
coarsening is a t-ordering O∗ obtained by dividing O into
t contiguous blocks, and assigning label i to vertices in the
ith block. Formally, if M = |V |/t then

O∗(u) =
⌊ |{v|O(v) < O(u)}|

M

⌋
+ 1

For an ordering O of points in [m]R, Define functions
F [p,q]
O : [m]R → {0, 1} for integers p, q as follows:

F [p,q]
O (x) =

{
1 if O(x) ∈ [p, q]
0 otherwise

We will omit the subscript and write F [p,q] instead of F [p,q]
O ,

when it is clear.

Definition 11. For an ordering O of [m]R, define the set of
influential coordinates Sτ (O) as follows:

Sτ (O) = {k | Infk(T1−εF [p,q]) 6 τ for some p, q ∈ Z}

An ordering O is said to be τ -pseudo-random if Sτ (O) is
empty.

Lemma 12 (Few Influential Coordinates). [6] For any
ordering O of [m]R, we have |Sτ (O)| 6 400

ετ3

Claim 13. For any τ -pseudo-random ordering O of [m]R,
its t-coarsening O∗ is also τ -pseudo-random.

Proof: Since the functions {F [·,·]
O∗ } are a subset of the

functions {F [·,·]
O }, Sτ (O∗) ⊆ Sτ (O).

IV. COARSENING GAP INSTANCES FOR 3-MONOTONE
ORDERING

Definition 14 ((η, t)-Coarsening Gap). A (weighted) 3-MO
instance over [m], G = ([m], E) is a (η, t)-coarsening gap
if:
• Completeness: Pr(i,j,k)∈E [i < j < k] > 1−η. In other

words, Val(G) > 1−η and in particular is obtained by
the obvious ordering of [m].

• Soundness: For all permutations π of 3 elements,

|Valπt (G)− 1
6 | 6 η

Note that it is easy to modify the construction to obtain a
coarsening gap instance with perfect completeness—where
Val(G) is 1—by simply throwing away the η fraction of bad
tuples. This however does not help in the hardness reduction
as the unique games instance has imperfect completeness.
Moreover, the construction is more natural if allowed to have
imperfect completeness.

The main result of this section is the following theorem
which constructs (η, t)-coarsening gap for arbitrarily large t
and arbitrarily small η.



Theorem 15. For every integer t > 0 and η > 0, there
exists an m = m(η, t) such that there is a (η, t)-coarsening
gap instance for 3-MO over [m].

A. Continuous gap Instances over S1

We will prove Theorem 15 by first constructing a con-
tinuous analogue over the unit circle S1 = R/Z. We will
later discretize the instance to obtain the necessary result. In
particular, we will analyze the following distribution over 3-
tuples of points on S1.

Definition 16. For every T > 0, let DT be the following
distribution over S1 × S1 × S1:
• Pick x ∈ S1 uniformly at random

• Pick ∆ ∈ [−T, 0] uniformly at random

• Pick s ∈ [− lnT
2 , 0] uniformly at random

• Output (x, x+ e∆−Tes

, x+ e∆)

Remark 17 (Relation to CMM instance). A directed graph
with m vertices with properties similar to the CMM instance,
namely a large gap between the MAS value for m-orderings
and t-orderings for t � m, can be obtained by a suitable
discretization (see Section IV-B below) of the following
distribution on S1 × S1: Pick x ∈ S1 uniformly at random,
pick s ∈ [− lnT, 0] at random, and output (x, y = x+ es).
This instance has roughly the same mass in all (geometric)
“scales” of the jump between x and y. The fact that t-
orderings have MAS value close to 1/2 follows from the
bound∣∣∣∣Ex,s(g(x)h(x+ es)− h(x+ es)g(x)

)∣∣∣∣ 6 O

(
1

lnT

)
(2)

for continuous functions g, h : S1 → [0, 1], via an argument
similar to (and in fact simpler than) Lemma 23 below. A
bound similar to (2) is at the heart of the proof of Lemma 19
below.

The distribution in Definition 16 behaves similar to a
CMM instance even on fixing x (see Lemma 19). Intuitively,
this means that any t-ordering of the discretized instance
cannot order the tuples significantly more or less often as
i < j < k than as i < k < j. Interestingly, as shown
in the harder Lemma 20, a similar property is true even
when fixing z. These two properties are enough to argue
about every permutation of the tuples (i, j, k) as is shown
in Lemma 23.

The proof of the following integral is in Appendix A.

Lemma 18. Let m be an integer and a, b be such that 0 <
a < b < 1. Let ψ : R+ → R+ be a continuous, non-
increasing function that is at least 1 in the interval [a, b].
Then,

I =

∣∣∣∣∣
∫ b

a

sin(2πmx)
ψ(x)x

dx

∣∣∣∣∣ 6 14 .

The following lemma and Lemma 20 are at heart of argu-
ing the soundness property (Definition 16) of the coarsening
gap instance for t-orderings. This may not be apparent, but
will be in the proof of Lemma 23.

Lemma 19. For large enough T , for all continuous func-
tions f, g, h : S1 → [0, 1] with continuous derivatives except
at finitely many points:∣∣∣E(x,y,z)∈DT

[
f(x)

(
g(y)h(z)− h(y)g(z)

)]∣∣∣ 6 O

(
1

lnT

)
Proof: We have

E[f(x){g(y)h(z)− g(z)h(y)}]

=
∫ 1

0

f(x)

[∫ 0

−T

∫ 0

− lnT
2

g(x+ e∆−Tes

)h(x+ e∆)

− h(x+ e∆−Tes

)g(x+ e∆ d∆
T

2ds
lnT

]
dx

We will bound the inner integrals for every x. Define the
functions g1, h1 : R→ [0, 1] as

g1(y) = g(x+ eT (y−1)) and h1(z) = h(x+ eT (z−1)) .

(Note these are defined with domain R and not S1.) Now,
setting u = 1 + ∆/T and r = es, for each x the inner
integral can be written as:

Ix =
∫ 1

0

∫ 1

− 1√
T

(
g1(u−r)h1(u)−g1(u)h1(u−r)

)
du

2dr
r lnT

Define functions g0, h0 : S1 → [0, 1] as g0(θ) = g1(θ)
and h0(θ) = h1(θ) where the argument θ in the right hand
side (i.e., for g1, h1) is treated as a real in [0, 1). Let

I ′x =
∫
u∈S1

∫ 1

− 1√
T

[g0(u−r)h0(u)−g0(u)h0(u−r)]du 2dr
r lnT

.

In other words, I ′x is the integral of the same integrand as
in Ix but with operations over the unit circle S1. Note that
the expressions are different exactly when u− r < 0. Since
each integrand is at most 1 in absolute value, we can bound

|Ix − I ′x| 6 2
∫ 1

0

∫ 1

max{− 1√
T
,u}

2dr
r lnT

du

6 2
∫ 1/

√
T

0

du+
4

lnT

∫ 1

1/
√
T

− lnu du

6
2√
T

+
4

lnT
6

5
lnT

(3)

for large enough T . To bound I ′x, we use Fourier analysis



over S1 and proceed as follows:

I ′x =
∫ ∫ 1

1√
T

(
g0(u− r)h0(u)− g0(u)h0(u− r)

)
du

2dr
r lnT

=
∫ 1

1√
T

∞∑
n=−∞

ĝ0(−n)ĥ0(n)
(
e2πinr − e−2πinr

) 2dr
r lnT

(using transform identity for convolution)

=
4i

lnT

∑
n

ĝ0(−n)ĥ0(n)
∫ 1

1√
T

sin(2πnr)
r

dr .

Using Cauchy Schwarz, Parseval’s identity, and Lemma 18,
we get

|I ′x| 6
56

lnT

√∑
n

|ĝ0(n)|2
∑
n

|ĥ0(n)|2 6 O

(
1

lnT

)
(4)

Combining (3) and (4), we have the desired bound:

E
[
f(x)

(
g(y)h(z)− g(z)h(y)

)]
=
∣∣∣∣∫ 1

0

f(x) · Ix dx
∣∣∣∣

6
∫ 1

0

|f(x)||Ix|dx 6 O

(
1

lnT

)

The proof of the following lemma is more involved than
the above proof, and is deferred to Appendix A.

Lemma 20. For all large enough T , for all continuous
functions f, g, h : S1 → [0, 1] with continuous derivatives
except at finitely many points:∣∣∣E(x,y,z)∈DT

[
h(z)

(
f(x)g(y)− f(y)g(x)

)]∣∣∣ 6 O

(
1

lnT

)
.

B. Discrete Coarsening Gap Instance

Although the continuous setting is more amenable to
analytic tools, we will need the instance to be over a finite
set for constructing the dictatorship test. We will discretize
the distribution DT to obtain the coarsening gap instance.

Definition 21 (3-MO Gap Instance, GmT ). Partition S1

into m intervals [0, 1
m ), [ 1

m ,
2
m ) . . . [m−1

m , 1), identified
with [m] in the obvious way. GmT is a weighted 3-MO
instance over [m], where the weight of a tuple (i, j, k) is
the probability that DT outputs points x, y, and z in the
partitions corresponding i, j, and k respectively.

Lemma 22. For m > e2T , the weight of tuples (i, j, k) such
that i < j < k is at least 1− 1

T .

Proof: Suppose the tuple (x, y, z) did not wrap around
the unit interval (in other words, x < y < z). Then,
the minimum distance between points, min(x,y,z)←DT

{y −
x, z − y, z − x} is at least e−2T . For m > e2T , the tuples
(i, j, k) obtained by discretizing (x, y, z) are over distinct
and increasing i, j and k. Thus, unless the points (x, y, z)

wrap-around the unit interval, the tuple (i, j, k) will be
ordered as i < j < k. Hence,

Wt(i < j < k) = Wt(i < k) > Pr
(x,y,z)←DT

[x < z]

(As i < k implies i < j < k in the construction)

> 1−
∫ 0

−T
e∆ d∆

T
= 1− 1− e−T

T
> 1− 1

T

Lemma 23. For every positive integer t, for large enough
m,T , the following holds for every π ∈ S3:

|Valπt (GmT )− 1
6 | 6 O

(
t3

lnT

)
Proof: Fix a t-ordering O. We will bound the differ-

ence between Valπ1
t (GmT ,O) and Valπ2

t (GmT ,O) for every
two permutations π1, π2.

Let P = {P1, P2 . . . Pt} be the partition of [m] into t
pieces induced by O. Abusing notation, we will use P (i)
to denote the partition to which i belongs and Pa to denote
the indicator of the part Pa.

Valt(GmT ,O) = Val123
t (GmT ,O) = Pr[P (i) < P (j) < P (k)]

+
1
2
(

Pr[P (i) = P (j) < P (k)] + Pr[P (i) < P (j) = P (k)]
)

+
1
6

Pr[P (i) = P (j) = P (k)]

=
∑
a<b<c

E[Pa(i)Pb(j)Pc(k)] +
1
2

∑
a<c

E[Pa(i)Pa(j)Pc(k)]

+
1
2

∑
a<c

E[Pa(i)Pc(j)Pc(k)] +
1
6

∑
a

E[Pa(i)Pa(j)Pa(k)]

Similarly,

Val132
t (GmT ,O) = Pr[P (i) < P (k) < P (j)]

+
1
2
(

Pr[P (i) = P (k) < P (j)] +
1
2

Pr[P (i) < P (k) = P (j)]
)

+
1
6

Pr[P (i) = P (k) = P (j)]

=
∑
a<b<c

E[Pa(i)Pb(k)Pc(j)] +
1
2

(∑
a<c

E[Pa(i)Pa(k)Pc(j)]

+
∑
a<c

E[Pa(i)Pc(k)Pc(j)]
)

+
1
6

∑
a

E[Pa(i)Pa(k)Pa(j)]

From the above expressions,

|Valt
123(GmT ,O)− Val132

t (GmT ,O)|

6
∑
a<b<c

E(i,j,k)

∣∣∣[Pa(i)Pb(j)Pc(k)− Pa(i)Pb(k)Pc(j)
]∣∣∣

Defining function fa : S1 → [0, 1] to be the indicator of
the union of the intervals corresponding to the partition Pa,
made continuous is by connecting endpoints of the intervals



by a “steep” line. We can bound the difference in expectation
using Lemma 19 as follows:

E(i,j,k)

∣∣∣[Pa(i)Pb(j)Pc(k)− Pa(i)Pb(k)Pc(j)
]∣∣∣

= E(x,y,z)←DT

∣∣∣[fa(x)
(
fb(y)fc(z)− fc(y)fb(z)

)]∣∣∣
6 O

(
1

lnT

)
We therefore conclude |Val123

t (GmT ,O)−Val132
t (GmT ,O)| 6

O
(

t3

lnT

)
. An almost identical proof bounds the differences

|Val213
t (GmT ,O) − Val312

t (GmT ,O)| and |Val231
t (GmT ,O) −

Val321
t (GmT ,O)|. Using a similar argument and em-

ploying Lemma 20 instead of Lemma 19, the differ-
ences |Val123

t (GmT ,O)−Val213
t (GmT ,O)|, |Val132

t (GmT ,O)−
Val231

t (GmT ,O)|, |Val312
t (GmT ,O)−Val321

t (GmT ,O)| can also
be bounded by O

(
t3

lnT

)
from above.

Thus, for all π1, π2, |Valπ1
t (GmT ,O) − Valπ2

t (GmT ,O)| 6
O
(

t3

lnT

)
. Now, Observation 3 gives the required result.

Given (η, t), setting T = exp(Ω( t
3

η )) and setting m =
exp(exp(Ω( t

3

η ))) and using Lemma 22 and Lemma 23
proves Theorem 15.

V. DICTATORSHIP TEST

Let G = (V,E) be a (η, t)-coarsening gap instance for
the 3-MO. Without loss of generality, V = [m] for an
m divisible by t. Using G, construct a (weighted) 3-MO
dictatorship test instance DICTG on orderings O of [m]R as
follows:

DICTG Test:
• Pick a tuple e = (u, v, w) ∈ E at random.
• Pick ze = (zu, zv, zw) to be k random shifts of e.

In other words, pick k random integers r1, r2 . . . rk
from [m] and set ziu = u + ri, ziv = v + ri, ziw =
w + ri (mod m).

• Obtain z̃u, z̃v , z̃w by perturbing each coordinate of
zu, zv , and zw independently. Specifically, sample
the kth coordinates z̃(k)

u , z̃
(k)
v as follows: With prob-

ability (1− 2ε), z̃(k)
u = z

(k)
u , and otherwise z̃(k)

u is
a new sample from V .

• Output tuple (z̃u, z̃v, z̃w).

Theorem 24. (Soundness Analysis) For every ε > 0, for
any τ -pseudo-random ordering O of [m]R,

Valπ(O) 6 Valπt (G) +O(t−
ε
2 ) + oτ (1)

for all permutations π, where oτ (1)→ 0 as τ → 0 keeping
all other parameters fixed.

Let F [p,q] : [m]R → {0, 1} denote the functions asso-
ciated with the t-ordering O∗. For the sake of brevity, we
shall write F i for F [i,i]. The result follows from Lemma 25
and Lemma 26 below, whose proofs parallel those of similar
statements in [6].

Lemma 25. For every ε > 0, there exists sufficiently large
m, t such that : For any τ -pseudo-random ordering O of
[m]R and permutation π,

Valπ(O) 6 Valπt (O∗) +O(t−
ε
2 ) + oτ (1)

where O∗ is the t-coarsening of O.

Proof: As O∗ is a coarsening of O, clearly Valπ(O∗) 6
Valπt (O). Note that the loss due to coarsening, is because
some tuples e = (u,v,w) which are oriented correctly in
O, fall into the same block during coarsening, i.e O∗(u),
O∗(v), O∗(w) are not all distinct. Thus we can write

Val(O) 6 Valt(O∗) + Pr
(
O∗(z̃u) = O∗(z̃v)

)
+ Pr

(
O∗(z̃u) = O∗(z̃w)

)
+ Pr

(
O∗(z̃v) = O∗(z̃w)

)

Pr
(
O∗(z̃u) = O∗(z̃v)

)
=
∑
i∈[t]

Ee=(u,v)Ezu,zv
Ez̃u,z̃v

[
F i(z̃u) · F i(z̃v)

]
=
∑
i∈[t]

Ee=(u,v)Ezu,zv

[
T1−2εF iu(zu) · T1−2εF iv(zv)

]
As O is a t-coarsening of O, for each value i ∈ [t], there
are exactly 1

t fraction of z for which O∗(z) = i. Hence for
each i ∈ [t], Ez[F iu(z) = 1

t ]. Further, since the ordering
O∗ is τ -pseudo-random, for every k ∈ [R] and i ∈ [t],
Infk(T1−εF ia) 6 τ . Hence using for sufficiently large t, the
above probability is bounded by t · t−1− ε

2 + t · oτ (1) =
O(t−

ε
2 ) + oτ (1). The same bound holds for the other two

probabilities too, hence giving the required result.

Lemma 26. For every choice of m, t, ε, and any τ -pseudo-
random t-ordering O∗ of [m]R , Valπt (O∗) 6 Valπt (G) +
oτ (1).

Proof: Deferred to Appendix A.

VI. HARDNESS REDUCTION

Let G = (V,E) be a (η, t)-coarsening gap instance, and
let m = |V |. Let Υ = (A ∪ B, E,Π = {πe : [R]→ [R]|e ∈
E}, [R]) be a bipartite unique games instance. Towards
constructing a 3-MO instance G = (V, E) from Υ, we shall
introduce a long code for each vertex in B. Specifically, the
set of vertices V of G is indexed by B × [m]R.



Hardness Reduction:
Input : Unique games instance Υ = (A ∪ B, E,Π =
{πe : [R] → [R]|e ∈ E}, [R]) and a (η, t) coarsening
gap instance G = (V,E).
Output : 3-MO instance G = (V, E) with set of vertices :
V = B× [m]R and edges E given by the following verifier:
• Pick a random vertex a ∈ A. Choose three neighbors
b, b′, b′′ ∈ B independently at random. Let π, π′, π′′

denote the permutations on the edges (a, b), (a, b′)
and (a, b′′).

• Pick a tuple e = (u, v, w) ∈ E at random from the
coarsening gap instance G.

• Sample ze = {zu, zv, zw} using k random shifts of
ze as in the dictatorship test.

• Obtain z̃u, z̃v, z̃w by perturbing each coordinate of zu,
zv , and zw independently.

• Output tuple ((b, π(z̃u)), (b′, π′(z̃v)), (b′′, π′′(z̃w))).

The proof of the following theorem follows from the sound-
ness analysis (Theorem 24) of the dictatorship test and using
techniques similar to [6] and is omitted.

Theorem 27. For every γ > 0, there exists choice of
parameters ε, η, t, δ such that:
• COMPLETENESS: If Υ is a (1− δ)-satisfiable instance

of Unique Games, then there is an ordering O for the
graph G with value at least (1−γ). i.e. Val(G) 6 1−γ

• SOUNDNESS: If Υ is not δ-satisfiable, then no ordering
to G has value more than 1

6 + γ with respect to any
permutation π, i.e, for all permutations π, Valπ(G) 6
1
6 + γ

Given a hard instance G with the above properties, we can
give an easy reduction to a hard instance for permCSP(Λ).
In fact, in the soundness case we can even allow a more
relaxed set of constraints Π ⊇ Λ, and it will still be hard to
outperform a random ordering.

Lemma 28. For every Λ ⊆ Π ⊆ S3, there is a polynomial
time reduction from 3-MO instance, G to permCSP(Λ)
instance H such that:
• COMPLETENESS: ValΛ(H) > Val(G).
• SOUNDNESS: If, for some γ, Valπ(G) 6 1

6 + γ
6 for all

permutations π, then ValΠ(H) 6 |Π|
6 + γ.

Proof: Given Λ ⊆ Π ⊆ S3 and a 3-MO instance G,
pick an arbitrary permutation π ∈ Λ and permute the tuples
of G by π to obtain the instance H . It is easy to see that for
every permutation π′, Valπ◦π

′
(H) = Valπ

′
(G). In particular,

since π ∈ Λ, ValΛ(H) > Valπ(H) > Val(G). Similarly, if
Valπ

′
(G) 6 1

6 + γ
6 for all permutations π′, then ValΠ(H) =∑

π′∈Π Valπ
′
(H) 6 |Π|

6 + γ

Our final result follows immediately follows from Theo-
rem 27 and Lemma 28.

Theorem 29 (Main). Conditioned on the Unique Games
conjecture, for every Λ ⊆ Π ⊆ S3, given an instance of
permCSP(Λ) that is 1 − ε satisfiable, it is hard to find an
ordering that satisfies more than |Π|/6+ε of the constraints
even under the relaxed constraint Π (for arbitrary ε > 0).
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APPENDIX

A. Omitted proofs

Lemma 30 (Lemma 18). Let m be an integer and a, b
be such that 0 < a < b < 1. Let ψ : R+ → R+ be a
continuous, non-increasing function that is at least 1 in the
interval [a, b]. Then,

I =

∣∣∣∣∣
∫ b

a

sin(2πmx)
ψ(x)x

dx

∣∣∣∣∣ 6 14 .

Proof: w.l.o.g., we can assume m is positive. Set l =
dmae and n = bmbc. If l > n, the interval [a, b] does not
contain any multiple of 1/m and thus b− a 6 1/m. In this
case the integral is at most

I =

∣∣∣∣∣
∫ b

a

sin(2πmx)
xψ(x)

dx

∣∣∣∣∣ 6
∫ b

a

∣∣∣∣ sin(2πmx)
xψ(x)

∣∣∣∣ dx
6
∫ b

a

|2πmx|
xψ(x)

dx 6 2πm(b− a) 6 2π

Therefore, assume l 6 n. The absolute value of the integral
can be bounded as:

I 6

∣∣∣∣∣∣
∫ l

m

a

sin(2πmx)
ψ(x)x

dx

∣∣∣∣∣∣+

∣∣∣∣∣∣
n−1∑
k=l

∫ k+1
m

k
m

sin(2πmx)
ψ(x)x

dx

∣∣∣∣∣∣
+

∣∣∣∣∣
∫ b

n
m

sin(2πmx)
ψ(x)x

dx

∣∣∣∣∣
6 4π +

n−1∑
k=l

∣∣∣∣∣∣
∫ k+1

m

k
m

sin(2πmx)
ψ(x)x

dx

∣∣∣∣∣∣
Using the identity sin(π+x) = − sin(x), we can split the

interval [k/m, (k + 1)/m] into two halves and group terms

as follows:

∣∣∣ ∫ k+1
m
k
m

sin(2πmx)
xψ(x)

dx
∣∣∣ =

∣∣∣ ∫ k+
1
2

m

k
m

sin(2πmx)
(

1
xψ(x)

− 1
ψ(x+ 1

2m )(x+ 1
2m )

)
dx
∣∣∣

6
∫ k+

1
2

m

k
m

∣∣∣∣ 1
xψ(x)

− 1
ψ(x+ 1

2m )(x+ 1
2m )

∣∣∣∣ dx
6
∫ k+

1
2

m

k
m

dx

2mx2
max

{
1

ψ(x)
,

1
ψ(x+ 1

2m )

}

6
∫ k+

1
2

m

k
m

dx

2mx2
6

1
4k2

We conclude that I 6 4π+ 1
4

∑∞
k=1

1
k2 6 4π+ π2

24 6 14.

Lemma 31 (Lemma 20). For all large enough T , for all
continuous functions f, g, h : S1 → [0, 1] with continuous
derivatives except at finitely many points:∣∣∣E(x,y,z)∈DT

[
h(z)

(
f(x)g(y)− f(y)g(x)

)]∣∣∣ 6 O

(
1

lnT

)
.

Proof: The distribution Dm is equivalent to (z−e∆, z−
e∆ + e∆−Tes

, z) where z ∈ S1 is chosen uniformly at
random, and ∆, s are chosen as in Dm. Thus, the expectation
can be written as follows:

E
[
h(z)

(
f(x)g(y)− g(x)f(y)

)]
=
∫ 1

0

h(z)

[∫ 0

−T

∫ 0

− lnT
2

f(z − e∆)g(z − e∆ + e∆−Tes

)

− g(z − e∆)f(z − e∆ + e∆−Tes

)
d∆
T

2ds
lnT

]
dz

As in the previous lemma, we will bound the inner integral
for every z. Write e∆(1 − e−Tes

) as e∆−rT . For large T ,
as s varies from 0 to − lnT

2 , r varies from r0 ≈ e−T /T to
r1 ≈ e−

√
T /T .

Differentiating e−rT = 1 − e−Tes

, we can compute the
probability density function of r, and it is given by

−p(r) dr =
2Te−rT dr

lnT (1− e−rT ) ln( 1
1−e−rT )

=
2ds
lnT

(The negative sign in front of p(r)dr is because r decreases
when s increases.)

We will bound the inner integral above for every z. Now,
as in the proof of Lemma 19, define functions f1, g1 : R→
[0, 1] by

f1(x) = f(z − eT (x−1)) and g1(y) = g(z − eT (y−1))



(Note these are defined with domain R and not S1.) Setting
u = 1 + t/T , the inner integral can be written as

Iz =
∫ 1

0

∫ r1

r0

(
f1(u)g1(u− r)− g1(u)f1(u− r)

)
du p(r)dr

Further, r varies from r0 ≈ e−T /T to r1 ≈ e−
√
T /T ;

hence for large enough T , 1−e−rT ' rT . More formally, we
will approximate p(r) by a simpler function for the purpose
of the analysis. Setting h = rT , we see that,∣∣∣∣∣ e−h

(1− e−h) ln( 1
1−e−h )

− 1
h ln( 1

h )

∣∣∣∣∣
6

∣∣∣∣∣ e−h

(1− e−h) ln( 1
1−e−h )

− e−h

h ln( 1
1−e−h )

∣∣∣∣∣
+

∣∣∣∣∣ e−h

h ln( 1
1−e−h )

− e−h

h ln( 1
h )

∣∣∣∣∣+
∣∣∣∣ e−h

h ln( 1
h )
− 1
h ln( 1

h )

∣∣∣∣
6

∣∣∣∣∣ e−h

ln( 1
1−e−h )

(
1

1− e−h
− 1
h

)∣∣∣∣∣
+

∣∣∣∣∣e−hh
(

1
ln( 1

1−e−h )
− 1

ln( 1
h )

)∣∣∣∣∣+
∣∣∣∣e−h − 1
h ln( 1

h )

∣∣∣∣
For our setting of parameters, we have h/2 6 1− e−h 6 h

and | ln( 1−e−h

h )| 6 5h. Hence,∣∣∣∣∣ e−h

(1− e−h) ln( 1
1−e−h )

− 1
h ln( 1

h )

∣∣∣∣∣
6 5

∣∣∣∣ e−hln( 1
h )

(
h− 1− e−h

h2

)∣∣∣∣
+

∣∣∣∣∣e−hh
(

ln( 1−e−h

h )
ln2( 1

h )

)∣∣∣∣∣+
∣∣∣∣e−h − 1
h ln( 1

h )

∣∣∣∣ 6 10
ln( 1

h )

Thus,∣∣∣p(r)− 2
ln(T )r ln( 1

rT )

∣∣∣ 6 40T
lnT ln( 1

rT )
6

40T
lnT

.

Hence, it is enough to bound the simpler integral

I ′z =
∫ 1

0

∫ 2
(
f1(u)g1(u− r)− g1(u)f1(u− r)

)
dudr

ln(T )r ln( 1
rT )

More precisely, the difference between the two integrals is
at most:

|Iz − I ′z| 6
200
lnT

e−
√
T 6 O

(
1

lnT

)
As in the proof of the previous lemma, define functions

f0, g0 : S1 → [0, 1] as f0(θ) = f1(θ) and g0(θ) = g1(θ)

where the argument θ in the right hand side (i.e., for f1, g1)
is treated as a real between 0 and 1. Now let

I ′′z =
∫ ∫ r1

r0

2
(
f0(u)g0(u− r)− g0(u)f0(u− r)

)
dudr

ln(T )r ln( 1
rT )

To bound I ′′z , as in the proof of Lemma 19, we use
Fourier analysis over S1, transform identity for convolutions,
Lemma 18, Cauchy-Schwarz, and Parseval’s theorem, and
proceed as follows:

|I ′′z | =
∫
S1

∫ r1

r0

[f0(u)g0(u− r)− g0(u)f0(u− r)]du

2
ln(T )r ln( 1

rT )
dr

=
4i

lnT

∞∑
n=−∞

ĝ0(−n)f̂0(n)
∫ r1

r0

sin(2πnr)
r ln( 1

rT )
dr

6
56

lnT

√∑
n

|f̂0(n)|2
∑
n

|ĝ0(n)|2 6 O

(
1

lnT

)

Finally, since r is at most e−
√

∆/T , the difference between
the integrals I ′′z and I ′z is also at most e−

√
∆/T as for a fixed

r, u < r with probability at most r. We therefore reach our
desired conclusion

E
[
h(z)

(
f(x)g(y)− g(x)f(y)

)]
=
∫ 1

0

h(z) Iz dz

6
∫ 1

0

|h(z)| |Iz| dz 6 O

(
1

lnT

)

Lemma 32 (Lemma 26). For every choice of m, t, ε, and
any τ -pseudo-random t-ordering O∗ of [m]R , Valπt (O∗) 6
Valπt (G) + oτ (1).

Proof: We will look at the case where π is the identity
permutation. The proof for the other orderings is almost
identical. The t-ordering problem is a CSP over a finite
domain, and is thus amenable to techniques of [15]. Specif-
ically, consider the payoff function P : [t]3 → [0, 1] defined
by: P (i, j, k) = 1 for i < j < k, P (i, j, k) = 1/2 for
i = j < k and i < j = k, P (i, j, k) = 1/6 for i = j = k
and P (i, j) = 0 otherwise. The t-ordering problem (with
respect to the identity permutation) is a Generalized CSP(see
Definition 3.1, [15]) with the payoff function P .

For the sake of exposition, let us pretend that t = m.
The dictatorship test we construct essentially picks a random
integral solution from the m different integral solutions
(corresponding to the m cyclic shifts of 1 . . .m) to perform
the test. This is exactly the same as the t-ordering CSP
dictatorship DICTG obtained by running the reduction of
[15] on the trivial SDP solution corresponding to the convex
combination of the integral solutions. Further, all the SDP
constraints are satisfied as the SDP solution is integral.



A t-ordering solution O∗ for the dictaDICTG corresponds
naturally to a function F : [t]R → Simt. Thus, we have the
following observations:
• The t-ordering instance DICTG is identical to the

dictatorship test described in this section when t = m.
• For a τ -pseudo-random t-ordering O∗, for every k ∈

[R] and i ∈ [t], the corresponding function F sat-
isfies Infk(T1−εF i) 6 τ . In the terminology of
[15](Definitions 4.1 and 4.2), this is equivalent to
the function F = (F1, . . . ,F t) being “(γ, τ)-pseudo-
random” with γ = 0.

• By Corollary 2.2 in [15], for a (γ, τ)-pseudo-random
function F , its probability of acceptance on the dicta-
torship test is at most Valt(G) + oγ,τ (1).

Hence the above lemma is just a restatement of Corollary
2.2 of [15] for the specific generalized CSP – t-Ordering –
albeit in the language of τ -pseudo-random orderings.

Recall that the actual case of interest here satisfies t < m.
Unfortunately, in this case, a black box application of the
result from [15] does not suffice. However, the proof in
[15] can be easily adopted without any new technical ideas.
In fact, many of the technical difficulties encountered in
[15] can be avoided here. For instance, the SDP solution
associates with each vertex u, the uniform probability dis-
tribution over {1 . . .m} (due to the cyclic shifts), unlike [15]
where there are several arbitrary probability distributions to
deal with. With the value of m fixed, this removes the need
for smoothing the SDP solution (Lemma 3.4 in [15]).


